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• Why deep learning? 

 

• Deep Neural Networks 

 

• Recurrent structures – RNN, LSTM, GRU 

 

• Bidirectional recurrent structures 

 

• Hands on tutorial on python – numpy, scipy, matplotlib, 

pandas 

 

• Hands on tutorial on TensorFlow and Keras 

 

• Bio-medical usecases – Sleep Apnea Detection, ECG 

Analysis – Atrial fibrillation, Sleep Apnea, Anomaly 

detection in Phonocardiogram 

Agenda 



• Deep learning is kind of hard. Why bother with it? 

 

• Amazing results… in speech, NLP, vision/multimodal work 

 

• Does its own feature selection! 

 

• The big players (Google, Facebook, Baidu, Microsoft, 

IBM…) are doing a lot of this 

 

• The hot new thing? 

 

• Actually, many of the architectures that we’ll talk about were 

invented in the 1980s and 1990s 

 

• What’s new is hardware that can use these architectures at 

scale.  

Deep Learning 



Neural Network 

Example Application 

• Handwriting Digit Recognition 

Machine “2” 



Neural Network 
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Neural Network 
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Neural Network 
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Neural Network 
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Neural Network 

 

Training DNN 

New Activation Function 



Neural Network 

ReLU 

• Rectified Linear Unit (ReLU) 

Reason: 

1. Fast to compute 

2. Vanishing 

gradient problem 
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Neural Networks 

• Generally there are two kinds of neural networks: 

 Recurrent Neural Network: 

 connections between units form 

cyclic paths 

 Feedforward Neural Networks: 

 connections between the 

units do not form a cycle 



Recurrent networks introduce cycles and a notion of time. 

 

 

 

 

 

 

 

• They are designed to process sequences of data 𝑥1, … , 𝑥𝑛 

and can produce sequences of outputs 𝑦1, … , 𝑦𝑚. 

Recurrent Neural Networks 

𝑥𝑡 𝑦𝑡 

ℎ𝑡 ℎ𝑡−1 

One-step delay 



RNNs can be unrolled across multiple time steps. 

 

 

 

 

 

 

 

This produces a DAG which 

supports backpropagation. 

 

But its size depends on the  

input sequence length.  

 

 

 

 

 

 

 

Unrolling RNNs 
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Usually drawn as: 

 

 

 

 

 

 

 

Unrolling RNNs 
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Often layers are stacked vertically (deep RNNs): 

 

 

 

 

 

 

 

 

RNN structure 
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Backprop still works: 
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Recurrent Neural Network 

x 

RNN 

y 

We can process a sequence of vectors x by 

applying a recurrence formula at every time step: 

 

 

 

 

new state old state input vector at 

some time step 

some function 

with parameters W 



Recurrent Neural Network 

x 

RNN 

y 

The state consists of a single “hidden” vector h: 



Long short-term memory 



Long short-term memory 
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Gated Recurrent Unit 

Gated recurrent unit (GRU) is an alternative to LSTM networks.  

Formulae shows, unlike LSTM memory cell with a list of gates (input, 

output and forget), GRU only consist of gates (update and forget) that are 

collectively involve in balancing the interior flow of information of the unit. 



Gated Recurrent Unit 
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Extensions to LSTM architecture:                                                            

Bidirectional LSTM 

 

• Only the past information is taken into account in the training of 

a unidirectional RNN/LSTM 

• Bidirectional architecture enables the use of future information 

• Implementation with separate Forward-pass and Backward-

pass specific layer weights 

• Final output computed as the sum of forward and backward 

layer outputs 

 

 



Summary 
 

- RNNs allow a lot of flexibility in architecture design 

- RNNs are simple but don’t work very well 

- Common to use LSTM or GRU: their additive interactions 

improve gradient flow 

- Backward flow of gradients in RNN can explode or vanish. 

Exploding is controlled with gradient clipping. Vanishing is 

controlled with additive interactions (LSTM) 

- Better/simpler architectures are a hot topic of current research 

- Better understanding (both theoretical and empirical) is needed. 



Case studies 
 

 

 

 

Bio-medical Applications 



 

 

•An electrocardiogram or ECG signal is a graphical 

representation which captures the electrical potential changes 

of the heart  

 

•  Electrocardiograph machine is used to obtain ECG signal by 

capturing the signal through electrodes placed on specific 

locations on skin of the human body  

 

•   For over a period of time, the electrical activity is measured 

from these leads.  

 

ECG Analysis 



 

 

 

 

 

 

 

 

 

 

 

Figure: ECG signal corresponding to normal sinus rhythm 

ECG Analysis 



ECG Analysis 



• P wave occurs due to atrial depolarization, QRS complex 

due to ventricular depolarization and T wave due to 

ventricular repolarization. 

• QRS complex is the most significant and distinctive feature 

of ECG used to indicate the presence of cardiac cycle. 

• After T, U wave is a small rounded upright wave 

representing repolarization of Purkinje fibers. 

• The intervals that occur in ECG wave are PR Interval and 

QT Interval.  

• PR interval is measured from beginning of P wave to start 

of QRS complex. It measures travel time of depolarization 

wave from atria to ventricles.  

• QT interval is beginning of QRS complex to end of T wave. 

It reflects total ventricular activity 

 

ECG Analysis 



Conventional ECG Analysis 

 

 

ECG Analysis 

Preprocessing 
Feature  

extraction 

Decision  

making 

Noises -  PLI, muscle artifacts, motion artifacts,  

baseline wandering and other external interferences 

Features -  Slope, width and amplitude of QRS complexes, 

area under the waves etc 



 

 

ECG Analysis 

Deep Intelligent ECG Analysis 

Preprocessing 
Feature  

extraction 

Decision  

making 

Optional 



 

 

ECG Analysis 

Real-time detection of Atrial Fibrillation from Short time 

single lead ECG traces using Recurrent neural networks 

• Atrial fibrillation (AF) is a disorder of the functioning of 

the heart’s electrical system that is characterized by 

the irregular/rapid beating of the heart [1]. 

• Atrial fibrillation (AF) is the predominant type of 

cardiac arrhythmia affecting more than 45 Million 

individuals globally.  

• It is one of the leading contributors of strokes and 

hence detecting them in real-time is of paramount 

importance for early intervention.  



 

 

ECG Analysis 

Proposed Method 

Figure: Architecture of proposed system for 

normal sinus rhythm and atrial fibrillation. 



 

 

ECG Analysis 
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ECG Analysis 

Description of dataset 

Figure: (a) A single lead ECG wave of normal sinus rhythm,(b) A single lead 

ECG wave with atrial fibrillation 



 

 

ECG Analysis 

Results 

The proposed method is considered as more accurate in real-time ECG 

classification because it doesn’t rely on any feature engineering 

mechanisms. 

[1] Sujadevi. V. G, Soman. K. P, Vinaykumar. R, "Real-Time Detection of Atrial 

Fibrillation from Short Time Single Lead ECG Traces Using Recurrent Neural 

Networks"- Springer AISC series proceedings of the International Symposium on 

Intelligent Systems Technologies and Applications 2017. 



 

 

ECG Analysis 

Sleep Apnea Diagnosis using Deep 

Learning  

• A potentially serious sleep disorder in which breathing 

repeatedly stops and starts (interruption of breath 

during sleep). 

• Untreated prolonged sleep apnea is directly related to 

atrial fibrillation, which could later lead to serious 

conditions such as heart failure and stroke 

• Sleep apnea is a medically significant disease 

condition affecting as much as 24% of men and 9% of 

women in US population. 

 



 

 

ECG Analysis 

Description of dataset 

• Physionet  Computing in Cardiology (CinC) Sleep Apnea 

Challenge database. 

• 8-hour ECG readings from 35 patients 

• It includes three different groups; class A with 20 patient 

records having very severe sleep apnea incidence, class B 

with 5 patient records with borderline apnea incidence, and 

class C with 10 patient records that have less than 5% 

apnea annotated signals. 

• Furthermore, for analyzing the accuracy of sleep apnea 

classification among arrhythmia patients we obtained 45 

ambulatory ECG recordings from MIT BIH Arrhythmia 

database  

 



 

 

ECG Analysis 

Proposed Method 

•  The records are taken as length of 60 sec. 

 

• Raw data are processed to extract instantaneous heart rate 

(IHR), which helps to identify the heart rate variability (HRV) 

and blood oxygen saturation (SpO2) 

 

• Trained and tested using LSTM/RNN network 
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ECG Analysis 

Results 

Pathinarupothi RK, Vinaykumar R, Rangan E, Gopalakrishnan E, Soman KP. 

Instantaneous heart rate as a robust feature for sleep apnea severity detection using 

deep learning. In Biomedical & Health Informatics (BHI), 2017 IEEE EMBS 

International Conference on 2017 Feb 16 (pp. 293-296). IEEE. 



 

 

ECG Analysis 

Results 

Pathinarupothi RK, Rangan ES, Gopalakrishnan EA, Vinaykumar R, Soman KP. 

Single Sensor Techniques for Sleep Apnea Diagnosis Using Deep Learning. 

InHealthcare Informatics (ICHI), 2017 IEEE International Conference on 2017 Aug 23 

(pp. 524-529). IEEE. 



 

 

ECG Analysis 



 

 

ECG Analysis 

https://physionet.org/ 



 

• Phonocardiogram (PCG) is the electronic recording of heart 

sounds and murmurs 

• Detecting abnormal heart sounds by algorithms is important for 

remote health monitoring and other scenarios where having an 

experienced physician is not possible 

• Detecting anomalies in heart sounds and murmurs using Deep-

learning algorithms on well-known Physionet 2016 Dataset 

• RNN, LSTM, GRU, B-RNN, B-LSTM and CNN 

• We achieved 80% accuracy in CNN 3 layer Deep learning model 

on the raw signals without performing any preprocessing 

methods 

• To our knowledge this is the highest reported accuracy that 

employs analyzing the raw PCG data 

 

ECG Analysis 

Anomaly detection in Phonocardiogram 

employing Deep learning 



ECG Analysis 

• Sounds of muscles and other artifacts comes as noise to 

the PCG data generated by hemodynamics 

• signal processing that combines wavelet packet transform 

and singular value decomposition (SVD) for de-noising 

• Machine learning methods are being used to identify the 

anomalies in the signal data 

• Machine learning methods relies on the feature 

engineering and deposing mechanisms 

• Deep learning is a new filed of machine learning which 

can learn the patterns by taking the raw input signals 

 

 



ECG Analysis 

Proposed Method 

Figure 1. Architecture of proposed system (inner 

units and their connections are not shown) 



ECG Analysis 

Description of the data set and Results 

• As part of 2016 PhysioNet/CinC Challenge, the database 

of heart recordings has been provided to participants and 

made available to the researchers for further 

enhancement in classifying the heart recordings either as 

normal or abnormal. 

 

 

 

 

 

 

 

 

              

 

  



ECG Analysis 

Hyper-parameter tuning  

• To find suitable parameter for RNN, LSTM, GRU, B-RNN, B-LSTM, 

we used  with one hidden layer, 32, 64 and 128 units in RNN and 32, 

64 and 128 memory blocks in LSTM.  

• 3 trails of experiments, each  500 epochs 

• 64 units/memory blocks has shown highest accuracy in 10-fold cross-

validation for most of the Deep learning architectures 

• CNN with number of Filters 64 and filter length 3 has attained highest 

accuracy in 10-fold cross-validation              



ECG Analysis 

CNN Tuning 

• To alleviate the cost of training with CNN network, we 

apply fast fourier transform (FFT) on the raw signals to 

convert the signal into a frequency domain.  

• High pass Butterworth Filter is used to remove the noise 

above 240 beats per minute (4Hz). 

• Again, we apply FFT on the filtered signal to transform 

into to it's approximate frequency domain. 

• Finally, we pass the Fourier coefficients into CNN 

network. 



ECG Analysis 

Test Results 



ECG Analysis 

Summary and Future work 

• Deep learning based mechanism such as RNN, LSTM and GRU 

architecture is proposed to detect the Anomaly in PCG data. 

• All the deep learning methods have performed well with the raw data, 

without doing any feature engineering. Noise filtered data with CNN 

gave the highest accuracy. 

• In our experiment CNN has given the best results when compared to 

other networks. The primary reason is that, it used FFT with high pass 

Butterworth Filter which removed the noise and obtain information 

related to frequency domain. 

• The reported results can be further enhanced by following hyper 

parameter tuning mechanism for each deep network architecture.  

• And to our knowledge this is the highest accuracy reported so far on 

raw PCG data anomaly detection 



 

Thank you 

 

Questions ? 

vinayakumarr77@gmail.com 

https://vinayakumarr.github.io/ 

https://sites.google.com/site/vinayakumarr77/ 

 

mailto:vinayakumarr77@gmail.com


Hands on session on “Machine learning and 

Deep learning using Scikit-learn, Tensorflow 

and Keras” 



Software Installation 

 
• sudo apt-get install libatlas-base-dev gfortran python-dev 

• sudo apt-get install python-pip 

• sudo pip install --upgrade pip 

• sudo pip install numpy 

• sudo pip install scipy 

• sudo pip install matplotlib 

• Sudo pip install seaborn 

• sudo pip install scikit-learn 

• sudo pip install tensorflow 

• sudo pip install theano 

• sudo pip install keras 

• sudo pip install pandas 

• sudo pip install h5py 

• sudo pip install jupyter 

• sudo pip install ipython 



Artificial Intelligence (AI)                                     

toolkits 

 

Scikit-learn - Python library that implements a 

comprehensive range of machine learning algorithms. 

 

• easy-to-use, general-purpose toolbox for machine learning 

in Python. 

• supervised and unsupervised machine learning techniques. 

• Utilities for common tasks such as model selection, 

feature extraction, and feature selection. 

• Built on NumPy, SciPy, and matplotlib. 

• Open source, commercially usable - BSD license. 



Artificial Intelligence (AI)                                     

toolkits 

 

 

TensorFlow - library for numerical computation using data 

flow graphs / deep learning. 

 

• Open source 

• By Google 

• used for both research and production 

• Used widely for deep learning/neural nets 

• But not restricted to just deep models 

• Multiple GPU Support 

 



Artificial Intelligence (AI)                                     

toolkits 

 

 

Keras – It is a high-level neural networks API, written in 

Python and capable of running on top of TensorFlow, CNTK, 

or Theano. It was developed with a focus on enabling fast 

experimentation. 

 

• Allows for easy and fast prototyping (through user 

friendliness, modularity, and extensibility). 

• Runs seamlessly on CPU and GPU. 

 



Supporting Libraries 
 

 



 

 

 

 

 

 

 

Hands – on tutorial on supporting libraries 



 

 

 

 

 

 

 

Hands – on tutorial on classical machine learning 

algorithms using scikit-learn 



 

 

 

 

 

 

 

Hands – on tutorial on Tensorflow with Keras 


