

Chapter 1

What are artificial neural networks? What are
its components?

Inspiration

As we human beings evolved with time, curiosity to understand certain
subjects increased exponentially. Universe, Singularity, Meaning of life, God,
Infinity and Brain were the ones which made to the top of the list. With time
our brain became more and more efficient, we starting thinking about
subjects deeply and we started asking the right questions. I will list a few of
the beautiful questions down here, and while you read them take a pause
and applaud the centuries of human progress it shows -

Are we alone in the universe?
What is consciousness? Are all living beings conscious?
What makes us human? - It can’t just be DNA because human genome
is 99% identical to a chimpanzee
What’s so weird about prime numbers?
Do we have free will?
P versus NP
How does our brain work?

Did you notice? How beautifully and precise are these questions?
Generations of people have spent time in thinking through these problems.
We came up with questions like these, we thought! We think!

You see what I did there? Yes, Human Brain is the core of all the curiosity
here. So what if we focus on developing a human brain? We will be able to
put that brain to focus on trivial issues like driving a car,making sure that
fraud doesn’t happen over credit card transactions etc. We can also put it to
remote places where accessibility is an issue and solve complicated
problems. We can put that brain to evaluate cardiovascular diseases via a
retina scan. Now to do this, to carry out the tasks mentioned above we need
intelligence. We need Artificial Intelligence!

Note - The Blue Brain project is a dedicated team of folks who are working
to build a digital reconsruction and simulations of a rodent and eventually
human brain.

How do we develop AI? Where do we go for inspiration? When we had to
build a plane, we studied birds. For building helicopters, dragonflies came
for rescue. So to build a system which can be put to solve trivial as well as
complicated problems, we need to look for inspiration from the most
intelligent species on earth. We need to look inside a living being which has
the largest cerebral cortex relative to their size. We would need to look
inside Human Brain!

•
•
•

•
•
•
•

https://www.epfl.ch/research/domains/bluebrain/blue-brain/about/

What are neural networks?

Before this representation of neural network starts unsettling us let us take
time to understand how this architecture was thought of and how to
interpret the image.

As mentioned in the section above, the neural networks are inspired by the
way our brain works. The picture above represents a graphical flow in which
the circles, represents neurons and the edges represent axon. The numbers
{ w1, w2 … wn } are set of weights of the neural networks. The weights are
the key part of neural networks because these are the parameters which
gets tuned when neural network goes under training process.

Another thing to remember is that neural networks are not an exact
representation of the brain. Brain is a very complicated organ and it is
obvious that we don’t learn by the method of backpropagation(to be
discussed later). Having said that let us further examine the picture above, if
you observe carefully you will see that not all neurons in layer 1 are
connected to all the neurons in layer 2. However, all the neurons in layer 2 is
connected to all the neurons in layer 3(the final layer). This type of layer is
known as a Fully Connected Layer. If a neural network has all layers as
fully connected layers then that neural network is called Fully Connected
Network(FCN).

Before we digress to our next topic, let us spend some more time in
understanding neural networks and their importance. Firstly, Neural
networks are really powerful because of their ability to learn the
relationships in a set of data on their own. Neural networks do not need to
be told which features are important or not. Neural nets are capable of
extracting the needed features and carry on the task efficiently.

Before neural nets became popular, people used to hardcode features by
hand in the traditional machine learning algorithms. For example, in
computer vision HOG(Histogram of Oriented Gradients) were used. Let us

say that we want to detect a face then a hardcoded feature can be that there
will always be a slope from cheeks to eyes.

Following is an opencv code which can generate a HOG from an image for
us.

from skimage import exposure,feature, data
import cv2

image = data.astronaut()
_ , hogImage = feature.hog(image, orientations=8,
pixels_per_cell=(16, 16),
 cells_per_block=(1, 1), transform_sqrt=True,
 block_norm="L1", visualize=True, multichannel=True)
hogImage = exposure.rescale_intensity(hogImage, out_range=(0,
255))
hogImage = hogImage.astype("uint8")

while 1:
 cv2.imshow("HOG Image", hogImage)
 cv2.waitKey(1)

We won’t go through the code for now. Following will be the output.

The challenge is that it is hard to write every possible feature in all the
varying conditions by hand. That is why we give neural nets diverse data
points so that it can learn these features by itself. Neural networks adapt to
the new inputs they see. If designed well then it has an amazing capability to
generalize across various scenarios and often across domains. A neural
network which is trained to differentiate between cats and dogs can also be
used to differentiate between elephants and giraffes via the process of
transfer learning.

Fully Connected Neural Networks

History is witness that the field of Artificial Intelligence has gone through
multiple phases of boom-and-bust cycles. It is like stock markets, after every
bull run there is a correction and once in a while there is recession and
depression.

I would say that the field of deep learning started with emergence of Multi-
Layer Perceptrons(MLP). Simply put, it was a feed forward neural network.
These MLPs had an input layer, a hidden layer and an output layer. MLPs
could work well with data that is not linearly separable. The key thing about
MLP is that all of its layers were fully connected. It means that each neuron
of one layer was connected to all the neurons in the next layer.

In the year 1975, backpropagation became the practical way to train MLP.
However deep learning was still not a mainstream way to do machine
learning. That was because MLPs were usually trained on XOR datasets.
More than the lack of computational power there was also a lack of real life
datasets on which the practicality of MLP could be verified. Around 1995,
Yann LeCun released MNIST dataset. This dataset had collection of
handwritten digits. This for some time became benchmark for forthcoming
neural networks.

In today’s era we have a multitude of datasets available. Imagenets for
benchmarking object classification neural networks. MOT17, PASCAL VOC
etc for object tracking and detection. However, MNIST dataset is still
important today. It helps us in quickly prototyping and testing our models on
a light-weight dataset. If a model is performing well on MNIST dataset then
it is safe to pursue the design of the model one has thought of and then train
it with heavy datasets. There are some datasets which can be useful along
with MNIST i.e Fashion MNIST, Omniglot dataset, etc.

We have got a neural network which is fully connected. It has got one or
more than one hidden layers between input and output layers. We have

datasets as well. Now, let us dive deeper into training process of fully
connected neural networks.

BackPropagation

In the sections above we have seen that neural networks have neurons in
the layers and every neuron may or may not be connected to all the neurons
in the next layer. The concept to which one should pay attention here is that
every connection from one neuron to another carries weight.

Forward propagation is the process in which the input passes through the
neural network to give an output(say probability). Backward propagation is
the process in which we calculate how far we are from the ground truth and
based on that we adjust the weights of the connections, so that next time we
are closer to the ground truth. Intuitively, it tells every layer/connection/
neuron that given the current input how much they were responsible for the
wrong output and how should they correct themselves. In this way when a
new input comes, we get closer to the ground truth and the loss is
minimized.

Broadly speaking, there are three steps in training -

Model Initialization (we will talk about it later)
Forward Propagation - This predict an output.
Back Propagation - On the basis of a defined loss function we calculate
how far is the model from the ground truth and then we update the
weights in the network. These updates happen via differentiation which
the Optimizers do.

Backpropagation is mathematically hard to understand. Luckily we have got
deep learning frameworks like pytorch, tensorflow, darknet, Mxnet etc
which takes care of automatic differentiation for us.

1.
2.
3.

Backpropagation is just another name for automatic differentiation. Our
agenda here is to build basic intuition that can get you started in the field of
deep learning. If you are interested in knowing more about backpropagation
and you want to dive deep into the mathematics(beyond the scope of this
book) of it, I would suggest you to do a literature survey and read classic
papers by Hinton and Yan LeCun.

Note - Geoffery Hinton, father of current AI boom, is deeply suspicious about
Backpropagation. He says “My view is throw it all away and start again, I
don't think it's how the brain works. We clearly don't need all the labeled
data". We humans try to find patterns in everything. We do it with the even
scarcity and sparsity of data. There has to be a better way than
backpropagation. We need to think more about unsupervised learning.

Universal Approximators

Deep fully connected neural networks are often called as universal
approximators. This is because no matter how complicated a function may
look like, neural networks can approximate it.

Universal approximations are quite a common phenomena in mathematics
as well as in computer science.

A couple of things to keep in mind about universal approximation theorem is
that neural networks can approximate a function and not exactly compute a
function. Secondly, the function which is being approximated should be
continuous. A function is said to be continuous for which sufficiently small
changes in the input have arbitrarily small changes in the output. In simpler
words, Neural networks can approximate sin(x) but not 1/|x| where x
belongs to the set of real numbers. If you can formulate a problem well
enough, neural networks can solve them for you. The part of problem
formulation is difficult.

Universal Approximation theorem makes neural network truly remarkable. It
allows us to work with any arbitrary functions. Imagine that all the data
which you have collected is now plotted on a cartesian plane, there will be a
wiggly line joining all those data points. Neural networks have this amazing

capability to extract right features and predict based on those features or
patterns.

If you are a mathematician or are interested in the proof of why Universal
Approximation Theorem(beyond the scope of this book) holds for neural
networks then you should read some original papers. One needs to be aware
of fourier transformations, Hahn-Banach theorem etc to follow the proof.

The more layers the better the network?

This is an active area of research and AI practitioners often find it hard to
take one side. While designing a neural network it is often advised that it is
better to add more layers rather than adding more neurons in a layer.

Basically, as the hypothesis space of a learning algorithm grows, the
algorithm can learn richer and better relationships. However, chances of
becoming prone to overfitting and its generalization error increases. Hence,
it is theoretically advisable to work with the minimal model that has enough
capacity to learn the real structure of the data. But this is a very hand-wavy
advice, because usually the core internal structure of the data is unknown,
and often we don’t understand the models which we train.

Shallow networks are very good at memorization, but not so good at
generalization. The advantage of multiple layers is that they can learn
features at various levels of abstraction. If one builds a very wide, very deep
network, there are high chances of each layer just memorizing the output,
and the neural network fails to generalize.

I know this is confusing! So one take on this can be to train a deep model
and then try to minimize it. By following this approach one can quickly
prototype and eventually follow neural network compression and
quantization.

There is a dedicated research area for this topic called Neural Architecture
Search (NAS), that focuses on creating algorithms or methods for finding
the optimal architecture that fits certain data, by architecture meaning the
number of layers, nodes, etc of a network. This is a subfield of AutoMachine
Learning that it is growing in importance through this last years. More info
and literature about it can be found here

Types of Learning

Before moving forward, It is important to understand the various ways in
which a neural network learns.

Supervised Learning - In this way of training a model, we provide huge
amount of labelled dataset to the neural network. The dataset are in
pairs of input and the desired output.

1.

Unsupervised Learning - It is inspired by one of the oldest learning
algorithms, Hebbian learning. In this way of learning a model is given a
dataset which is neither labelled nor classified.
Imitation Learning - This is popular in the field of reinforcement
learning. In this mode of learning a policy is formed based on
demonstrations.
Active Learning - In this mode of learning, the algorithm queries the
source of information to get the desired output at new data points.

We will be mostly dealing with supervised learning in this book. However, I
encourage the reader to explore active learning on its own. It has got a lot of
applications in the field of Natural Language Processing (NLP). Computer
Vision world still relies heavily on supervised learning. One of the reasons
being huge availability of labelled datasets. However, even in computer
vision, one shot learning and zero shot learning have become active areas of
research. Reader is advised to explore ESZSL(Embarrassingly Simple
Approach to Zero Shot Learning) algorithm.

Weight Initialization

The sections above have acquainted us with the overall idea of training a
neural network. One thing to understand here is how do we process the first
input during training process? Recall that connections between various
neurons have weights. How should we initialize those weights efficiently so
that the learning can happen smoothly? Let us say that we initialized all the
weights as zero. If we do that then we will lose the symmetry inside the
neural networks. During backpropagation every layer will have similar
weight updates and every layer will learn the same thing. This makes your
model equivalent to a linear model.

Another way to solve the problem of weight initialization can be to randomly
initialize the set of weights. This method often leads to two potential issues -

Vanishing Gradient Problem - Simply put, during backpropagation the
weight updates will be so less that neural network will stop learning
totally no matter how many epochs you run it for or how much more
data you feed it.
Exploding gradients - This is opposite of vanishing gradient problem. It
will stop model from reaching of global minima and during the
optimization(of loss) the model will keep oscillating and will never
learn.

There are a few methods in which we can overcome these problems like
using relu activation function, dropouts or gradient clipping etc.

Note - Pytorch, by default, uses Xavier weight Initialization. He Initialization,
Fixup Initialization are some other ways in which weights in the neural
network can be initialized however, those are beyond the scope of the book.

2.

3.

4.

1.

2.

Activation functions

Neural networks like MLP were inspired by brains. Apart from having
neurons, weights and connections they also have something similar to action
potential known as Activation Functions.

The idea is that we want an on/off mechanism for neurons. We want neurons
to fire only when an input hits a certain threshold. Activation functions helps
in introducing non-linearity into the output of a neuron. Non-linearity is an
important property to have in neural networks because without non-linearity
a neural network will be like a regression model.

There are a lot of activation functions available like sigmoid, tanh and relu
(maxout and leaky relu are some variants of relu). Relu helps the neural
networks architect to deal with vanishing gradient/gradient explosion
problem.

It is a very simple function - f(x) = max(0,x) Basically, Relu outputs the
maximum of zero or x.

Note - Whenever in doubt, use RELU(Rectified linear unit).

Understanding overfitting, underfitting and generalization

Keeping track of unending jargon is one of the toughest hurdles for a newbie
entering in the field of Artificial Intelligence. It is important to understand
Overfitting, Underfitting, and bias-variance trade-off because these are core
terminologies of Machine Learning world.

One can say that the sole purpose of neural networks is to generalize well.
Normally, we are used to algorithms like mergesort which are trained to do
one particular task really well. In the machine learning world we want a
model to detect object really well while also being able to do human pose
estimation(Mask RCNN).

Overfitting happens when the model is performing really well on the training
set, i.e the loss during training reduces but the model fails to perform well in
test dataset/real world. While Underfitting happens when the model fails to
learn from the training data and is unreliable. A generalized model is neither
overfit nor underfit.

Note - An integral part of machine learning is bias-variance tradeoff. We can
measure the generality of a model using this concept. Generalization is
bound by the two undesirable outcomes — high bias and high variance.

Dropouts

Using dropouts can be an effective way to avoid overfitting of the model.

The idea here is to switch off some neurons in layers of neural networks
randomly during each iteration, so that not all the neurons see all the
training data. By using dropouts we train an ensemble of neural networks
rather than training a single architecture.

Looking at the figure above, we can see that the dropout probability for the
second layer was 0.33 . It means that each neuron has 0.33% chances of
getting “dropped out” or switched off. Let us say that the first neuron of the
second layer was switched off, now when a data will pass through this
network and weights will be updated via back-propagation then the weights
of the connections connecting that neuron won’t be updated. It is like that
the neuron never saw that data point, in next iteration another set of
neurons will be switched off.

Dropouts, however, can make us lose information. To counter this fact, Batch
Normalization came into the picture. We can use less dropouts when we use
Batch Normalization because it helps us to retain information while solving
the problems of overfitting.

Dropouts are mostly used during training and deep learning frameworks
make managing dropouts extremely easy.

Note - For serious readers, I’d highly recommend reading the paper on
dropouts by G.Hinton et.al.

Chapter 2

Introduction to Pytorch

The barrier to entry is getting lower each day for the field of Deep Learning.
There were times when people used to write stuff from scratch every time
when they had to implement any idea. Today, we have got great frameworks

like pytorch and keras(higher level api based on tensorflow) where we can
easily build models and verify our ideas.

Note - If you don’t have a programming background then you can skip this
chapter. This chapter assumes that the reader is versed with Python.

Why pyTorch?

Pytorch is a python based scientific computing framework which also helps
us in designing deep neural networks. Being python friendly it makes it
really easy beginners to start coding right away. Python has kind-of become
lingua franca for the machine learning world.

“I've been using pytorch a few months now and I've never felt
better. I have more energy. my skin is clearer. my eyesight
has improved.”

— Andrej Karpathy

Some of the key things which I personally like is - - Simple and Intuitive APIs
- Computational Graph

Dynamic computational graph of pytorch makes it really intuitive to code.
Since the graph is not static as compared to tensorflow, it makes it easier for
deep neural network architects to change the behaviour on fly.

“An additional benefit of Pytorch is that it allowed us to
give our students a much more in-depth understanding of what
was going on in each algorithm that we covered. With a static
computation graph library like TensorFlow, once you have
declaratively expressed your computation, you send it off to
the GPU where it gets handled like a black box. But with a
dynamic approach, you can fully dive into every level of the
computation, and see exactly what is going on.”

- Jeremy Howard

There are a lot of benchmarks showing that pytorch is faster than keras and
sometimes comparable to tensorflow.

A confession here, I love cpp more than python. PyTorch is deeply integrated
with the C++ code, and it shares some C++ backend with torch. One can
further speed up things by using C++ because they will be closer to
machine. Although one can write C++ code in tensorflow also.

Pytorch’s coding style is imperative rather than declarative(which
tensorflow has). It makes things intuitive because a lot of people are used to
the imperative coding style. If you are someone who wants to prototype
ideas quickly then Pytorch will definitely increase developer productivity.

Debugging is often saviour of a developer. Pytorch brings ease in debugging
as compare to other frameworks out there.

The important thing here to note is PyTorch uses different backends for each
computation devices rather than using a single back-end. It uses tensor
backend TH for CPU and THC for GPU. While neural network backends such
as THNN and THCUNN for CPU and GPU respectively. Using separate
backends makes it very easy to deploy PyTorch on constrained systems.

Writing first neural network in pytorch

“Talk is cheap. Show me the code”

- Linus Torvalds

For the sake of demonstration we will be designing a neural network in
Pytorch with 1 10-neuron hidden layer, an input and an output layer.

The reader can take the code below and try to add more layers and
experiment with changing the width(number of neurons) in the hidden
layers to see how it affects the output or the training process.

Some stuff to know before proceeding to the following code - 1. Epoch - It is
a measure of the number of times all of the training data are used once to
update the weights. An epoch can have multiple iteration steps. Since whole
data can be very big to load in memory, so we often load the data in batches
and pass it through the neural network, such passes of mini-batches are
known as iteration steps. 2. Iris dataset - Iris flower data set is a
multivariate dataset which has 50 samples from each of three species of Iris
(Iris setosa, Iris virginica and Iris versicolor) and their petal length, sepal
length, petal width and sepal width.

Let us start with importing the libraries
We will go in depth later

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
Taking a few data points from iris dataset .
Here X represents the list of [petal length, petal width and
sepal length].
Y is the sepal width.

X = torch.tensor(([5.1, 3.5, 1.4], [6.7, 3.1, 4.4], [6.5, 3.2,
5.1]), dtype=torch.float) # 3 X 3 tensor
y = torch.tensor(([0.2], [1.4], [2]), dtype=torch.float) # 3 X
1 tensor
xTestInput = torch.tensor(([5.9, 3, 5.1]), dtype=torch.float)

Given X we will try to predict sepal width using neural
networks

We will now define a neural network in pytorch
It will have two fully connected layers.
In nn.Linear(3,10) , 3 specifies the input size and 10
specifies the output size.
we will be giving 3 data points to the neural network [petal
length, petal width and sepal length] and it will have 10
neurons hidden layer which will pass the data to another layer
fc2.
fc2 will give us 1 output i.e sepal width

class Neural_Network(nn.Module):
 def __init__(self):
 super(Neural_Network, self).__init__()
 self.fc1 = nn.Linear(3, 10)
 self.fc2 = nn.Linear(10, 1)

 def forward(self, x):
 x = F.sigmoid(self.fc1(x))
 x = F.sigmoid(self.fc2(x))
 return x

The following code is for training neural networks

model = Neural_Network()
model.train()

we are using stochastic gradient descent optimizer
optimizer = optim.SGD(model.parameters(), lr=0.01,
momentum=0.5)

we train the neural networks for 1000 epochs.
epochs basically means the number of time the whole set of
data will pass through the neural network.

for i in range(1000):
 optimizer.zero_grad()
 output = model(X)

 # We calculate the loss, i.e difference between ground
truth and predicted value.
 loss = F.binary_cross_entropy_with_logits(output, Y)
 print(loss)

 # Following code is to do backpropagation and for updating
weights.
 loss.backward()
 optimizer.step()

Now our model is trained, so we pass a test input to see how
the model is performing.
print(model(xTestInput))

Essentials of pytorch

We have seen above an example which demonstrates how easy and intuitive
it is to write. In this section we will try to dive deeper into Pytorch.

import torch
import torch.nn as nn

torch.nn contains all the necessary tools we would need while coding up a
neural network like Linear Layers, RNNs etc. Reader should check this link
out in order to understand more about torch.nn - here

This is how you initialize a tensor in pytorch. In pytorch everything is a
tensor.

x = torch.tensor(([5.1,4.3,2.5],[5.1,4.3,2.5],[5.1,4.3,2.5]),
dtype=torch.float)

A Variable wraps a Tensor and supports nearly all the API’s defined by a
Tensor. Variable also provides a backward method to perform
backpropagation.

from torch.autograd import Variable
a = Variable(torch.Tensor([[1,2],[3,4]]), requires_grad=True)
b = torch.sum(a**2)

compute gradients of b with respect to a
b.backward()
print(a.grad())

One more thing which often comes handy is the knowledge of numpy to
pytorch conversion and vice versa.

import numpy as np
a = np.array([1,2,3]) # numpy array
b = torch.from_numpy(a) # pytorch Tensor

We will keep using pyTorch in the book, especially in chapter 3 and 4.
Readers are advised to refer Pytorch’s documentation, it is one of the best
resources out there. Also fast ai’s module which is based on pytorch is
extremely beginner friendly. It is worth a try.

Chapter 3

How to make a computer see?

Introduction

Computer Vision has been one of the most captivating areas of interest for
researchers. One can say that a lot of progress which has been made in the

https://pytorch.org/tutorials/beginner/nn_tutorial.html

field of deep learning was motivated by the challenge to solve some
computer vision problems like object detection, classification, etc.

Honestly, we still don’t understand how we see! Our eyes in sync with our
brain does amazingly complicated tasks(like completely ignoring our own
nose while seeing) really well. Imagine yourself wearing a helmet while
driving a motorbike, during the rainy season when droplets start to slide
down on the visor our vision system is completely capable of ignoring that
and gives us proper contextual information which helps us in driving.

The “Intelligent” vision systems which we design works really well with a lot
of constraints. Anyways, the field is progressing rapidly and we are not only
stuck in doing a single job really well like detection or classification but we
are trying to get contextual information with which the machine can reason!

Convolutional Neural Networks

As promised, this book will help the reader to take their first steps in deep
learning. So in this section we will be overlooking a lot of mathematics while
focusing on intuition.

In deep learning world, Convolutional Neural Networks (or ConvNets or
CNNs) have become a standard way to solve any problem related to images.
The best part about CNNs are that they require much less preprocessing as
compared to their predecessors. There are almost no hard coded features
required.

Let us take a moment here and understand how a computer sees an image.
To a computer an image is nothing but a multidimensional array(3-d if image
is RGB). The values range from 0-255. To a computer, image is nothing but a
collection of pixel values.

Can’t fully connected networks process images?

It is a common argument that why can’t we simply stretch the
multidimensional array and flatten it out and pass it through a fully
connected layer.

A pic would be nice here, working on it

Again not getting into mathematics but if we try to understand intuitively, if
we reduce the dimension of any multidimensional array to a single
dimension we will surely lose some information, right?

Note - There are some dimensionality reduction techniques which might not
lose data always.

The following is the example image =

source - "Computer History Museum" by Scott Beale is licensed under CC
BY-NC 2.0

Let us try to visualize a three dimensional array.

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np

image = "Chapter-3/assests/img_3d.jpg"

img=mpimg.imread(image)
print(img.shape) #shape will be (333, 499, 3) where 3
represents 3-dimension

imgplot = plt.imshow(img)
plt.show()

Following will be the output of the code -

https://ccsearch.creativecommons.org/photos/52b18712-554e-4aff-8c87-d74187d92a07
https://ccsearch.creativecommons.org/photos/52b18712-554e-4aff-8c87-d74187d92a07

If we try to flatten the image we can only visualize it via a histogram.

import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np

image = "Chapter-3/assests/img_3d.jpg"

img=mpimg.imread(image)
print(img.shape)

img = img.flatten()
print(img.shape) # shape of the image will be (498501,) now.

plt.hist(img)
plt.show()

Following is the output -

we clearly cannot reason much by seeing th output of histogram.

In cases of extremely basic binary images like MNIST dataset, the multi-
layer perceptron or a fully connected network can give decent results but in
real world scenario we need a network which can take 3-d images as input
and eventually extract relevant features out of it.

A ConvNet is able to successfully capture the Spatial features/context in an
image by applying multiple filters or kernels.

A convolutional layer is built by using basically three components - -
convolutional layer - pooling layer - fully connected layers

Usually a convNet takes an input image and gives score/class probabilities
as an output.

Note - understanding convolutional layer will require some basic
mathematics which we will ignore for now. Feel free to raise PRs related to
this.

Writing a Convolutional Neural Network in pyTorch

#importing necessary libraries

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim

Note - There is a difference between “nn.Conv2d” and
“nn.functional.conv2d”. The “nn.Conv2d” is meant
to be used as a convolutional layer directly. However
“nn.functional.conv2d” is meant to be used when
you want your custom convolutional layer logic.

we will use torchvision library to download and add
transformations to our data
import torchvision as tv
import torchvision.transforms as transforms

our transformation pipeline
transform = transforms.Compose([tv.transforms.ToTensor(),
 tv.transforms.Normalize((0.4914, 0.4822, 0.4465),
(0.247, 0.243, 0.261))])

trainset = tv.datasets.CIFAR10(root="./
data",train=True,download=True,transform=transform)
dataloader =
torch.utils.data.DataLoader(trainset,batch_size=4,
shuffle=False, num_workers=4)

Defining our model
class OurModel(nn.Module):
 def__init__(self):
 super(OurModel,self).__init__()
 self.conv1 = nn.Conv2d(3,6,5)
 self.pool = nn.MaxPool2d(2,2)
 self.conv2 = nn.Conv2d(6,16,5)
 self.fc1 = nn.Linear(16*5*5,120)
 self.fc2 = nn.Linear(120,84)
 self.fc3 = nn.Linear(84,10)

 def forward(self,x):
 x = self.pool(F.relu(self.conv1(x)))
 x = self.pool(F.relu(self.conv2(x)))
 x = x.view(-1,16*5*5)
 x = F.relu(self.fc1(x))
 x = F.relu(self.fc2(x))
 x = self.fc3(x)
 return x

net = OurModel()
loss_func = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(),lr=0.001,weight_decay=
1e-6, momentum = 0.9, nesterov = True)

training
for epoch in range(2):
 running_loss= 0.0

 for i,data inenumerate(dataloader,0):
 inputs, labels = data
 optimizer.zero_grad()

 # forward prop
 outputs = net(inputs)
 loss = loss_func(outputs, labels)

 # backprop
 loss.backward() # compute gradients
 optimizer.step() # update parameters

 # print statistics
 running_loss += loss.item()
 if i %2000==1999: # print every 2000 mini-batches
 print('[epoch: %d, minibatch: %5d] loss: %.3f'%
(epoch +1, i +1, running_loss /2000))
 running_loss = 0.0

print("Training finished!")

That's is how you can write and quickly run a basic convolutional network in
pytorch.

Now let's verify our model

testset = torchvision.datasets.CIFAR10(root='./data',
train=False,
 download=True,
transform=transform)
testloader = torch.utils.data.DataLoader(testset, batch_size=4,
 shuffle=False,
num_workers=2)

classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog',
'frog', 'horse', 'ship', 'truck')

dataiter = iter(testloader)
images, labels = dataiter.next()

outputs = net(images)

_, predicted = torch.max(outputs, 1)

print('GroundTruth: ', ' '.join('%5s' % classes[labels[j]] for
j in range(4)))
print('Predicted: ', ' '.join('%5s' % classes[predicted[j]]
for j in range(4)))

Chapter 4

How to make a computer remember stuff?

Inspiration
What are RNNs?
LSTM and its variants
Generating words with LSTMs in pytorch
Advances in the field

Chapter 5

Where to go from here?

If you have come this far, it means that you are now familiar with basic
terminologies of the deep learning world. I hope that this book has served
you well in acquainting you with the deep learning world and a little bit with
pyTorch.

Now, Following is how I will advise you to advance in this field -

Start with Fast.ai MOOCs.
Alongwith Fast ai's courses, keep reading lecture notes from Andrej
Karpathy.
Once you are comfortable with Jeremy Howard's Fast Ai. Start CS 231n.
I'd also suggest you to dive in Machine Learning world now. CS 229.

The resources mentioned above should give you a great boost in your
learning journey.

Once you find yourself ready to take challenges then you can read - - Neural
Networks & Learning Machines - Simon Haykin - Deep Learning Book - Ian
Goodfellow and Yoshua Bengio and Aaron Courville

Along the way, try to keep track on the popular papers which are released -
CVPR - NeurIPS - ICML

Honestly, I have lost the track here. 250+ papers were released this year.

Also subscribe to the following newsletters - 1. OpenAI 2. For NLP

Feel free to add here by raising Pull Requests! :)

•
•
•
•
•

1.
2.

3.
4.

https://www.fast.ai/
http://cs231n.github.io/
https://www.youtube.com/watch?v=NfnWJUyUJYU&list=PLkt2uSq6rBVctENoVBg1TpCC7OQi31AlC
https://www.youtube.com/watch?v=UzxYlbK2c7E&list=PLA89DCFA6ADACE599
https://www.deeplearningbook.org/
https://openai.com/blog/
http://ruder.io/

	Chapter 1
	What are artificial neural networks? What are its components?
	Inspiration
	What are neural networks?
	Fully Connected Neural Networks
	BackPropagation
	Universal Approximators
	The more layers the better the network?
	Types of Learning
	Weight Initialization
	Activation functions
	Understanding overfitting, underfitting and generalization
	Dropouts

	Chapter 2
	Introduction to Pytorch
	Why pyTorch?
	Writing first neural network in pytorch
	Essentials of pytorch

	Chapter 3
	How to make a computer see?
	Introduction
	Convolutional Neural Networks
	Can’t fully connected networks process images?

	Writing a Convolutional Neural Network in pyTorch

	Chapter 4
	How to make a computer remember stuff?

	Chapter 5
	Where to go from here?

