
orfipy: a fast and flexible tool for extracting ORFs
(Supplementary Materials)
Urminder Singh1,2,3 and Eve Syrkin Wurtele1,2,3*

1Bioinformatics and Computational Biology Program, Iowa State University, Ames, IA 50011, USA
2Center for Metabolic Biology, Iowa State University, Ames, IA 50011, USA
3Department of Genetics Development and Cell Biology, Iowa State University, Ames, IA 50011, USA
*e-mail: mash@iastate.edu

Supplementary Information

Getting started
Current stable version of orfipy can be installed via PyPI using the following command

p i p i n s t a l l o r f i p y

Information on installing development version and source code is available from https://github.com/
urmi-21/orfipy. During submission of this manuscript, the source code, can also be accessed here: http:
//doi.org/10.5281/zenodo.4091773.

Basic usage
orfipy requires a fasta file as input to run. Other several options can be used fine tune ORF search. Basic command
to execute orfipy looks like:

o r f i p y [< o p t i o n s >] < i n . fa >

orfipy help menu, which describes all the input options, can be printed using the command

o r f i p y −h

Providing start, stop codons and translation table
With orfipy, users can specify one of the 23 codon tables from NCBI (https://www.ncbi.nlm.nih.
gov/Taxonomy/Utils/wprintgc.cgi?chapter=cgencodes) to use for translation. If needed, users
can also input their own table with the –table parameter. The codon table should be in a .json file to be read
by orfipy. An example is given here: https://raw.githubusercontent.com/urmi-21/orfipy/
master/scripts/example_user_table.json
By default, the codon tables specify the start and stop codons to use. User can easily override these values using
−− start and −− stop parameters when running orfipy. For example:

o r f i p y i n . f a s t a −− s t a r t TTG,CTG # u s e s TTG and CTG s t a r t codons
o r
o r f i p y i n . f a s t a −− s t a r t ATG −−s t o p TAA # u s e s on ly TAA as s t o p codon

1

https://github.com/urmi-21/orfipy
https://github.com/urmi-21/orfipy
http://doi.org/10.5281/zenodo.4091773
http://doi.org/10.5281/zenodo.4091773
https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?chapter=cgencodes
https://www.ncbi.nlm.nih.gov/Taxonomy/Utils/wprintgc.cgi?chapter=cgencodes
https://raw.githubusercontent.com/urmi-21/orfipy/master/scripts/example_user_table.json
https://raw.githubusercontent.com/urmi-21/orfipy/master/scripts/example_user_table.json

ORF searching modes
orfipy has two ORF searching modes to allow user to search for ORFs defined as:

1. Between Start and Stop: These ORFs are defined as the regions between a start and a stop codon. For example,
consider the sequence

AAAATGTTTAAAGGGCCCTAGTTT

ORF starting with the start codon “ATG” and ending with the stop codon “TAG” is (stop codon not included
in the ORF):

ATG TTT AAA GGG CCC

2. Between Stops (regions free of stop codon): These ORFs are defined as regions free of stop codons. For
examples, for the previous sequence, the ORFs reported in frame +1 will now be:

AAA ATG TTT AAA GGG CCC
and
TTT

ORF types
orfipy labels the ORFs as following types:

1. complete: This type of ORF has both a start and a stop codon. For example (stop codon included in ORF for
reference):

ATG TTT AAA GGG CCC TAG (STOP)

2. 5-prime partial: This type of ORF has a stop codon but lacks a start codon. For example:

TTT AAA GGG CCC TAG (STOP)

3. 3-prime partial: This type of ORF has a start codon but lacks a stop codon. For example:

ATG TTT AAA GGG CCC

By default orfipy outputs all the complete ORFs. Users can use the flags −− partial−5 and −− partial−3
to include the 5-prime partial and 3-prime partial ORFs.

Memory considerations
orfipy loads multiple fasta sequences into memory and searches for ORFs in parallel. This approach is particularly
faster for files containing multiple smaller sequences such as de-novo transcriptome assembly data. For files with
much larger sequences such as whole genomes, the amount of memory required by orfipy increases due to the
large sequence size and number of ORFs found (which are proportional to sequence size). In such scenarios orfipy
can use a lot of memory and may affect system’s performance. To deal with this user can set the −− chunk− size
option to have control over the memory usage. orfipy will process the input file in chunks of size −−chunk−size.
By default orfipy is able to determine an optimal value of −− chunk− size based of system’s available memory,
cpu cores and the input file provided.

2/5

Benchmarking details
To compare the runtimes of orfipy with getorf1 and OrfM2, we used three datasets: A. thaliana whole genome
(TAIR 10), 5,000 microbial genomes and RNA, and Human transcriptome (Ensembl release-101). Each tool was
run to find ORFs defined as regions free of stop codons as OrfM only supports this mode. Each tool was run
to save ORFs as nucleotide and peptide fasta files. Additionally, orfipy was also run to output ORFs in BED
format. For A. thaliana minimum ORF size was set as 300 while for other two datasets minimum ORF size was
set to 99. A script was written to execute the tools were executed via pyrpipe3 to capture the runtimes. Tools
were run three times and mean runtime for each tool is reported. Code to run the benchmarks is available at
https://github.com/urmi-21/orfipy/tree/master/scripts.

Basic commands for executing tools looked like the following:
orfipy

o r f i p y −−min <m> −−dna <nuc . fa > −−pep <pep . fa > −−between−s t o p s < i n . fa >
and
o r f i p y −−min <m> −−bed < o u t . bed > −−between−s t o p s < i n . fa >

OrfM

orfm −m <m> − t <nuc . fa > < i n . fa > > <pep . fa >

getorf

g e t o r f −f i n d 0 −min <m> −o u t s e q <pep . fa > −s e q u e n c e < i n . fa >
g e t o r f −f i n d 2 −min <m> −o u t s e q <nuc . fa > −s e q u e n c e < i n . fa >

Compatibility with other tools
This section describes how to set orfipy parameters to extract the same ORFs as with some existing tools. This
will be helpful to users wanting to switch to orfipy from existing tools.

OrfM
OrfM2 has only one run mode i.e. find ORFs defined as free of stop codons. To use orfipy to extract these ORFs,
use the flag −−between− stops. OrfM command:

orfm −m <m> − t <nuc . fa > < i n . fa > > <pep . fa >

orfipy command:

o r f i p y −−min <m> −−dna <nuc . fa > −−pep <pep . fa > −−between−s t o p s < i n . fa >

getorf
getorf1 can find ORFs defined as regions free of stop codons or regions between start and stop codons. User can
choose among these options by using the − f ind parameters in getorf. When − f ind is set to 0 or 2 (0 for peptide
output and 2 for nucleotide), getorf extracts ORFs defined as regions free of stop codons. This is same as OrfM and
orfipy command will be identical to what described for OrfM i.e. using the −−between− stops flag.
When − f ind is set to 1 or 3 (1 for peptide output and 3 for nucleotide), getorf extracts ORFs defined as regions
between start and stop codons. However, getorf only uses AT G as the start codon asn also outputs ORFs lacking a
stop codon. Thus, to get same ORFs as getorf from orfipy, users can specify the start codon to be ATG and to
include 3-prime partial ORFs (ORFs lacking a stop codon).
getorf:

g e t o r f −f i n d 3 −min $3 −o u t s e q " $2 / g e t o r f _ 3 _ d " −s e q u e n c e $1

Equivalent orfipy command will be:

o r f i p y −−min <m> −−dna <nuc . fa > −− s t a r t ATG −−p a r t i a l −3 < i n . fa >

3/5

https://github.com/urmi-21/orfipy/tree/master/scripts

TransDecoder
The TransDecoder4 tool can be used for identification of candidate coding sequences. TransDecoder.LongOrfs
command identifies long ORFs in sequences and then computes a score for each ORF. Transdecoder.Predict then
predicts the likely coding regions using score and length based filtering criteria. Transdecoder.Predict outputs ORFs
codrdinate in BED12 format. orfipy can out output ORFs in the same format, by choosing out type as BED12
and using −− include− stop flag.

o r f i p y −−bed12 < o r f s . bed > −− s t a r t ATG −−p a r t i a l −3 −−p a r t i a l −5 −−i n c l u d e −s t o p < i n . fa >

Note: Since TransDecoder applies a score based criteria, the number of ORFs reported by TransDecoder.Predict
will be different than orfipy.

4/5

References
1. Rice, P., Longden, I. & Bleasby, A. Emboss: the european molecular biology open software suite (2000).

2. Woodcroft, B. J., Boyd, J. A. & Tyson, G. W. OrfM: a fast open reading frame predictor for metagenomic
data. Bioinformatics 32, 2702–2703, DOI: 10.1093/bioinformatics/btw241 (2016). https://academic.oup.com/
bioinformatics/article-pdf/32/17/2702/17345985/btw241.pdf.

3. Singh, U., Li, J., Seetharam, A. & Wurtele, E. S. pyrpipe: a python package for rna-seq workflows. bioRxiv DOI:
10.1101/2020.03.04.925818 (2020). https://www.biorxiv.org/content/early/2020/04/08/2020.03.04.925818.full.
pdf.

4. Haas, B. & Papanicolaou, A. Transdecoder (2017).

5/5

10.1093/bioinformatics/btw241
https://academic.oup.com/bioinformatics/article-pdf/32/17/2702/17345985/btw241.pdf
https://academic.oup.com/bioinformatics/article-pdf/32/17/2702/17345985/btw241.pdf
10.1101/2020.03.04.925818
https://www.biorxiv.org/content/early/2020/04/08/2020.03.04.925818.full.pdf
https://www.biorxiv.org/content/early/2020/04/08/2020.03.04.925818.full.pdf

	References

