
Deep Learning for Bio-medical Applications

Vinayakumar R

PhD Student,

Centre for Computational Engineering and

Networking, Amrita Vishwa Vidyapeetham,

Coimbatore

https://vinayakumarr.github.io/

• Why deep learning?

• Deep Neural Networks

• Recurrent structures – RNN, LSTM, GRU

• Bidirectional recurrent structures

• Hands on tutorial on python – numpy, scipy, matplotlib,

pandas

• Hands on tutorial on TensorFlow and Keras

• Bio-medical usecases – Sleep Apnea Detection, ECG

Analysis – Atrial fibrillation, Sleep Apnea, Anomaly

detection in Phonocardiogram

Agenda

• Deep learning is kind of hard. Why bother with it?

• Amazing results… in speech, NLP, vision/multimodal work

• Does its own feature selection!

• The big players (Google, Facebook, Baidu, Microsoft,

IBM…) are doing a lot of this

• The hot new thing?

• Actually, many of the architectures that we’ll talk about were

invented in the 1980s and 1990s

• What’s new is hardware that can use these architectures at

scale.

Deep Learning

Neural Network

Example Application

• Handwriting Digit Recognition

Machine “2”

Neural Network

bwawawaz
KK
 

2211

Element of Neural Network

𝑓: 𝑅𝐾 → 𝑅

z

1
w

2
w

K
w

…

1
a

2
a

K
a



b

 z

bias

a

Activation

function weight

s

Neuron

Neural Network

Outpu

t

Layer

Hidden

Layers

Input

Laye

r

Input Output

1
x

2
x

Layer

1

……

N
x

……

Layer

2

……

Layer

L
……

…

…
…

…

…

…

……

y1

y2

yM

Deep means many hidden layers

neuron

Neural Network

 z

z

 
z

e
z





1

1


Sigmoid

Function

1

-1

1

-

2

1

-1

1

0

4

-2

0.98

0.12

Neural Network

1
x

2
x

……

N
x

……

……

……

…

…
…

…

…

…

……

y1

y2

yM

W1 W2 WL

b
2

b
L

x a
1

a
2 y

b
1 W1 x + 𝜎

b
2 W2 a

1 + 𝜎

b
L WL + 𝜎 aL-1

b
1

Neural Network

Training DNN

New Activation Function

Neural Network

ReLU

• Rectified Linear Unit (ReLU)

Reason:

1. Fast to compute

2. Vanishing

gradient problem
𝑧

𝑎

𝑎 = 𝑧

𝑎 = 0

𝜎 𝑧

1 0
'()

0 0

i f x
f x

i f x

 

 
 

 
 

 




'() () * (1 ())z z z   

Neural Networks

• Generally there are two kinds of neural networks:

 Recurrent Neural Network:

 connections between units form

cyclic paths

 Feedforward Neural Networks:

 connections between the

units do not form a cycle

Recurrent networks introduce cycles and a notion of time.

• They are designed to process sequences of data 𝑥1, … , 𝑥𝑛

and can produce sequences of outputs 𝑦1, … , 𝑦𝑚.

Recurrent Neural Networks

𝑥𝑡 𝑦𝑡

ℎ𝑡 ℎ𝑡−1

One-step delay

RNNs can be unrolled across multiple time steps.

This produces a DAG which

supports backpropagation.

But its size depends on the

input sequence length.

Unrolling RNNs

𝑥𝑡 𝑦𝑡

ℎ𝑡 ℎ𝑡−1

One-step delay

𝑥0
𝑦0

ℎ0

𝑥1
𝑦1

ℎ1

𝑥2
𝑦2

ℎ2

Usually drawn as:

Unrolling RNNs

𝑥0
𝑦0

ℎ0

𝑥1
𝑦1

ℎ1

𝑥2
𝑦2

ℎ2

𝑥0

𝑦0

ℎ0

𝑥1

𝑦1

ℎ1

𝑥2

𝑦2

ℎ2

Often layers are stacked vertically (deep RNNs):

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Same parameters

at this level

Same parameters

at this level



Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Activations

Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Activations

Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Activations

Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Activations

Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Activations

Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Activations

Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Activations

Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Gradients

Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Gradients

Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Gradients

Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Gradients

Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Gradients

Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Gradients

Backprop still works:

RNN structure

𝑥0

𝑦00
ℎ00

𝑥1

𝑦01
ℎ01

𝑥2

𝑦02

ℎ02

𝑥00 𝑥01 𝑥02

𝑦10 𝑦11 𝑦12

ℎ10 ℎ11 ℎ12

Time

Abstraction

- Higher

level

features

Gradients

Recurrent Neural Network

x

RNN

y

We can process a sequence of vectors x by

applying a recurrence formula at every time step:

new state old state input vector at

some time step

some function

with parameters W

Recurrent Neural Network

x

RNN

y

The state consists of a single “hidden” vector h:

Long short-term memory

Long short-term memory

, , ,
1 1

x h c l h c l
t t tt t


 

()
1 1

in w x w h w c l b
t tx in int th in c l in

   
 

()
1 1

fr w x w h w c l b
t t t tx fr h i fr c l fr fr

   
 

ta n h ()
1 1

c l fr c l in w x w h i b
t t t tt tx c l h c l c l
   

 

()
1

o t w x w h i w c l b
t x o t t t o tth o t c lo t

   


ta n h ()h o t c l
t t t


Gated Recurrent Unit

Gated recurrent unit (GRU) is an alternative to LSTM networks.

Formulae shows, unlike LSTM memory cell with a list of gates (input,

output and forget), GRU only consist of gates (update and forget) that are

collectively involve in balancing the interior flow of information of the unit.

Gated Recurrent Unit

,
1

x h h
t tt




_ ()
1_ _ _

in fr w x w h b
t t tx in fr h i in fr in fr

  


()
1

fr w x w h b
t t tx fr h i fr fr

  


ta n h (())
1

c l w x w fr h i b
t t tx c l h c l c l
  



(1)
1

h f h f c l
t t
  



(Update gate)

(Forget or reset gate)

(Updated memory)

(Current memory)

Extensions to LSTM architecture:

Bidirectional LSTM

• Only the past information is taken into account in the training of

a unidirectional RNN/LSTM

• Bidirectional architecture enables the use of future information

• Implementation with separate Forward-pass and Backward-

pass specific layer weights

• Final output computed as the sum of forward and backward

layer outputs

Summary

- RNNs allow a lot of flexibility in architecture design

- RNNs are simple but don’t work very well

- Common to use LSTM or GRU: their additive interactions

improve gradient flow

- Backward flow of gradients in RNN can explode or vanish.

Exploding is controlled with gradient clipping. Vanishing is

controlled with additive interactions (LSTM)

- Better/simpler architectures are a hot topic of current research

- Better understanding (both theoretical and empirical) is needed.

Case studies

Bio-medical Applications

•An electrocardiogram or ECG signal is a graphical

representation which captures the electrical potential changes

of the heart

• Electrocardiograph machine is used to obtain ECG signal by

capturing the signal through electrodes placed on specific

locations on skin of the human body

• For over a period of time, the electrical activity is measured

from these leads.

ECG Analysis

Figure: ECG signal corresponding to normal sinus rhythm

ECG Analysis

ECG Analysis

• P wave occurs due to atrial depolarization, QRS complex

due to ventricular depolarization and T wave due to

ventricular repolarization.

• QRS complex is the most significant and distinctive feature

of ECG used to indicate the presence of cardiac cycle.

• After T, U wave is a small rounded upright wave

representing repolarization of Purkinje fibers.

• The intervals that occur in ECG wave are PR Interval and

QT Interval.

• PR interval is measured from beginning of P wave to start

of QRS complex. It measures travel time of depolarization

wave from atria to ventricles.

• QT interval is beginning of QRS complex to end of T wave.

It reflects total ventricular activity

ECG Analysis

Conventional ECG Analysis

ECG Analysis

Preprocessing
Feature

extraction

Decision

making

Noises - PLI, muscle artifacts, motion artifacts,

baseline wandering and other external interferences

Features - Slope, width and amplitude of QRS complexes,

area under the waves etc

ECG Analysis

Deep Intelligent ECG Analysis

Preprocessing
Feature

extraction

Decision

making

Optional

ECG Analysis

Real-time detection of Atrial Fibrillation from Short time

single lead ECG traces using Recurrent neural networks

• Atrial fibrillation (AF) is a disorder of the functioning of

the heart’s electrical system that is characterized by

the irregular/rapid beating of the heart [1].

• Atrial fibrillation (AF) is the predominant type of

cardiac arrhythmia affecting more than 45 Million

individuals globally.

• It is one of the leading contributors of strokes and

hence detecting them in real-time is of paramount

importance for early intervention.

ECG Analysis

Proposed Method

Figure: Architecture of proposed system for

normal sinus rhythm and atrial fibrillation.

ECG Analysis
C

o
m

p
u

ta
ti

o
n

a
l

fl
o

w

Raw ECG

signals

LSTM recurrent layer

with 64 memory

blocks

Dense layer with

sigmoid activation

function

Predicted

classes

Atrial

fibrillation

Normal

sinus rhythm

ECG Analysis

Description of dataset

Figure: (a) A single lead ECG wave of normal sinus rhythm,(b) A single lead

ECG wave with atrial fibrillation

ECG Analysis

Results

The proposed method is considered as more accurate in real-time ECG

classification because it doesn’t rely on any feature engineering

mechanisms.

[1] Sujadevi. V. G, Soman. K. P, Vinaykumar. R, "Real-Time Detection of Atrial

Fibrillation from Short Time Single Lead ECG Traces Using Recurrent Neural

Networks"- Springer AISC series proceedings of the International Symposium on

Intelligent Systems Technologies and Applications 2017.

ECG Analysis

Sleep Apnea Diagnosis using Deep

Learning

• A potentially serious sleep disorder in which breathing

repeatedly stops and starts (interruption of breath

during sleep).

• Untreated prolonged sleep apnea is directly related to

atrial fibrillation, which could later lead to serious

conditions such as heart failure and stroke

• Sleep apnea is a medically significant disease

condition affecting as much as 24% of men and 9% of

women in US population.

ECG Analysis

Description of dataset

• Physionet Computing in Cardiology (CinC) Sleep Apnea

Challenge database.

• 8-hour ECG readings from 35 patients

• It includes three different groups; class A with 20 patient

records having very severe sleep apnea incidence, class B

with 5 patient records with borderline apnea incidence, and

class C with 10 patient records that have less than 5%

apnea annotated signals.

• Furthermore, for analyzing the accuracy of sleep apnea

classification among arrhythmia patients we obtained 45

ambulatory ECG recordings from MIT BIH Arrhythmia

database

ECG Analysis

Proposed Method

• The records are taken as length of 60 sec.

• Raw data are processed to extract instantaneous heart rate

(IHR), which helps to identify the heart rate variability (HRV)

and blood oxygen saturation (SpO2)

• Trained and tested using LSTM/RNN network

ECG Analysis
C

o
m

p
u

ta
ti

o
n

a
l

fl
o

w

Input signals

LSTM layer with

32 memory blocks

Dense layer with

sigmoid activation

function

Predicted output

LSTM layer with

32 memory blocks

S
ta

ck
ed

 L
S

T
M

Sleep Apnea Normal

sinus rhythm

ECG Analysis

Results

Pathinarupothi RK, Vinaykumar R, Rangan E, Gopalakrishnan E, Soman KP.

Instantaneous heart rate as a robust feature for sleep apnea severity detection using

deep learning. In Biomedical & Health Informatics (BHI), 2017 IEEE EMBS

International Conference on 2017 Feb 16 (pp. 293-296). IEEE.

ECG Analysis

Results

Pathinarupothi RK, Rangan ES, Gopalakrishnan EA, Vinaykumar R, Soman KP.

Single Sensor Techniques for Sleep Apnea Diagnosis Using Deep Learning.

InHealthcare Informatics (ICHI), 2017 IEEE International Conference on 2017 Aug 23

(pp. 524-529). IEEE.

ECG Analysis

ECG Analysis

https://physionet.org/

• Phonocardiogram (PCG) is the electronic recording of heart

sounds and murmurs

• Detecting abnormal heart sounds by algorithms is important for

remote health monitoring and other scenarios where having an

experienced physician is not possible

• Detecting anomalies in heart sounds and murmurs using Deep-

learning algorithms on well-known Physionet 2016 Dataset

• RNN, LSTM, GRU, B-RNN, B-LSTM and CNN

• We achieved 80% accuracy in CNN 3 layer Deep learning model

on the raw signals without performing any preprocessing

methods

• To our knowledge this is the highest reported accuracy that

employs analyzing the raw PCG data

ECG Analysis

Anomaly detection in Phonocardiogram

employing Deep learning

ECG Analysis

• Sounds of muscles and other artifacts comes as noise to

the PCG data generated by hemodynamics

• signal processing that combines wavelet packet transform

and singular value decomposition (SVD) for de-noising

• Machine learning methods are being used to identify the

anomalies in the signal data

• Machine learning methods relies on the feature

engineering and deposing mechanisms

• Deep learning is a new filed of machine learning which

can learn the patterns by taking the raw input signals

ECG Analysis

Proposed Method

Figure 1. Architecture of proposed system (inner

units and their connections are not shown)

ECG Analysis

Description of the data set and Results

• As part of 2016 PhysioNet/CinC Challenge, the database

of heart recordings has been provided to participants and

made available to the researchers for further

enhancement in classifying the heart recordings either as

normal or abnormal.

ECG Analysis

Hyper-parameter tuning

• To find suitable parameter for RNN, LSTM, GRU, B-RNN, B-LSTM,

we used with one hidden layer, 32, 64 and 128 units in RNN and 32,

64 and 128 memory blocks in LSTM.

• 3 trails of experiments, each 500 epochs

• 64 units/memory blocks has shown highest accuracy in 10-fold cross-

validation for most of the Deep learning architectures

• CNN with number of Filters 64 and filter length 3 has attained highest

accuracy in 10-fold cross-validation

ECG Analysis

CNN Tuning

• To alleviate the cost of training with CNN network, we

apply fast fourier transform (FFT) on the raw signals to

convert the signal into a frequency domain.

• High pass Butterworth Filter is used to remove the noise

above 240 beats per minute (4Hz).

• Again, we apply FFT on the filtered signal to transform

into to it's approximate frequency domain.

• Finally, we pass the Fourier coefficients into CNN

network.

ECG Analysis

Test Results

ECG Analysis

Summary and Future work

• Deep learning based mechanism such as RNN, LSTM and GRU

architecture is proposed to detect the Anomaly in PCG data.

• All the deep learning methods have performed well with the raw data,

without doing any feature engineering. Noise filtered data with CNN

gave the highest accuracy.

• In our experiment CNN has given the best results when compared to

other networks. The primary reason is that, it used FFT with high pass

Butterworth Filter which removed the noise and obtain information

related to frequency domain.

• The reported results can be further enhanced by following hyper

parameter tuning mechanism for each deep network architecture.

• And to our knowledge this is the highest accuracy reported so far on

raw PCG data anomaly detection

Thank you

Questions ?

vinayakumarr77@gmail.com

https://vinayakumarr.github.io/

https://sites.google.com/site/vinayakumarr77/

mailto:vinayakumarr77@gmail.com

Hands on session on “Machine learning and

Deep learning using Scikit-learn, Tensorflow

and Keras”

Software Installation

• sudo apt-get install libatlas-base-dev gfortran python-dev

• sudo apt-get install python-pip

• sudo pip install --upgrade pip

• sudo pip install numpy

• sudo pip install scipy

• sudo pip install matplotlib

• Sudo pip install seaborn

• sudo pip install scikit-learn

• sudo pip install tensorflow

• sudo pip install theano

• sudo pip install keras

• sudo pip install pandas

• sudo pip install h5py

• sudo pip install jupyter

• sudo pip install ipython

Artificial Intelligence (AI)

toolkits

Scikit-learn - Python library that implements a

comprehensive range of machine learning algorithms.

• easy-to-use, general-purpose toolbox for machine learning

in Python.

• supervised and unsupervised machine learning techniques.

• Utilities for common tasks such as model selection,

feature extraction, and feature selection.

• Built on NumPy, SciPy, and matplotlib.

• Open source, commercially usable - BSD license.

Artificial Intelligence (AI)

toolkits

TensorFlow - library for numerical computation using data

flow graphs / deep learning.

• Open source

• By Google

• used for both research and production

• Used widely for deep learning/neural nets

• But not restricted to just deep models

• Multiple GPU Support

Artificial Intelligence (AI)

toolkits

Keras – It is a high-level neural networks API, written in

Python and capable of running on top of TensorFlow, CNTK,

or Theano. It was developed with a focus on enabling fast

experimentation.

• Allows for easy and fast prototyping (through user

friendliness, modularity, and extensibility).

• Runs seamlessly on CPU and GPU.

Supporting Libraries

Hands – on tutorial on supporting libraries

Hands – on tutorial on classical machine learning

algorithms using scikit-learn

Hands – on tutorial on Tensorflow with Keras

