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1. Introduction 

- ​Motivation 
- The motivation behind this project was to attempt to help/assist in solving a real life problem. Thus when                   
choosing our dataset we looked only at datasets with topics that had real life applicabilities for societies. 
 
- ​Objective 
- The project focuses to use past records of crime incidents in San Francisco to predict(classify) danger of                  
specific type of crime occurrence at specific location of the district for certain day of week and time.  
- The outcome of the project is to predict(classify) potential dangers/crimes (e.g. assault, battery, theft, drug use,                 
etc.) for a respective district. The city level model to predict(classify) crime types is compared to each district                  
level model to understand different behaviour of those models.  
- The use-case provides more insights to police departments to make certain decisions to improve public safety                 
for a respective district.  
 
- ​Literature/Market review 
- Referred ​kaggle competition​, because of its relevance to predict crime categories as one of their objectives.                 
Their predictions were done on a dataset of Los Angeles police incidents which provided different features from                 
our dataset though. 
- ​PREDPOL Whitepaper - PREDPOL is a predictive policing company which has designed the software that                
predicts the possible crime event location with the crime type in order to assist police department to prevent                  
crime before it may occur.  
 

2. System Design & Implementation Details 
- ​Algorithm(s) considered/selected (and why) 
- In the project we are attempting supervised learning and we decided to use Neural Networks(Vishweshkumar),                
XGBoost(Dennis) and Ensemble Model(Varun), The reasons are as follows.  
- The reason XGBoost was used is because it is currently one of the top performing models on machine learning                    
contests on platforms like Kaggle and it also satisfies the project requirements of being an advanced as well as                   
state of the art algorithm. 
- The reason behind using a model based on Neural Network is that in general, given a large enough dataset to                     
generalize, Neural Network based models are more prone to give comparatively better accuracy than other               
Supervised Learning models. And the reason behind choosing Multilayer Perceptron Classifier (MLP) model is              
that it’s complex enough for simple classification tasks such as one we are dealing with. The RNN and CNN                   
model are more prefered for complex tasks such Computer Vision and NLP tasks.  
- The reason behind using ensemble method is to combine the predictions of several classifiers in order to                  
improve generalizability / robustness over a single classifier. Ensemble methods can combine several machine              
learning techniques into one predictive model in order to decrease variance and bias/ 
 
 

 

https://www.kaggle.com/ambarish/eda-lacrimes-maps-timeseriesforecasts-xgboost/notebook
https://cdn2.hubspot.net/hubfs/3362003/White%20Paper%20Science%20&%20Testing%20of%20Predictive%20Policing.pdf?__hssc=103758111.3.1525488688057&__hstc=103758111.296a387511f3611c2b1d1b1bc42278bb.1520295561539.1520304581135.1525488688057.4&__hsfp=1635183099&hsCtaTracking=4a23f8ec-41ff-4a9b-b5c8-93f1dc4322fc%7C258f00e6-8e29-4288-9ef2-1851928151aa


 

- ​Technologies & Tools used 
- ​Tools : 
- AWS/EC2  

- MLPClassifier(Vishweshkumar): Deep Learning AMI Ubuntu EC2 Instance p2.xlarge utilizing 4 
vCPU’s as well as 61 GiB of memory  

- XGBoost(Dennis): Compute Optimized instance c5.9xlarge utilizing 36 vCPU’s as well as 72 GiB of 
memory 

- Ensemble(Varun) : Deep Learning AMI Ubuntu EC2 Instance c5.4xlarge  utilizing 16 vCPU’s as well 
as 32 GiB of memory  
- Jupyter Notebook with Kernel running on AWS EC2 Instance  
- ​Languages and Libraries : 
- Language: Python  
- General Libraries: Sklearn, Pandas, Numpy, Matplotlib, Scipy, re, sodapy, seaborn, pickle 
- XGBoost Specific Libraries 

- xgboost 
 
- ​Architecture-Related decisions 
- AWS instances were used as the systems for performing the machine learning algorithms on because normal                 
computers do not contain the processing power required to deal with large datasets such as ours. The 36                  
core/72 GiB memory compute optimized EC2 instance used for XGBoost because XGBoost allows for              
parallelization and creating large numbers of trees. 
 
- ​System design/architecture/data flow 
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Neural Network Architecture 

 
Ensemble Architecture 

 
- ​Component Details:​ ​Each component is explained in detail in methodologies section. 
 

3. Experiments / Proof of concept evaluation 
- ​Dataset(s) used (name, source, type of data, size of data, # of instances/statistics, any 
preprocessing performed etc.) 
- ​Name​: Police Department Incidents 
- ​Source​: DataSF 
- ​Type of data(attributes)​: 

Attribute Type Attribute Description 

IncidntNum Number Incident number reported for a crime 

Category Text Category of a crime 

Descript Text A short description of crime incident 

DayOfWeek Text Day, when crime happened 



 

Date Date Date, when crime happened 

Time Time Time, in between “00:00” to “23:59”  

PdDistrict Text Police department district 

Resolution Text Police action(s) for respective crime 

Address Text Apt and Street address where crime happened 

X  Number Longitude 

Y Number Latitude 

Location Location Location 

Pdid Number Unique Identifier for use in update and insert operations 

 
- ​Size of Data​: 13 Features/Columns, 2,206,399 rows 
- ​Group Data Preprocessing​: 1)Moved Category column to separate output array and removed from features,               
2)Removed incident number from features because only used for police department purposes, 3)Removed pdid              
because used for police department identifier operations, 4)Removed location because we have x and y               
coordinates already(location is x, y concatenated), 5)Removed description as it describes/pertains to category             
thus unusable, 6) Removed pddistrict for district models as they’re already separated by district, 7) Convert                
date(dd/mm/yy) to three columns of day, month and year, 8) Convert hour from exact(e.g. 22:35) to                
rounded(e.g. 22) to generalize. 
 
- ​Methodology followed (e.g. n fold, cross validation, number of folds, size of training/test set 
etc.) (as applicable) 

XGBoost (Sections refer to pipeline found in Architecture Section): 
- ​Feature Preprocessing & Split: ​XGBoost uses numeric input/outputs so need to transform categories from               
string to numeric. Done once using LabelEncoder which transforms to one ordinal column of integers and in                 
second case using one hot encoding to transform into many columns of binary values. Both options tested                 
because even if feature doesn’t have ordinal relationships sometimes XGBoost can find connections between              
them. Stored in CSR sparse matrix because one hot encoding produces sparse columns. Data split into                
train-test split(test size of 20%) to evaluate methods/tune hyperparameters on train set and use best on test set.                  
Note: I kept resolution as feature contrary to teammates as several similar implementations(e.g. LACrime EDA)               
utilized resolution as a feature as it is just a status in case(e.g. Booked, etc.). 
- ​Modelling: ​First model tested was XGB on label encoded set, second model tested was XGB on one hot                   
encoded set and third model tested was XGB+truncated SVD in a pipeline on one hot encoded set. Pipelined                  
because if tSVD done outside then cross validation folds aren’t separated. All models evaluated with nthread =                 
36 to optimize by using XGB multi-core parallelization, n_jobs = -1 to utilize all available cores in parameter                  
search. 
- ​Model Evaluation: All 3 models evaluated in randomized search CVs because randomized search can tune                
parameters effectively while also being less compute/time intensive than gridsearch, used 3 iterations because              



 

time did not permit more(long computation per iteration). Stratified 3 fold cross validation used, because there                
are large number of categories as well as imbalanced dataset and stratified kfold enforces similar class                
distributions in each fold to mitigate these issues. 3 Folds because more folds increases computation time by                 
hour(s) and standard deviation between parameter tunes was low with this still. Parameters searched/tuned:              
n_estimations(120-480) because more estimators increases time required by hours, max_depth(2-8) because           
higher depth increases overfit and 3-10 is generally accepted guideline, learning_rate(.01-.08) because low rate              
gets optimum steps but increases computation time, colsample_bytree(.3-.7) to perform stochastic GB for XGB              
by using random sample of features with a max of .7 to ensure some sampling done to prevent overfitting. For                    
SVD number of components randomly varied from 5 to 1000 to examine how sparse features affected in                 
importance. 
- ​Final Steps: Apply best method with tuned parameters to test set and save f1 score for district comparison.                   
Model evaluation only done on Bayview, best model(XGB one hot encoded) was applied to every district but                 
tuned for each individual district because process is computation/time intensive. The city wide model also used                
the district as a feature to see the effect on scoring as compared to the individual districts which obviously did                    
not have it. 
 

Neural Network (MLP Classifier) 
- Explored problem in two ways: 1) Direct approach without domain knowledge on available features, after                
achieving very less accuracy(~20%) thought to use domain knowledge to solve problem, 2) Approach              
considering domain knowledge and modification of available features. In second approach using ​FBI’s crime              
classification categories generalized crime categories in two categories: Index(More Serious) crime and            
Non-index(Less serious) crime and understood and implemented ​concept of hotspots from ​NCJRS to only              
consider certain addresses where crime occurs more frequently, which can help to efficiently allocate resources               
for a certain district. - Followed object oriented approach for ease to handle different district and to create                  
model for each district and for city. Used four function to represent each phase of data science life cycle namely                    
A) Data Preprocessing and Exploration: Followed same data preprocessing in both of the approaches in               
following order. 1) Removed 'resolution', 'descript' features, as they can’t be known beforehand. 2) Removed               
'pdid', 'incidntnum' as they are not relevant. 3) Removed 'location', 'x', 'y' features as already considering                
‘address’ feature that provides needed granularity of the location where crime happened.4) Removed null values               
and duplicate values for remaining data points. 5) Segregated data points based on their district values and                 
stored in different data frame. B) ​Feature Engineering(Extraction, Transformation, Reduction): ​For direct            
approach​, 1) Extracted values of ‘day’, ‘month’ from ‘date’ and ‘hour’ from ‘time’ feature, and removed ‘date’                 
& ‘time’ feature. 2) Segregated features (‘address’, ‘month’, ‘day’, ‘dayofweek’, ‘hour’) and target(‘category’)             
in different data frames. 3) All input features were categorical so converted them in to binary features (same as                   
one-hot encoding but using custom logic) and due to it’s sparsity and to handle them efficiently converted them                  
all into a Compressed Sparse Row matrix. 4) Applied ‘TruncatedSVD’ dimensionality reduction technique on              
CSR Matrix and plotted explained variance graph to find out inflection point and consider only high variance                 
components. ​Considering domain knowledge approach,​After applying first two steps, 1) Added a new column              
‘Crime_severity’ having two unique values ‘Index crime’ and ‘Non Index’ crime based on ‘crime category’ and                
‘descript’ column and using FBI standards (thus, domain knowledge), 2) Decided hotspot criteria as “An               

http://gis.chicagopolice.org/clearmap_crime_sums/crime_types.html#N26
http://gis.chicagopolice.org/clearmap_crime_sums/crime_types.html#N26
https://www.ncjrs.gov/html/nij/mapping/ch4_9.html
https://www.ncjrs.gov/


 

address is a ​hotspot if there are more than average number of crime incidents occurred at that same address for                    
same ‘hour’, ‘dayofweek’, ‘month’ ”. ​Filtered data points and only kept hotspot addresses because they need                
more attention compared to other addresses and predicting severity of crime type at hotspot for certain day,                 
hour, month can help Police Department’s to optimize their resource allocation in relevant hotspots​. Apart               
from that followed similar 3rd and 4th steps after that. C) ​Model Training, Testing and Evaluation: ​1) Used                  
stratified K fold technique with K=2, to handle imbalanced data if any present. Kept K=2 due to limitation of                   
computation resources (as K increases, MLP classifier is executed for K times and for all of them considering                  
different parameter tuning such as hidden layers and number of nodes in one layer, etc. become impossible). 2)                  
Tried to perform Randomized Search with different parameter range but again faced same problem - limitation                
of computation resources, So chose parameters one by one experimenting with different values of solver               
function, hidden layers and nodes, alpha, max_iter(epochs) and learning rate. 3) Prevented overfitting through              
appropriate value of alpha (regularization parameter) and employing bias vs variance tradeoff, 4) Stored best               
training & testing f1 scores for different districts and city for comparison and visualization purpose. D)                
Knowledge Mining and Visualization: Plotted Barcharts to compare performance of different approaches,            
related graphs are provided in next section. 

Ensemble Model 
- ​Data Preprocessing and Exploration: ​Followed data processing following steps: (1) Sort data by date and time                 
to have it in chronological order. (2) With one approach considered all categories and for second approach                 
considered (​crime type guideline​) to categorize current categories to further 2 categories: index crime and               
non-index crime (3) removed irrelevant columns like 'incidntnum','pdid'  
- ​Feature Engineering(Extraction, Transformation, Reduction): ​(1) created new columns day and month from             
date and hour from time and removed date and time columns (2) Removed irrelevant columns:,'resolution',               
'descript' and 'location'. (3) converted all string data to lowercase and applied label encoding to convert string                 
data to integer (4) For location, considered longitude and latitude till 3 decimal points in order to consider                  
specific block at specific street (5) created new column severity which has two categories: index crime and                 
non-index crime 
- ​Model Training, Testing and Evaluation: Using train_test_split data split into train and test. Ensemble with                
following classifiers: K-Nearest Neighbor, ADABoost, Random Forest and Decision Tree. Performed parameter            
tuning using GridSearch and in K-Nearest Neighbor, due to memory error parameter tuning was performed               
manually. While manually tuning parameters, best performance achieved by n_neighbors 3 as there are 7               
features and using minkowski metric. Using ensemble method, it seems that all models provide near about same                 
accuracy for all the classifiers.  
- ​Knowledge Mining and Visualization:  
Plotted Barcharts to compare performance of different approaches, related graphs are provided in next section. 
 
- ​Graphs showing different parameters/algorithms evaluated in a comparative manner, along 
with some supportive text. (as applicable) 

XGBoost: 

http://gis.chicagopolice.org/clearmap_crime_sums/crime_types.html#N26


 

 
Figure(Left). ​Comparison of XGB modelling processes used on Bayview District 

Figure(Right). ​Displaying the f1 scores of XGB on each district as well as the whole city 

 
Figure. ​F1 scores of different XGB on City Data with different parameters in Cross Validation 

 
Neural Network (MLP Classifier) 

 
Figure(Left). ​Comparison(f1 score) between Appr. 1 (without domain know.) vs Appr. 2 (with domain know.) 
Figure(Right). ​Comparison(f1 score) of different combinations for MLP modelling process on Bayview district 



 

 
Figure. ​Train & Test​ ​accuracy comparison(f1 score) among districts of SF and city of SF(last bar)  

Ensemble 

 
fig(1) fig(2) 

 
Fig (3) 

- ​Analysis of results 



 

XGBoost 
All three modelling options performed similarly but using one hot encoded dataset took around half of the time                  
when compared to using label encoded dataset. XGB with truncated SVD was also slower than without and                 
performed slightly worse. Adding district feature for the city wide search did not significantly improve the f1                 
score as compared to the district wide searches. F1 scores hovered around 34-40%, I attribute this to not having                   
enough relevant features for classifying 39 different categories especially since we had to remove description               
which likely would’ve had the most importance for classifying. Note: partners categorized 39 categories into               
two categories representing danger of categories but decided I wanted to evaluate my ability to categorize                
specific categories. 

Neural Network (MLP Classifier) 
From first figure, we can analyse that Approach 2 (With domain knowledge) is far better than Approach 1 
(Without domain knowledge), and Approach 2 also focuses on hotspots thus it narrow downs area to be 
considered for resource allocation and only predicts severity of crime for those addresses. From second figure, 
we can analyse that MLP with K fold and MLP with K fold and Truncated SVD nearly gives similar 
performance the reason may be associated with sparsity of data. From third figure, we can analyse that f1 score 
for district varies from 56% to 72% (both for train and test split) and for city it also falls in same range, thus city 
level model and district level model for Approach 2 has not much variation to exhibit. 

Ensemble 
From first image, it can be analyzed that performing ensemble of KNN, Decision tree and Random forest gives 
equal or better performance. In 2nd Image. It is shown that proper parameter tuning is very important. High 
accuracy graph of 0.62 has max_depth [None, 50, 70] where as low f1 score of 0.56 has max_depth [None, 5, 
10]. From this it can be deduced that higher depth provides more accurate prediction. 3rd figure depicts san 
francisco district and city prediction f1 score using ensembling. 
 

4. Discussion & Conclusions  
- ​Decisions made 
- Don’t use description feature as it provides info related to category. 
- XGB:Use 36 core EC2 because 16 core c5.4xlarge had memory deficiency, Keep all 39 categories, Don’t use                  
GPU Boosting as issues with sklearn implementation, No gamma/regularization tuning per Owen Zhang(top             
kaggle submitter) tips. 
- MLPClassifier (Vish): To propose an effective solution for resource allocation in district and city, referred                
domain knowledge (​generalized crime categories and ​hotspot analysis​) and then reshaped data and solution in               
that context to deliver valuable output, used CSR matrix to efficiently handle sparse data.  
- Ensemble: Decided to use longitude and latitude as a feature by using it till 3rd decimal point, as it is                     
meaningful feature which depicts exact location of crime, used EC2 C5.9xlarge instance  
- ​Difficulties faced 
- XGB:One hot encoding city data led to memory issues w/ 36 and 72 EC2 cores, Lack of relevant features to                     
model on causing low f1 scores, High computation times, hours per district at times even with parallelization. 
- MLPClassifier(Vish): More resource needed to implement grid and/or randomized search on complex             
algorithm such as Neural Network, applied domain knowledge but  



 

- Ensemble: Lack of domain knowledge. Also, having 39 categories and lack of features to predict category for                  
at specific day, time in respective district. With grid search with K-Nearest Neighbor memory error on 36 cores                  
EC2 Instance 
- ​Things that worked 
- XGB:Changing OHE to output sparse matrix decreased memory requirements 
- MLPClassifier(Vish): After applying domain knowledge for generalizing crime and considering hotspots            
accuracy improved drastically, and it was more relevant solution as there are considerably less              
addresses(locations) to consider while allocating resources, which are also prime locations of crime, for which               
prediction is made.  
- Ensemble: considering longitude and latitude till 3 decimal points, classifiers gave really good results. And                
ensembling RandomForest, KNN, ADABoost all three provide near about equal f1 score 
- ​Things that didn’t work well 
- XGB: Randomized search over more iterations would tune better 
- MLPClassifier(Vish): Grid search & Randomized search over different range for different parameters may              
provide more accuracy  
- Ensemble: Grid search for K-Nearest Neighbor to tune parameters gave memory error, address could be                
generalized by block, street and no of crimes at respective place, High computing system to handle such a large                   
dataset  
- ​Conclusion 
- Data Preprocessing and exploration is more important than any other steps in data science life cycle - as we                    
say ‘Garbage in - Garbage out’. 
- Help from Domain expert could have provided a different point of view to solve a problem, may be more                    
easier, effective and efficient way could have been found. 
- As each of us followed different approach to solve problem our models are not directly comparable but in                   
general ensemble of XGBoost, MLP and Ensemble Model may provide more precise accuracy than individuals. 
 

5. Project Plan / Task Distribution 
- ​Who was assigned to what task 
- Individually searched for potential data sets and problems that can be solved using them, met together to                  
evaluate them. 
- General data preprocessing was to done by all of us together, further model specific preprocessing done                 
individually. 

- XGBoost Model: Dennis Simmon 
- Neural Network Model (MLP Classifier): Vishweshkumar Patel 
- Ensemble Model: Varun Shah 

- Report and slides done together but individually for specific models. 
 
- ​Who ended up doing what task (justify as applicable) 
- We each ended up doing each task and model as originally assigned. 


