
Radix Trees
Transactions, and MemDB

Armon Dadgar
@armon

MemDB

• Used in Consul, Nomad, Docker Swarm

• Built on Immutable Radix Trees

• Inspired by Radix Trees

Radix Trees

Radix Trees

• Tree Data Structure, used as a Dictionary / Map

• Directed (parent / child relationship)

• Acyclic (cannot contain a cycle)

• Keys are strings*

• Values can be arbitrary

Properties

• O(K) operations instead of O(log N) for most trees

• K is length of the input Key

• Hash functions also O(K), can be deceptive for Hash Tables

• Tunable sparsity vs depth

Operations
• CRUD (Create, Read, Update, Delete)

• Find predecessor / successor of a key

• Min / Max Value

• Find common prefix of keys

• Find longest matching prefix

• Ordered Iteration

Radix Structure

zip

fooba zip

root

fooba

r z

foobazfoobar

Basic Operations

• Start at the root and with the input key K

• Follow the pointers from the current node using the offset into the key

• Number of iterations linear with length of key

• May need to split nodes on Insert or merge on Delete

Uses Cases at HashiCorp

• Consul / Vault ACLs

• Vault Request Routing

• CLI Library

• etcetera

Vault ACLs
path “secret/*” {
 capabilities = [“read”]
}

path “secret/child” {
 capabilities = [“read”, “write”]
}

path “mysql/creds/*” {
 capabilities = [“read”]
}

ACL Structure

[“read”]

secret/ mysql/creds/

root

secret/

(nil) child

[“read”,
“write”][“read”]

Vault Request Routing

$ vault mount -path=other generic
Successfully mounted 'generic' at ‘other’!

$ vault mount aws
Successfully mounted 'aws' at 'aws'!

Routing Structure

Generic
Backend

root

Generic
BackendAWS Backend

aws/ secret/ other/

Request Routing

• $ vault read secret/foobar

• Uses the longest prefix (secret/*) on ACLs to determine which policy is
applicable and if the operation should be allowed

• Uses the Routing tree to find longest prefix (secret/) to determine the
backend that services the request

Immutable Radix Tree

Immutability

• The inability to be changed, e.g. not mutable

• Every modification returns a new tree, existing tree is unmodified

• Uses more memory, reduces need for read coordination

Immutable Radix

• Same operations and properties of mutable Radix

• Every modification returns a new root

• Mutable: Insert(root, key, value) = (void)

• Immutable: Insert(root, key, value) = root’

Copy On Write

• Any time a node or leaf is going to be modified, we copy the node and
update the copy

• K nodes updated per modification

Original Tree

[“read”]

secret/ mysql/creds/

root

secret/

(nil) child

[“read”,
“write”][“read”]

Update secret/child

[“read”]

secret/ mysql/creds/

root

secret/

(nil) child

[“read”,
“write”][“read”] [“read”,

“write”,”delete”]

Update secret/child

[“read”]

secret/ mysql/creds/

root

secret/

(nil) child

[“read”,
“write”][“read”] [“read”,

“write”,”delete”]

secret/

child(nil)

Update secret/child

[“read”]

secret/ mysql/creds/

root

secret/

(nil) child

[“read”,
“write”][“read”] [“read”,

“write”,”delete”]

secret/

child(nil)

root’

secret/

Update secret/child

[“read”]

mysql/creds/

[“read”] [“read”,
“write”,”delete”]

secret/

child(nil)

root’

secret/

Immutable vs Mutable
• Mutable Radix requires synchronization for reads/writes

• Concurrent reads allowed

• Concurrent read/writes disallowed

• Immutable Radix requires synchronization for writes only

• Concurrent read/writes allowed

• Each write returns a new tree, existing tree is unmodified

• Good for heavy read, low write workloads

Uses Cases at HashiCorp

• MemDB (Consul, Nomad, Docker Swarm)

• Vault Enterprise

Transactions

Transaction
• Standard usage is RDBMS (ACID)

• Atomicity: Completely fails or completely succeeds

• Consistency: Does not result in any integrity violations (e.g. User ID with
does not map to blank e-mail)

• Isolation: Transaction is not visible to others until completed

• Durability: Once completed, the changes are permanent

Immutable Radix
• We can use an immutable radix tree to implement in-memory

transactions!

• Provides us with A and I properties

• Consistency is domain specific

• In-memory only, so not Durable in the ACID sense

• Can be used to build ACID system (e.g. Consul, Nomad)

Atomicity and Isolation

• Many keys can be Created, Updated, Deleted in a single transaction

• Atomicity: transaction creates new root on commit, retains existing root
on abort. Check-And-Set (CAS) operation to swap root pointers.

• Isolation: Copy-On-Write of each transaction prevents readers of the
existing root from witnessing any of the changes.

MemDB

MemDB Goals

• MVCC: Multi-Version Concurrency Control. Support multiple versions of an
object so that you can have concurrent read/writes.

• Transaction Support: Update many objects in a transaction to support
richer high level APIs. Should be atomic and isolated.

• Rich Indexing: Allow a single object to be indexed in multiple ways (e.g.
User ID, email, DOB, etc)

Why those requirements?

• Consul needs to be able to snapshot current state to disk while accepting
new writes. Long running read cannot block writes.

• A single event such as a node failure may need to update multiple pieces
of state (Health Checks, Sessions, K/V locks)

• Many different query paths. Services by node, services by name, services in
a failing state, etc.

MemDB Structure

Root Tree

MemDB

Write LockSchema

Schema

• Schema defines tables and indexes at creation time

• Allows for efficient storage and indexing of objects

• Sanity checking of objects (ensure Consistency)

Example Schema
&DBSchema{

Tables: map[string]*TableSchema{
"people": &TableSchema{
Name: "people",
Indexes: map[string]*IndexSchema{
"id": &IndexSchema{
Name: "id",
Unique: true,
Indexer: &UUIDFieldIndex{Field: "ID"},

},
"name": &IndexSchema{
Name: "name",
Indexer: &StringFieldIndex{Field: "Name"},

},
 “email”: &IndexSchema{
 Name: “email”,
 Indexer: &StringFieldINdex{Field: “Email”},
 },
},

MemDB Tree Structure

person_email

Root Tree

person_nameperson_id

ID: abc123…
Name: Armon
Email: armon@…

abc123… Armon armon@hashicorp.com

mailto:armon@hashicorp.com

MemDB Tree Structure

• Each table has a primary tree, keyed by a unique ID

• Each table can have 0+ indexes, unique or non-unique

• Single copy of the object is stored in the primary tree, indexes point to the
object

Indexes
• Each index has an Indexer which extracts a value from an object and turns it

into an index key

• StringFieldIndex: Extracts string value field

• UUIDFieldIndex: Extracts string or []byte field

• FieldSetIndex: Checks if a field has non-zero value (is set)

• ConditionalIndex: Extracts field as boolean value

• CompoundIndex: Combines multiple indexes

Compound Index

• CompoundIndex{StringFieldIndex{“First”},
StringFieldIndex{“Last”}}

• Extracts {“First”: “Armon”, “Last”: “Dadgar”} as
“Armon\x00Dadgar\x00”

• Queries like “first = ‘Armon’ and last starts with ‘D’”

Read-only Transactions

• Snapshot MemDB, retain a copy of the root pointer

• Read against the Snapshot

• Immutable trees allow us to avoid locking across reads and isolation from
other transactions

Read-only Transaction

Root Tree

MemDB

Write LockSchema

Read Txn

Mixed Transactions

• Acquire the write lock, serializes writes

• Write to the root, creating a new root

• Atomic swap the root pointers on commit, do nothing on abort

• Release the write lock

Mixed Transaction (Progress)

Root Tree

MemDB

Write LockSchema

Write Txn

New Root

Mixed Transaction (Commit)

Root Tree

MemDB

Write LockSchema

Write Txn

New Root

Mixed Transaction (Abort)

Root Tree

MemDB

Write LockSchema

Write Txn

New Root

Uses Cases

• Consul

• Nomad

• Docker Swarm

Consensus Based Systems

stage
write

API

Raft LogMemDB

Raft
Snapshot

read

snapshot

apply
write

read

MemDB

• Allows highly concurrent reads to state

• Long running reads to snapshot without blocking writes

• Single threaded writer from Raft has no write contention

• Raft ensures consistent state for all copies of MemDB

Nomad Advanced Usage

• Schedulers use snapshots of state to determine placement

• Leader provides coordination through evaluation queue and plan queue

• Evaluation Queue: Dequeues work to schedulers, provides at-least-once
semantics

• Plan Queue: Controls placement to prevent data races and over-
allocation

Plan Queue

• Receives placement plans from schedulers

• Verifies plan and writes to Raft to commit the plan

• Read, Verify, Write loop causes a stall while we are waiting for Raft to
commit

• MemDB allows us to optimistically evaluate plans while we wait!

No Overlapping

Time

Verify Plan 1

Stall

Apply Plan 1

Verify Plan 2 Apply Plan 2

Plan Overlapping

Time

Verify Plan 1

Stall

Apply Plan 1

Verify Plan 2 Apply Plan 2

Plan Overlapping

• Plan 1 is applied to a snapshot of the state

• Plan 2 is verified against the optimistic state copy

• Once plan 1 commits, we can submit plan 2

• Allows CPU to verify plan while waiting on I/O to apply writes

Conclusion

Radix Trees

• High performance tree data structure

• Comparable to Hash Tables usually, richer set of operations supported

• I’ve used them in probably every project I’ve ever worked on

Immutable Radix Trees

• Similar to mutable radix tree

• Simplifies concurrency

• Allows for highly scalable reads

MemDB

• Abstracts radix trees to provide object store

• Provides MVCC, transactions, and rich indexing

• Simplifies complex state management

• Allows for highly scalable reads

Thanks!

go-radix: https://github.com/armon/go-radix
go-immutable-radix: https://github.com/hashicorp/go-immutable-radix
MemDB: https://github.com/hashicorp/go-memdb

Q/A

https://github.com/armon/go-radix
https://github.com/hashicorp/go-immutable-radix
https://github.com/hashicorp/go-memdb

