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Abstract: 
 
Time Series model is purely dependent on the idea that past behavior and price patterns can be 
used to predict future price behavior. In this project we have discussed the drawbacks of different 
kinds of Networks and how LSTM gives better results for the same. First part of this paper talks 
about different models and LSTM. The second part discusses an example from MATLAB deep 
learning toolbox, Finally, an implementation for the NASDAQ data, using Opening, High, Low, 
Volumes as features to predict the closing. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Time Series and Different Networks. 
 
What is Time series data? 
 
Time series is the data that, collectively represents how a system/process/behavior changes 
over time.  Which means that data is continuously monitored and appended to the set. This can be 
climate data, stock market data, flight usage stats, water consumption/ electricity consumption 
throughout the year etc. While time series in general is very difficult to deal with, Our use case, 
the Stock market data and its forecasting is a different ball game altogether. Stock market data is 
known to be highly volatile and erratic. Which makes it more difficult to predict or find a pattern. 
 

General RNN VS LSTM. 
 
The decision a recurrent net reached at time step t-1 affects the decision it will reach one moment 
later at time step t. So recurrent networks have two sources of input, the present and the recent 
past, which combine to determine how they respond to new data, much as we do in life. 
Recurrent networks are distinguished from feedforward networks by that feedback loop 
connected to their past decisions, ingesting their own outputs moment after moment as 
input. It is often said that recurrent networks have memory. Sequential information is 
preserved in the recurrent network’s hidden state, which manages to span many time steps 
as it cascades forward to affect the processing of each new example. 
 
Why it fails- 
 
Even though the RNN have memory and work with the output to predict the next data, they iterate 
on the recent past and that is their main drawback as they can’t predict something that happened 
long time ago. And if we try to incorporate larger memory by adding more layers the entire network 
collapses due to the Vanishing and exploding gradients. During the training of RNN, as the 
information goes in loop again and again which results in very large updates to neural network 
model weights. This is due to the accumulation of error gradients during an update and hence, 
results in an unstable network. At an extreme, the values of weights can become so large as to 
overflow and result in NaN values.The explosion occurs through exponential growth by repeatedly 
multiplying gradients through the network layers that have values larger than 1 or vanishing occurs 
if the values are less than 1. 
Exploding gradients become saturated on the high end; i.e. they are presumed to be too powerful. 
But exploding gradients can be solved relatively easily, because they can be truncated or squashed. 
Vanishing gradients can become too small for computers to work with or for networks to learn – 
a harder problem to solve. 
 



 
 
This an example of a Crude RNN to show how layers are linked, this adds more complexity as we 
include more and more states, and how model h(t) depends on the previous states.  
 
SOLUTION? 
 
The solution to this problem is to remember essential information and forget the rest after some 
time similar to human memory. Like, we remember life events clearly and in detail, but we do 
forget the cab number that we saw while booking, the previous day. This is exactly what is 
implemented LSTM(Long Short term Memory). LSTM uses gates to control the memorizing 
process unlike conventional RNN. 
 
The figure below shows the architecture of a LSTM network. 
 
 

 

 
 
 
 
The symbols used here have following 
meaning: 
a)  X : Scaling of information 
b)  + : Adding information 
c)  σ : Sigmoid layer 
d)  tanh: tanh layer 
e)  h(t-1) : Output of last LSTM unit 
f) c(t-1) : Memory from last LSTM 
unit 
g)  X(t) : Current input 
h)  c(t) : New updated memory 
i)   h(t) : Current output 
j).  1,2,3 are the steps that are followed 
in LSTM cell 
 



LSTMs contain information outside the normal flow of the recurrent network in a gated cell. 
Information can be stored in, written to, or read from a cell, much like data in a computer’s 
memory. The cell makes decisions about what to store, and when to allow reads, writes and 
erasures, via gates that open and close. Unlike the digital storage on computers, however, these 
gates are analog, implemented with element-wise multiplication by sigmoids, which are all in the 
range of 0-1. Analog has the advantage over digital of being differentiable, and therefore suitable 
for backpropagation. 
Those gates act on the signals they receive, and similar to the neural network’s nodes, they block 
or pass on information based on its strength and import, which they filter with their own sets of 
weights. Those weights, like the weights that modulate input and hidden states, are adjusted via 
the recurrent networks learning process. That is, the cells learn when to allow data to enter, leave 
or be deleted through the iterative process of making guesses, backpropagating error, and adjusting 
weights via gradient descent. 
 
Steps involved in LSTM 
 
The first step in our LSTM is to decide what information we’re going to throw away from the cell 
state. This decision is made by a sigmoid layer called the “forget gate layer.” It looks at ht−1 
and xt, and outputs a number between 0 and 1 for each number in the cell. 

  
The next step is to decide what new information we’re going to store in the cell state. This has two 
parts. First, a sigmoid layer called the “input gate layer” decides which values we’ll update. Next, 
a tanh layer creates a vector of new candidate values, C̃ t, that could be added to the state. In the 
next step, we’ll combine these two to create an update to the state. 

 
It’s now time to update the old cell state, Ct−1, into the new cell state Ct. The previous steps 
already decided what to do, we just need to actually do it. We multiply the old state by ft, forgetting 
the things we decided to forget earlier. Then we add it∗C̃ t. This is the new candidate values, scaled 
by how much we decided to update each state value. 

 
Finally, we need to decide what we’re going to output. This output will be based on our cell state 
but will be a filtered version. First, we run a sigmoid layer which decides what parts of the cell 
state we’re going to output. Then, we put the cell state through tanh (to push the values to be 
between −1 and 1) and multiply it by the output of the sigmoid gate, so that we only output the 
parts we decided to. 

 



Studying LSTM using MATLAB deep 
learning toolbox. 
 
We study the Lstm example from the deep learning toolbox. Here the dataset used is the 
chickenpox dataset. Here the sequence to sequence regression LSTM network training is done, 
where the responses are the training sequences with values shifted by one-time step. That is, at 
each time step of the input sequence, the LSTM network learns to predict the value of the next 
time step. Training is done by using the predictandupdate routine which predict time steps one 
at a time and update the network state at each prediction. 
 
Following are the results and outputs observed by running the example. 

 
This is the plot of the data set and the dataset is then split into 9:1 ratio for train and test. 
And after splitting the data is then standardized by subtracting the mean and dividing by the 
standard deviation. 



 
These are the network parameters set for defining the LSTM network. 
 

 
 
These are the training parameters used for training the above given network. These generally 
include the learning rate, number of epoch, etc. 
 
 
The figure below shows the training RMSE and loss. 



 



 
As mentioned earlier, we use predict and update to predict the next value given a current point. 
What this essentially does is that it first predicts the value for a given input and updates the 
network to be prepared for the next iteration. 

 
This is the forecast provided by the model which is the output for the given model. 
And has a RMSE of 194.34. 
 
 
As we can see that the Lstm network actually follows the trends observed in the input data, 
where a traditional model or a regular regressor would have failed. 
 
 



Python Implementation using Keras for 
NASDAQ data. 
 
The following is the implementation of the LSTM model on NASDQ dataset. Which has the 
intrinsic features of the stock like opening, high, low, volume closing and not the regular data 
set which only has the closing values. 
 There are a few data preprocessing steps that need to be implemented. I have just normalized 
the data for now but, I will be mentioning a few data transformations which leads to better 
prediction for future scope. In case of such volatile data the preprocessing is in fact more 
important than the model parameters. Simply increasing the layers or number of neurons won’t 
help and we need to dive deeper into financial data processing/management. 
 

 
 
These are the standard libraries that we might need for the code. 
Including function like pandas for importing and processing data, Keras to create our LSTM, 
mean-square from scikitlearn to calculate the accuracy of the code by using mean-square to 
calculate root mean square. And a few additional libraries for saving and using a few math 
functions. 

 
 



This segment loads the data from NASDAQ and splits into features and target. 

 
 
Shown is the plot of the target values. 
 For the entire dataset. 
 

 
 
This segment has the data preprocessing we talked about. We first normalize the data and 
transform it for features and target. Then, we split the data into train and test in 60/40 ratio for 
both features and target. 
 
 



 
This segment deals with modeling the layers we have a Lstm layer with 20 neurons as output 
and with 4 features as input for each guess. To converge this to a single output via dense layer 
we call the dense function and set its output dimension to be one as we need a single output 
guess for the given input. The model uses batch processing with batch size 10 and runs for 100 
epochs. There is validation set which is 10% of the training set for better accuracy and to avoid 
overfitting. The loss parameter follows mean square and the Adam optimizer is used instead of 
the gradient descent as Adam optimizer is better than gradient descent and has better 
computation efficiency, Little memory requirements. Return sequences is set to be false in this 
scenario but it should be set to true if there is a cascade of LSTMs for passing the parameters to 
each layer from previous layer. 
 
 

 

 
 These are the run times observed in collab using settings which results in  time taken between 
4 seconds to 1 second per epoch. 
 

 

 



These are the results result usinf the GPU settings in collab you can see that its faster than the 
CPU settings. For a complex data set this would result in a huge difference in the runtime of the 
training. Also, GPU presents slightly better accuracy which plays an important role as the 
dataset changes this yield better performance and better result in a complex problem and 
hence, we can conclude that GPU processing is more desirable as its faster, more accurate and 
reliable. 
 

 
  
This segment deals with the prediction using the trained model. The predicted and the target 
values are used to calculate the test and train scores. 

 
These are the values for CPU. 

 
These are the values for GPU. As you can see that GPU processing yields better results as stated 
above. 

 
 Finally to view and compare the result we scale the data back to its original format and plot 
them. BLUE is the original data, Red is the train predicted data, Green is the test predicted data. 



 
For CPU. 

 
For GPU. The plot looks nearly the same as the error difference is minute in this case. 
 



Observations. 
 
As we can see the predicted output follows the trends of the train and test data and the data 
fits the train curve as it should as we also use validation to make sure of it. The Test data 
deteriorates towards the and yet follows the trend pattern. Even though it loses its accuracy it 
still predits if it’s a high or low which is the most desirable quality that we look for. Hence, we 
can use to predict High low values at any point given. 

 
Future Scope. 
 
As mentioned earlier in this case there are a few data preprocessing parameters which can be 
used to improve the prediction. As, this project is meant to understand LSTM and its ability to 
follow trend and its properties, the preprocessing part has been neglected. The few processing 
parameters are Moving Average, standard deviation, and momentum these help in 
smoothening out the curve to give better prediction. In this use case, the accuracy depends 
more on how we preprocess the data than on the complexity of the model. In fact increasing he 
complexity decreases the efficiency. 
For example,  

 
 
This model would have given exemplar results, but in this case 

 
 The error increased, and the degradation was more, and it lost its ability to follow the trends in 
some cases. 
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