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MemDB

• Used in Consul, Nomad, Docker Swarm 

• Built on Immutable Radix Trees 

• Inspired by Radix Trees



Radix Trees



Radix Trees

• Tree Data Structure, used as a Dictionary / Map 

• Directed (parent / child relationship) 

• Acyclic (cannot contain a cycle) 

• Keys are strings* 

• Values can be arbitrary



Properties

• O(K) operations instead of O(log N) for most trees 

• K is length of the input Key 

• Hash functions also O(K), can be deceptive for Hash Tables 

• Tunable sparsity vs depth



Operations
• CRUD (Create, Read, Update, Delete) 

• Find predecessor / successor of a key 

• Min / Max Value 

• Find common prefix of keys  

• Find longest matching prefix 

• Ordered Iteration



Radix Structure
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Basic Operations

• Start at the root and with the input key K 

• Follow the pointers from the current node using the offset into the key 

• Number of iterations linear with length of key 

• May need to split nodes on Insert or merge on Delete



Uses Cases at HashiCorp

• Consul / Vault ACLs 

• Vault Request Routing 

• CLI Library 

• etcetera



Vault ACLs
path “secret/*” {
    capabilities = [“read”]
}

path “secret/child” {
    capabilities = [“read”, “write”]
}

path “mysql/creds/*” {
    capabilities = [“read”]
}



ACL Structure
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Vault Request Routing

$ vault mount -path=other generic
Successfully mounted 'generic' at ‘other’!

$ vault mount aws
Successfully mounted 'aws' at 'aws'!



Routing Structure
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Request Routing

• $ vault read secret/foobar

• Uses the longest prefix (secret/*) on ACLs to determine which policy is 
applicable and if the operation should be allowed 

• Uses the Routing tree to find longest prefix (secret/) to determine the 
backend that services the request



Immutable Radix Tree



Immutability 

• The inability to be changed, e.g. not mutable 

• Every modification returns a new tree, existing tree is unmodified 

• Uses more memory, reduces need for read coordination



Immutable Radix

• Same operations and properties of mutable Radix 

• Every modification returns a new root 

• Mutable: Insert(root, key, value) = (void)

• Immutable: Insert(root, key, value) = root’



Copy On Write

• Any time a node or leaf is going to be modified, we copy the node and 
update the copy 

• K nodes updated per modification



Original Tree
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Update secret/child

[“read”]

secret/ mysql/creds/

root

secret/

(nil) child

[“read”, 
“write”][“read”] [“read”, 

“write”,”delete”]



Update secret/child
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Update secret/child
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Update secret/child
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Immutable vs Mutable
• Mutable Radix requires synchronization for reads/writes 

• Concurrent reads allowed 

• Concurrent read/writes disallowed 

• Immutable Radix requires synchronization for writes only 

• Concurrent read/writes allowed 

• Each write returns a new tree, existing tree is unmodified 

• Good for heavy read, low write workloads



Uses Cases at HashiCorp

• MemDB (Consul, Nomad, Docker Swarm) 

• Vault Enterprise



Transactions



Transaction
• Standard usage is RDBMS (ACID) 

• Atomicity: Completely fails or completely succeeds 

• Consistency: Does not result in any integrity violations (e.g. User ID with 
does not map to blank e-mail) 

• Isolation: Transaction is not visible to others until completed 

• Durability: Once completed, the changes are permanent



Immutable Radix
• We can use an immutable radix tree to implement in-memory 

transactions! 

• Provides us with A and I properties 

• Consistency is domain specific 

• In-memory only, so not Durable in the ACID sense 

• Can be used to build ACID system (e.g. Consul, Nomad)



Atomicity and Isolation

• Many keys can be Created, Updated, Deleted in a single transaction 

• Atomicity: transaction creates new root on commit, retains existing root 
on abort. Check-And-Set (CAS) operation to swap root pointers. 

• Isolation: Copy-On-Write of each transaction prevents readers of the 
existing root from witnessing any of the changes.



MemDB



MemDB Goals

• MVCC: Multi-Version Concurrency Control. Support multiple versions of an 
object so that you can have concurrent read/writes. 

• Transaction Support: Update many objects in a transaction to support 
richer high level APIs. Should be atomic and isolated. 

• Rich Indexing: Allow a single object to be indexed in multiple ways (e.g. 
User ID, email, DOB, etc)



Why those requirements?

• Consul needs to be able to snapshot current state to disk while accepting 
new writes. Long running read cannot block writes. 

• A single event such as a node failure may need to update multiple pieces 
of state (Health Checks, Sessions, K/V locks) 

• Many different query paths. Services by node, services by name, services in 
a failing state, etc.



MemDB Structure
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Schema

• Schema defines tables and indexes at creation time 

• Allows for efficient storage and indexing of objects 

• Sanity checking of objects (ensure Consistency)



Example Schema
&DBSchema{

Tables: map[string]*TableSchema{
"people": &TableSchema{
Name: "people",
Indexes: map[string]*IndexSchema{
"id": &IndexSchema{
Name:    "id",
Unique:  true,
Indexer: &UUIDFieldIndex{Field: "ID"},

},
"name": &IndexSchema{
Name:    "name",
Indexer: &StringFieldIndex{Field: "Name"},

},
  “email”: &IndexSchema{
     Name: “email”,
     Indexer: &StringFieldINdex{Field: “Email”},
   },
},



MemDB Tree Structure
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MemDB Tree Structure

• Each table has a primary tree, keyed by a unique ID 

• Each table can have 0+ indexes, unique or non-unique 

• Single copy of the object is stored in the primary tree, indexes point to the 
object



Indexes
• Each index has an Indexer which extracts a value from an object and turns it 

into an index key 

• StringFieldIndex: Extracts string value field 

• UUIDFieldIndex: Extracts string or []byte field 

• FieldSetIndex: Checks if a field has non-zero value (is set) 

• ConditionalIndex: Extracts field as boolean value 

• CompoundIndex: Combines multiple indexes



Compound Index

• CompoundIndex{StringFieldIndex{“First”}, 
StringFieldIndex{“Last”}}

• Extracts {“First”: “Armon”, “Last”: “Dadgar”} as 
“Armon\x00Dadgar\x00”

• Queries like “first = ‘Armon’ and last starts with ‘D’”



Read-only Transactions

• Snapshot MemDB, retain a copy of the root pointer 

• Read against the Snapshot 

• Immutable trees allow us to avoid locking across reads and isolation from 
other transactions
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Mixed Transactions

• Acquire the write lock, serializes writes 

• Write to the root, creating a new root 

• Atomic swap the root pointers on commit, do nothing on abort 

• Release the write lock



Mixed Transaction (Progress)
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Mixed Transaction (Commit)
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Mixed Transaction (Abort)
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Uses Cases

• Consul 

• Nomad 

• Docker Swarm



Consensus Based Systems

stage
write

API

Raft LogMemDB

Raft 
Snapshot

read

snapshot

apply
write

read



MemDB

• Allows highly concurrent reads to state 

• Long running reads to snapshot without blocking writes 

• Single threaded writer from Raft has no write contention 

• Raft ensures consistent state for all copies of MemDB



Nomad Advanced Usage

• Schedulers use snapshots of state to determine placement 

• Leader provides coordination through evaluation queue and plan queue 

• Evaluation Queue: Dequeues work to schedulers, provides at-least-once 
semantics 

• Plan Queue: Controls placement to prevent data races and over-
allocation 



Plan Queue

• Receives placement plans from schedulers 

• Verifies plan and writes to Raft to commit the plan 

• Read, Verify, Write loop causes a stall while we are waiting for Raft to 
commit 

• MemDB allows us to optimistically evaluate plans while we wait!
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Plan Overlapping
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Plan Overlapping

• Plan 1 is applied to a snapshot of the state 

• Plan 2 is verified against the optimistic state copy 

• Once plan 1 commits, we can submit plan 2 

• Allows CPU to verify plan while waiting on I/O to apply writes



Conclusion



Radix Trees

• High performance tree data structure 

• Comparable to Hash Tables usually, richer set of operations supported 

• I’ve used them in probably every project I’ve ever worked on



Immutable Radix Trees

• Similar to mutable radix tree 

• Simplifies concurrency 

• Allows for highly scalable reads



MemDB

• Abstracts radix trees to provide object store 

• Provides MVCC, transactions, and rich indexing 

• Simplifies complex state management 

• Allows for highly scalable reads



Thanks!

go-radix: https://github.com/armon/go-radix 
go-immutable-radix: https://github.com/hashicorp/go-immutable-radix 
MemDB: https://github.com/hashicorp/go-memdb

Q/A

https://github.com/armon/go-radix
https://github.com/hashicorp/go-immutable-radix
https://github.com/hashicorp/go-memdb

