2624

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 40, NO. 11,

NOVEMBER 2018

Visual Kinship Recognition of Families in the Wild

Joseph P. Robinson
Yue Wu, Hongfu Liu

, Student Member, IEEE, Ming Shao
, Student Member, IEEE, Timothy Gillis, Student Member, IEEE,

, Member, IEEE,

and Yun Fu, Senior Member, IEEE

Abstract—We present the largest database for visual kinship recognition, Families In the Wild (FIW), with over 13,000 family photos of
1,000 family trees with 4-t0-38 members. It took only a small team to build FIW with efficient labeling tools and work-flow. To extend
FIW, we further improved upon this process with a novel semi-automatic labeling scheme that used annotated faces and unlabeled text
metadata to discover labels, which were then used, along with existing FIW data, for the proposed clustering algorithm that generated
label proposals for all newly added data—both processes are shared and compared in depth, showing great savings in time and human
input required. Essentially, the clustering algorithm proposed is semi-supervised and uses labeled data to produce more accurate
clusters. We statistically compare FIW to related datasets, which unarguably shows enormous gains in overall size and amount of
information encapsulated in the labels. We benchmark two tasks, kinship verification and family classification, at scales incomparably
larger than ever before. Pre-trained CNN models fine-tuned on FIW outscores other conventional methods and achieved state-of-the
art on the renowned KinWild datasets. We also measure human performance on kinship recognition and compare to a fine-tuned CNN.

Index Terms—Large-scale image dataset, kinship verification, family classification, semi-supervised clustering, deep learning

1 INTRODUCTION

VISUAL kinship recognition has an abundance of practi-
cal uses, such as issues of human trafficking and in
missing children, problems from today’s refugee crises, and
social media platforms. Use cases exist for the academic
world as well, whether for machine vision (e.g., reducing
the search space in large-scale face retrieval) or a different
field entirely (e.g., historical & genealogical lineage studies).
However, to the best of our knowledge, no reliable system
exists in practice. This is certainly not due to a lack of effort
by researchers, as many works focused on kinship [1], [2],
[31, [4], [5], [6], [71, [81, [9], [10], [11], [12], [13], [14], [15], [16],
(171, [18], [19], [20], [21], [22], [23], [24], [25], [26].

Challenges preventing visual kinship recognition from
transitioning from research to reality are two-fold:

(1) Existing data resources for visual kinship are too
small to capture true data distributions.

(2) Hidden factors of visual similarities/differences
between blood relatives are complex and less discrimi-
nant than in other more conventional problems
(e.g., object classification or even facial identification).
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Clearly, a large image-set that properly represents fami-
lies worldwide is needed, which also meets the capacity of
more complex, data-driven models (i.e., deep learning),
thus, motivating us to build the first large-scale image data-
base for kinship recognition, Families In the Wild (FIW). FIW
is made-up of rich label information that captures the com-
plex, hierarchical structures of 1,000 unique family trees.
Families consist of an average of about 13 photos of each
(i.e., over 13,000 family photos), and family sizes range
from 3-38 members, with most subjects having multiple
samples at various ages (see Fig. 1). FIW is the largest and
most comprehensive database of its kind."

Deep learning can now be applied to the problem, as we
demonstrate on two benchmarks, kinship verification and
family classification. We fine-tune deep models to improve
all benchmarks, and provide details on the training proce-
dure. We also measure human performance on verification
and compare with benchmarks.

We use a multi-modal labeling model to optimize the
annotation process. This includes a novel semi-supervised
clustering method that works effectively in practice
(i.e., generates label proposals for new data using existing
labeled data as side information). For this, we increase
the amount of available side information using existing
labels (i.e., names), labeled faces, and text metadata
collected with the family photos. We show a significant
reduction in manual labor and time spent on labeling
new data.

Families In the Wild (FIW) was first introduced in [27].
This work adds to the previous work in a number of ways.
Listed here are contributions made in this journal extension:

(1) Added additional faces for verification and complete
families for classification (Section 3).

1. Download FIW via project page, smile-fiw.weebly.com/.
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Fig. 1. Photos of families sampled randomly from FIW (i.e., 8 of 1,000).

(2) Improved the labeling process with novel semi-
supervised clustering method (Section 4).

Boosted baseline scores using up-to-date deep learn-
ing approaches (Section 5).

Obtained state-of-the-art on smaller datasets via
transferring CNN fine-tuned on FIW (Section 5.5).
Conducted kinship verification experiment on

humans and compared with algorithms (Section 5.6).

3)
4)
%)

2 RELATED WORKS

2.1 Related Databases

The story of visual kinship recognition begins in 2010,
at which time the first kin-based image collection
(i.e., CornellKin) was made public [1]. CornellKin included
150 parent-child face pairs (i.e., celebrities and their parents).
Next, UB KinFace-I & II [16], [28], [29] was introduced to
address a slightly different view of kinship recognition—
both young and old faces of parents were paired with a
child, with a total of 600 face photos of 400 unique subjects
(i.e., celebrities and politicians). Then, KinWild I-II [30] was
released and used in a 2015 FG Challenge [31], which too
focused on parent-child pairs. Shortly thereafter, Family101 [7]
was introduced as the first attempt of multi-class classification
(i.e., one-to-many) for kinship recognition. Thus, it is an
organized set of structured families [7], including 206 sets of

Increasing Age

(a) Same Generation (b) 1%t Generation (c) 2™? Generation
Fig. 2. Samples of 11 pair types of FIW. Each type is of a unique pair ran-
domly selected from a set of diverse families to show variation in ethnic-

ity, while four faces of each individual depict age variations.
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Fig. 3. Database statistics: Horizontal and vertical axes represent counts
for photos and faces per family, respectively. Bubble size and color repre-
sent counts for members and average faces per member, respectively.

parents and their children (i.e., core families) that make up 101
unique family trees. In 2015, TSKinFace [12] was built to
support yet another view of kinship recognition, tri-subject
verification, where both parents and a child were used—513
Father/Mother-Daughter pairs and 502 Father/Mother-Son
pairs (i.e., two-to-one verification).

However, there existed no single resource that satisfied
the concerns of insufficient data. A single resource with
the features of previous works, but in a more complete
and abundant manner, was the underlying vision for
FIW. As shown in Tables 1 & 2, and discussed in later
sections, FIW far exceeds others in terms of number of
families, face pairs, and relationship types.

2.2 Automatic Kinship Recognition
Fang et al. [1] first attempted kinship verification on
parent-child face pairs. They proposed selecting the 14 (of
44) most effective hand-crafted features. Following this,
researchers recognized that a child’s face more closely
resembles their parents at younger ages [16], [28], [29]. In
response, they used transfer subspace learning methods
that uses the younger faces of parents to help fill the
appearance gap between their older faces and that of their
children. To benchmark the KinWild dataset, Lu et al. [32]
proposed a metric learning method used in euclidean
space called NRML and its multi-view counterpart
(MNRML) that learns a common distance metric for mul-
tiple feature types. Fang et al. [7] focused on one-to-many
(i.e., family classification) by representing faces as a linear
combination of sparse features (i.e., feature selection via
lasso) of 12 facial parts encoded via a learned dictionary.
Progress made in kinship recognition, along with release
of varying task protocols, coincides with an increasing
availability of structured and labeled data. Although there
have been several significant contributions, none have over-
come the challenges posed earlier.

2.3 Deep Kinship Recongition

Since the AlexNet CNN [33] won the 2012 ImageNet Chal-
lenge [34], deep learning has achieved state-of-the-art in a
wide range of machine learning tasks. Central to this frenzy
has been facial recognition [35], [36], [37]. In spite of this,
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TABLE 1
Pairwise counts. Table 2 Further Characterizes and Fig. 2 Shows Samples from FIW
siblings parent-child grandparent-grandchild Total
B-B S-S SIBS F-D F-S M-D M-S  GF-GD GF-GS GM-GD GM-GS

KinWild T [32] 0 0 0 134 156 127 116 0 0 0 0 533
KinWild 1II [32] 0 0 0 250 250 250 250 0 0 0 0 1,000
Sibling Face [51] 232 211 277 0 0 0 0 0 0 0 0 720
Group Face [8] 40 32 53 69 69 62 70 0 0 0 0 395
FIW(Ours) [27] 103,724 39,978 73,506 92,088 129,846 82,160 112,618 7,078 4,830 6,512 4,614 656,954

there are only a few works that use deep learning for kin-
ship recognition [38], [39], [40], [41].

Deep learning has yet to show an advantage for visual
kinship recognition, with metric learning seeming more
promising. As mentioned in a recent literature review [42],
the reason for this stems from an insufficient amount
of data. In this work, we include several benchmarks on
FIW using deep learning, obtaining a clear advantage in
both tasks.

2.4 Semi-Automatic Image Tagging &

Data Exploration
Automatic image tagging was recently done by first labeling
a small amount of the data, and then using it as side infor-
mation to help guide the clustering process in a semi-super-
vised manner [43]. Following this, we take advantage of
side information from labeled FIW.

Previous works used image captions, whether from
Flickr or other sources of images tagged by users, to dis-
cover labels and annotate images in an automatic fash-
ion [44]. Generally, methods mining text for image tags
treat it as a problem of noisy labels [45], [46]. CASIA-Web-
Face [47], a large-scale dataset for facial recognition, suc-
cessfully extended the scale of the renowned LFW [48]. By
crawling the web, and leveraging knowledge from IMDB,
multiple face samples for 10,000 unique subjects were col-
lected. Although related in the sense of automatic labeling,
these problems are very different from the one we present
here. We aim to add more data to underrepresented families
of the FIW database, and doing so by using the existing
labels for each family as side information to guide our semi-
supervised clustering method. We wish to maximize the
number of labeled faces available to facilitate the clustering
in order to generate label proposals. For this, we use the
existing FIW labeled faces and the text metadata of the unla-
beled data to automatically tag faces using an iterative pro-
cess governed by both visual and contextual evidence.

TABLE 2
Family-based Characteristics and Counts

Dataset No. No. No. Age Family

Family People Faces Varies Trees
CornellKin [1] 150 300 300 x x
UBKinFace [16],[29] 200 400 600 v x
KFW-I [30] x 533 1,066 x x
KFW-II [30] x 1,000 2,000 x x
TSKinFace [12] 787 2,589 x v v
Family101 [7] 101 607 14,816 v v
FIW [27] 1,000 10,676 30,725 v v

As discussed in Section 5.4, our method consistently improves
with increasing amounts of side information.

3 FAMILIES IN THE WILD (FIW) DATABASE

We describe FIW by first reviewing the prior version and
old labeling scheme [27], and then introducing the proposed
semi-automatic labeling process and Finally, we compare
the two.

3.1 Existing FIW

Our goal for FIW was to collect about 10 family photos for
1,000 unique families and support with 2 types ground-
truth labels, photo-level (i.e., who and where in the image)
and family-level (i.e., all members and the relationships
between them). Fig. 4 depicts the 2 label types. FIW was
organized as follows: each family was assigned a unique ID
(i.e.,, FID), and pictures collected were also assigned a
unique ID (i.e., PID). Finally, members added were assigned
their own unique ID (i.e., MID). For instance, F1D; — MID,
in PID; refers to the first member of the first family in the
first photo collected. The order of IDs was arbitrary, as
assignments were made in the order that the family, mem-
ber, and photo were added. Before introducing the new and
improved semi-automatic process, we briefly review the
process used initially in [27], which involved 3 steps: (1)
Data Collection, (2) Data Labeling, and (3) Data Parsing.

For Data Collection, a team of 8 students from different
parts of the world, and with vast knowledge of famous per-
sons, compiled a list of families with a primary focus on
their place of origin (i.e., an attempt to compile a diverse
family list). Table 3 lists the ethnicity distributions of the
1,000 families. Note that this is not the exact distribution, as
each family was counted once according to the root member
for which the search was based (i.e., not per member, but
per family). For instance, for Spielberg’s family we consider
just Stephen. Future work could entail adding more families
from underrepresented ethnic groups, as the distribution
still favors Caucasians.

For Data Preparation, we built a labeling tool to guide the
process of generating the two label types. Labelers would
work through all family photos on a family-by-family basis,

TABLE 3
Ethnicity distribution of FIW. Mix families have > 1 Ethnicities at
reference node (e.g., Bruce (Asian) and Linda (Caucasian) Lee)

Mix
6.0%

Caucasian Spanish/Latino Asian African/AA Arabic
64% 10.7% 91% 8.2% 2.0%
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specifying who was in each photo by clicking member faces
and choosing their names from a drop-down menu. Names,
genders, and relationships for members were only entered
on the first instance in an image-once added to the
family the labelers just selected their names each time they
appeared in a photo.

For Data Parsing, all family photos were detected using
classic HOG features trained on top of a linear classifier using
image pyramids and sliding windows via DLIB [49]. Faces
were cropped and normalized as done in [50], and then
resized to 224 x 224. Finally, the structure of the database was
organized into a hierarchy of directories, FID—MID—Face-ID
(i.e., 1,000 folders, F0001-F'1000, containing family labels and
folders for MIDs with face samples of that member).

Even though it only took a small team to label 10,676
family photos and 1,000 families, the process relied heavily
on human input. Plus, in the end, many families were not
properly represented (i.e., either too few members, face
samples, or family photos). Thus, we aim to reduce the
manual labor and overall time requirements to add addi-
tional data provided various amounts of labels existed
for each (i.e.,, 61 existing families and 4 replacement).
We added replacement families (i.e., newly added families)
to make up for cases of overlapping families or an insuffi-
cient online presence when searching for photos (i.e., unable
to locate family photos for 2 of the under-represented fami-
lies). Before we propose the semi-automatic labeling model,
we first review the two benchmarks included in this work,
along with the related statistics of each. We then present the
new labeling process that enabled us to add additional data
with far less manual labor and in just a fraction of the time.

3.2 Data Preparation

Due to the nature of the label structure, FIW can serve as a
resource for various types of vision tasks. For this, we
benchmark the two popular tracks, kinship verification and
family classification. Next, we introduce both of these tasks
and the means of preparing the data.
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3.2.1 Kinship Verification

Kinship verification aims to determine whether two faces are
blood relatives (i.e., kin or non-kin). Prior research mainly
focused on parent-child pairs (i.e., father-daughter (F-D),
father-son (F-S), mother-daughter (M-D), and mother-son
(M-S)); some considered sibling pairs (i.e., brother-brother
(B-B), sister-sister (S-S), and brother-sister/mixed gender
siblings (SIBS)). However, research in both psychology and
computer vision revealed that different kin relations render
different familial features, which motivated researchers to
model different relationship types independently. With the
existing image datasets used for kinship verification limited
to, at most, 1,000 faces and typically only 4 relationship
types, we believe such minimal data leads to overfitting and,
hence, models that do not generalize well to unseen data cap-
tured in the wild. FIW currently supports 11 relationship
types (see Fig. 2), 4 being introduced to the research commu-
nity for the first-time (i.e., grandparent-grandchild) and, most
importantly, each category contains many more pairs—
418,000 face pairs in [27] has increased to 656,954 after
extending FIW via the proposed semi-supervised approach.

The 11 relationship types provide a more accurate repre-
sentation for real-world scenarios. As mentioned, FIW was
structured such that the labels can be parsed for different
types of tasks and experiments, and additional kinship
types can easily be inferred.

3.2.2 Family Classification

Family classification aims to determine the family an
unknown subject belongs to. Families are modeled using the
faces of all but one family member, with the member left out
used for testing. This one-to-many classification problem is a
challenging problem that gets more challenging with more
families. This is because families contain large intra-class
variations that typically fool the feature extractors and classi-
fiers, and each additional family further adds to the complex-
ity of the problem. Additionally, and like conventional facial
recognition, when the target is unconstrained faces in the
wild [48] (e.g., the variation in pose, illumination, expression,
etc.), the problem continues to become more difficult. In [27],
the experiment included only 316 families (i.e., families with
5+ members). In this extended version, we now can include
524 families with the added data. We next present the pro-
cess followed to extend FIW.

3.3 Extending FIW

The proposed semi-supervised model was used to generate
label proposals, using existing and newly labeled data as
side information for clustering—More side information con-
sistently yields better performance (see Section 5.4 & Fig. 7).
Thus, we set out to maximize the amount of side informa-
tion (i.e., labeled faces) by inferring labels with high confi-
dence by aligning faces and names from the unlabeled
photos and metadata. Additionally, we modeled labeled
data to discriminate between different family members in a
photo. A single family was processed at a time to reduce
both the search and label spaces. We aimed to discover
labels using evidence from multiple modalities (i.e., visual
and contextual). This increased the amount of side informa-
tion for clustering, and also the sample count modeled and
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Fig. 5. Semi-automatic labeling pipeline. Data Collection. Photos and text metadata were collected for underrepresented families in FIW and
assigned unique IDs (i.e., PIDs). Each new member requires at least 1 profile picture (e.g., Brandon in PID;) to add to known labels. Data Prepara-
tion. With the existing FIW labels, we next aim to increase the amount, both in labeled faces and member labels, using multiple modalities— names in
metadata and scores of SVMs were used to automatically label some unlabeled data— face-name pairs were assumed labeled for cases of high con-
fidence. Starting from profile pictures (i.e., 1 face, 1 name) and working towards less trivial scenarios (e.g., 3 faces and 2 names, with 2 faces from 1
member at different ages, like in PID;). This step adds to the amount of side information used for clustering. Label Generation. Label proposals for
remaining unlabeled faces were generated using the proposed semi-supervised clustering model that leverages labeled data as side information to
better guide the process. Label Validation. A GUI designed to validate clusters and ensure clusters matched the proper labels.

used to labels more faces. Resulting clusters were then set as
ground truth upon human verification in Step 4.

We demonstrate the effectiveness of the new labeling
scheme by comparing the number of user inputs (i.e., mouse
clicks and keystrokes) and overall time with the process fol-
lowed in [27]. It took just a few inputs and a few minutes on
average per family, opposed to hundreds of inputs and sev-
eral minutes to over an hour (see Table 2).

We next explain the improved multi-modal scheme
made-up of 4 steps: (1) Data Collection, (2) Data Preparation,
(3) Label Generation, and (4) Label Validation. The goal of (1)
and (2) is to gather and increase the amount of side informa-
tion available for (3), while (4) is to ensure correct labels for
all new data. In other words, we set out to increase the
labeled sample pool (i.e., side information) by inferring
labels for unlabeled faces, which adds to the set of training
exemplars. The faces that were still unlabeled in (3) were
clustered using all labels as side information. All newly
added data is then verified by a human. The process is illus-
trated in Fig. 5, which we next describe step-by-step.

3.3.1 Step 1: Data Collection

The goal was to add data to under-represented families (i.e.,
families with few members, faces, or family photos). There
were 65 families extended in total, with 1 family replaced
due to limited available data and 3 merged together to
remove overlaps. For instance, Catherine, Duchess of Cam-
bridge, and her immediate family merged with the Royal
family since she shares 2 kids with Prince William. Many
new labels and relationships resulted from this merge alone
(i.e., the Royal family grew from 29 to 38 members). See
Fig. 3 and Table 3 for FIW statistics.

In preparation of Step 2, we set 2 requirements for the
data collection: (1) rich text metadata describing subjects in
each photo and (2) 1 profile photo per new member. Profile

photos enabled label expansion for each new members (i.e.,
single faces and single names align with higher confidence).

3.3.2 Step 2: Data Preparation

The goal here was to maximize the amount of side informa-
tion available for clustering in Step 3. Thus, we took advantage
of both labeled (i.e., faces & names) and unlabeled data (i.e.,
detected faces & text metadata) to automatically infer labels
for many unlabeled faces (see Data Preparation in Fig. 5). We
next describe each component involved in this step.

Text metadata (i.e., image captions) were collected with
for all photos in Step 1. With this, a list of names for each
family was generated via a Name Entity Recognition (NER)
classifier [52]. Then, a Look-Up-Table (LUT) of candidate
names for each member was generated—i.e., keys as mem-
ber IDs (MIDs) and values as possible references to that
member (e.g., Bruce aka Bruce Lee aka Brandon’s father). One
challenge stemmed from name variations (e.g., a person
legally named Joseph might be called Joe); additionally, there
were name titles (e.g., Queen Elizabeth II might be called Eliz-
abeth II, Elizabeth, or, in older photos, Princess Elizabeth).
Additionally, nicknames posed additional challenges (e.g.,
Robert Gronkowski, commonly referred to by his nickname
Gronk). To address this, a LUT with detected references for
each subject was first compiled, and then further aug-
mented with additional tags (e.g., adding titles and sur-
names). LUTs were later referenced to find evidence in the
text metadata of a member’s presence in a photo.

New MIDs found in profile photos (e.g., PID; in
Fig. 5)—when processing a family, each image that has a
single face detected and just one name in its metadata
was considered a profile photo. Profile photos were proc-
essed first. The name detected in the metadata was com-
pared to all names for members stored in the LUTs. If
there were no matches, the subject was then added as a
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TABLE 4
Previous and New (bold) Labeling Processes Summarized by Required Inputs (Keyboard + Mouse Clicks) and Time

Bruce Lee Michael Jordan John Malone CraigMccaw Marco Reus British Royal Michael Jackson Total
Inputs (count) 551 97 153 178 35 1,838 1,272 4,124
Inputs (count) 12 6 10 15 7 21 24 95
Time (h:m:s) 0:15:08 0:5:31 0:5:18 0:6:16 0:4:24 1:25:23 0:44:52 2:46:52
Time (h:m:s) 0:1:11 0:0:31 0:1:05 0:0:56 0:0:31 0:6:44 0:7:13 0:18:11

new member in that family. A LUT of names was then
generated for each new member, and the name of highest
frequency (i.e., number of detections in all metadata)
recorded as the name corresponding to their assigned
MID (e.g., MIDg for the sixth member).

Unlabeled and labeled faces were encoded as 4, 096D features
from the fcr-layer of the pre-trained VGG-Face CNN
model [36]. One-vs-rest Support Vector Machine (SVM) models
were trained for each member using labeled samples from all
other members of that family as the negatives. Next, profile
photos were processed (i.e., 1 name and 1 face). Names that
match an existing label were added to corresponding MID
data pools, while mismatched names were added as a new
MID with a LUT generated. This shows the benefit of includ-
ing profile pictures for each new member, which makes it so
all family members were known. It is important to note that
SVMs were updated each time a new labeled face was added.

Discovering labels continues in a similar fashion, except
now the SVMs play a more critical role. Now moving on to
images with 2 faces and 2 names, the 2 SVMs of the respec-
tive members were used to classify the 2 faces. Provided
high scores and no conflicts, labels were inferred. Cases
with low confidence or conflicts were skipped, leaving those
faces to be labeled via clustering. Next, photos with 3 faces
and 3 names were processed, then 4 faces and 4 names, and
so on and so fourth. After all one-to-one cases were proc-
essed, photos with a different number of names and faces
were processed. For each photo, only SVMs that correspond
to a LUT with matching names were used. Thus, justifying
a requirement of Step 1—collect rich metadata in terms of
specifying members present in photos.

It should also be noted that some families benefited far
more than others in this process. Nonetheless, roughly 25
percent of the 2,973 added faces were correctly labeled by
this simple multi-modal process.

3.3.3 Step 3: Label Generation

Label proposals were generated for unlabeled faces using
the proposed semi-supervised clustering method. To get
the most out of our model we automatically labeled addi-
tional data in Step 2, while identifying all new members
being added to each family. Hence, the number of members
(i.e., k) was known for each family.

See Section 4 for details (i.e. objective function and
solution).

3.3.4 Step 4: Label Validation

Finally, clusters (i.e., labels) were validated by a human.
This was a three-part process: assign an MID to each cluster;
validate each cluster, which was displayed in a grid of faces
in the order of confidence score; specify gender and

relationships of newly added members. As shown in Fig. 5,
a JAVA interface was designed to generate ground-truth for
new data with just a few clicks of the mouse and minimal
time per family. The inputs were cluster assignments for a
family, with faces listed in order of confidence (i.e., cosine
distance from centroid). MIDs were assigned in Step 2 (i.e.,
inferred from text, SVM scores, or both), which must also be
validated. The outputs were labels for each PID and an
updated relationship matrix (Fig. 4).

3.3.5 Discussion

Seven families of various sizes were used to compare the
old [27] and proposed labeling schemes-old scheme took
4,124 inputs in about 2.75 hours, and just 95 inputs in about
18.1 minutes via the new (see Table 4). Collecting and labeling
the data for the extended FIW was done by a single person in
days; it initially took a small team several months with the old
scheme. Thus, demonstrating a significant savings in manual
labor and time (note that greater amounts of data was origi-
nally collected, however, relative savings in time and manual
labor clearly yields from process used in this extended ver-
sion). One future direction is to use the proposed to extend
FIW with family videos. It can also be used to further extend
existing famiies to extend the number of families, which, if on
the order of thousands or more, then automating Step 1 could
reduce savings (i.e., web scrape for family information (e.g.,
Wiki) and photos (e.g., Google, Bing, etc.)).

4 SEMI-SUPERVISED FACE CLUSTERING

Labeling data is typically a labor intensive and financially
expensive task required for related problems. We aim to
accelerate the process leveraging labeled data. We now
demonstrate the novel semi-supervised clustering algo-
rithm proposed for labeling. Let X = z;, be the data matrix
with n instances and m features, and S be the n’ x K’ matrix
used as side information matrix, with n’ labeled samples
from K’ classes (i.e. families). Our goal was to make use S to
guide the K’ classes to K, where K’ < K.

4.1 Objective Function

Inspired by our previous work [43], [53], a partition level
constraint is used to make the learnt partition agree with
partial human labels as much as possible. To demonstrate
the effectiveness of our labeling mode, K-means with cosine
similarity is employed as the core clustering method to han-
dle high-dimensional data due to its high efficiency and
robustness. The following is our objective function,

K
min Y~ " fuos(@i,mi) + AUL(S, H @ 5), e)

k=1 x;€Cy,
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where f.,s is the cosine similarity, H is the final partition,
Hg=H ® S is part of H with instances also in the S, my, is
the centroid of Cj, U, is the renowned Categorical Utility
Function [54] and lambda is the trade-off parameter.

To better understand the last term in Eq. (1), we give
the detailed calculation of U.. Given two partltlons Sand Hg
containing K’ and K clusters, respectively. Let nk]) denote the
number of data objects belonging to both Cluster C’ Jin S and

o =Y n

kj j ’
1<]<K’ 1<k<K. Letpkj —nk] /n pH—nH/n and
p(+ ]> =n! b %) /n/. We then have a normalized contingency matrix
(NCM), based on which a wide range of utility functions can
be accordingly defined. For instance, the widely used category

utility function can be computed as follows:

cluster C; in Hg, nj. 7ZK1n and n

UC(HSa

K pgc
Zpk+z(pf> Z(ﬂ. )

It is worthy to note that U, measures the similarity of two
partitions, rather than two instances. The larger value of U,
indicates the higher similarity.

4.2 Solution

We notice that the first term in Eq. (1) is the standard K-
means with cosine similarity. Could we still apply K-means
optimization to solve the problem in Eq. (1)? The answer is
yes! Due to our previous work [55], we provide a new
insight of U, by the following lemma.

Lemma 1. Given a fixed partition S, we have
U.(Hs,S) = —||S — HsG|[} + constant, 3)

where G is the centroid matrix of S according to Hg.

By the above lemma, the second term in Eq. (1) can also
be transformed into a K-means problem with squared
euclidean distance. Then a K-means-like algorithm can be
used on the augmented matrix with modified distance func-
tion and centroid update rule for the final partition.

First an augmented matrix D is introduced as follows:

C[Xxs ST . [ X
=[5 5w =[] @

where d; 1s the ith row of D, which has of two parts, df and

) (e, d = (di1,...,dig,) presents the feature space and
dEQ) = (didp+1,---,d; derK/) denotes the label space). Zeros
in D are the artificial elements, rather than the true values
so that all zeros contribute to the computation of the dis-
tance and centroids, which inevitably interfere the cluster
structure. To make the zeros in D not involved in the calcu-
lation, we give the new update rule for the centroids of D.
Let m; = (mf), mk ) be the kth centroid C;, of D, we modify
the computation of centroids as follows:

2)
o Zd,‘ eCk. dE

(1)
(1 _ > diec, b @ _
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(5)
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with the distance function is also adjusted as

Feos(@" )+ 1(d; € 8) frgr(d?,mi?),  (6)
where 1 returns 1 if the condition is satisfied, otherwise 0.

The correctness and convergence of the modified K-
means is similar to one in [43].

f(diymi) =

5 [EXPERIMENTS

We conduct the following experiments: benchmark kinship
verification and family classification; evaluate the proposed
semi-supervised clustering method; fine-tune CNNs using
FIW and evaluate on KinWild I & II (i.e., transfer-learning);
measure human performance on kinship verification and
compare to top scoring algorithms.

The subsequent sections are organized as follows. First,
we review the visual features, metric learning methods, and
deep learning that is common in all experiments. Then, we
dive into the experiments mentioned above. We introduce
each independently, but with the same structure: experi-
mental settings, experiment-specific training philosophy,
and then the results and analysis.

5.1 Experimental Setting

For the sake of organization, all low-level features and met-
ric learning approaches used throughout are listed and
described in this section. Most are in two or more experi-
ments, however, even those used for verification, for exam-
ple, are still treated as common information, and thus is
described alongside other items of preliminary information.
Following concepts pertaining to “shallow” vision method-
ology, we review specifications of the pre-trained CNNs
used as off-the-shelf feature extractors.

5.1.1 Feature Representations

Detected and aligned faces were normalized and encoded
using low-level and CNN-based features. We next describe
the descriptors used in this work—SIFT, LBP, pre-trained
VGG-Face and ResNet CNNs—each having been widely
used in visual kinship and facial recognition problems.

SIFT [66] is amongst the most widely used feature type in
object and face recognition. Here we follow the settings
of [30]: resize images to 64 x 64, then extract features from
16 x 16 blocks with a stride of 8 (i.e., 49 blocks that yields
128 x 49 = 6, 272D face feature).

LBP [56] are renown for its effectiveness in tasks such as
texture analysis and face recognition. We again follow the
settings of [30]: resize images to 64 x 64, divide into 16 x 16
non-overlapping blocks, and use a radius of 2 and sampling
number of 8. Each block is represented as a 256D histo-
grams (i.e., 256 x 16 = 4,096 D face encoding).

VGG-Face [36], a pre-trained CNN with the topology of
VGG-16: made-up of small convolutional kernels (i.e., 3 x 3)
with a convolutional stride of 1 pixel. VGG-Face is trained on

2.6M face images of 2,622 different celebrities. VGG has
worked well on various face databases—97.3 percent in
accuracy on YouTube Faces [67]; 98.95 percent accuracy on
Labeled Faces in the Wild [68]. By removing the top two
layers—softmax and last fully-connected layer (aka fc8-layer
or fecs)—the CNN can be used as an off-the-shelf face encoder
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TABLE 5
Averaged Verification Accuracies (%) for 5-Fold Experiment on FIW with No Family Overlap Between Folds
siblings parent-child grandparent-grandchild
Method B-B S-S SIBS F-D F-S M-D M-S GF-GD GFGS GM-GD GM-GS Acc. + Std.
LBP [56] 55.52 5749 5539 55.05 53.77 55.69 54.65 55.79 55.92 54.00 55.36 55.33 +1.01
SIFT [57] 57.86 59.34 5691 56.37 56.24 55.05 56.45 57.25 55.35 57.29 56.74 56.80 £ 1.17
ResNet-22 [58] 6557 69.65 60.12 5945 60.27 6145 5937 55.37 58.15 59.74 59.70 61.34 £+ 3.81
VGG-Face [36] 69.67 7535 66.52 6425 63.85 6643 62.80 62.06 63.79 57.40 61.64 64.89 + 4.68
+ITML [59] 5715 61.61 5698 58.07 54.73 5726 59.09 62.52 59.60 62.08 59.92 59.00 + 2.44
+LPP [60] 67.61 66.22 71.01 6254 6139 6504 6354 63.50 59.96 60.00 63.53 64.03 £ 3.32
+LMNN [61] 67.11 68.33 66.88 65.66 67.08 68.07 66.16 61.90 60.44 63.68 60.15 65.04 £+ 3.00
+GmDAE [62] 68.05 68.55 6733 6653 6830 68.15 66.71 62.10 63.93 63.84 63.10 66.05 +2.36
+DLML [63] 68.03 68.87 6797 6596 68.00 6851 6721 62.90 63.96 63.11 63.55 66.19 £ 2.36
+mDML [41] 69.10 70.15 6811 6790 6624 7039 6740 65.20 66.78 63.11 63.45 67.07 £2.44
ResNet+CF [64] 69.88 69.54 6954 68.15 67.73 71.09 68.63 66.37 66.45 64.81 64.39 67.87 £2.15
SphereFace [65] 71.94 77.30 70.23 69.25 68.50 71.81 69.49 66.07 66.36 64.58 65.40 69.18 + 3.68

[69]. Thus, models were trained on an auxiliary resource and
used on the target data. We extracted face features from fc7-
layer (i.e., 4,096 D).

ResNet-22 [58] is a 22-layer residual CNN trained on
CASIA-Webface [47]. ResNet-22 has a different network
topology than VGG (i.e., more layers made possible via
skipping connections in residual blocks to ensure that the
signal stays intact by superimposing an identity tensor).
Faces were fed through to layer fc; (512D encoding).

5.1.2 Metric Learning

Metric learning is commonly used and, sometimes,
designed for kinship problems. Four metric learning and
graph embedding methods used previously for face-based
problems are include: Information theoretic metric learning
(ITML) [59], Discriminative Low-rank Metric Learning
(DLML) [63], Locality Preserving Projections (LPP) [60], and
Large Margin Nearest Neighbor (LMNN) [61].

5.1.3 Deep Learning

Fine-Tuned CNNs. Centerface (CF) [58] loss enhances the dis-
criminative power of deeply learned features by adding a
supervision signal to reduce the intra-class variations.
SphereFace uses an angular softmax loss, and has most
recently claimed state-of-the-art in facial recognition [65].
We fine-tune both these CNNs on FIW.

Additionally, we include two state-of-the-art methods
based on autoencoders (AE), graph regularized marginal-
ized Stacked AE (GmDAE) [62], and marginalized denois-
ing AE based metric learning (mDML) [41].

5.2 Kinship Verification

Kinship verification is a binary classification problem (.e.,
true or false, aka kin or non-kin, respectfully). It is the one-to-
one view of kinship recognition, which is explained next.

5.2.1 Experimental Setting

The protocol we followed is conventional in face-based
tasks: 5-fold cross validation with no family-overlap
between folds. There are 11 relationship types evaluated
(statistics and types shown in Table 1).

For each pair type, we added negative (i.e., non-kin) pairs
to the 5-folds—we randomly mismatched pairs in each fold
until the number of negative and positive pairs are the same

in each fold (i.e., negative pairs are added at random until it
makes up 50 percent of the respective fold). Thus, the total
number of positive and negative labels are equivalent.

For this task we included each feature, metric learning
approach, and deep learning model listed above. We then
fine-tuned the pre-trained CNN models on the FIW dataset,
which is described in detail in the next section. To compare
features, we computed cosine similarity between each pair,
which was then compared to a threshold to classify each
pair as either kin or non-kin.

Verification accuracy (i.e., average of 5-folds) and receiver
operating characteristic (ROC) curves were used to evaluate.

5.2.2 Training Philosophy

For ResNet-22 + CF, we fine-tuned the Centerface model on
our FIW data. Training was done using four Titan X GPUs
with a batch size of 256. The learning rate was initially set to
0.01, then drops to 0.001 and 0.0001 at the 800 and 1200 iter-
ations, respectively. Training was complete after 1,600
iterations. The weight decay was set to 0.0005. For Sphere-
Face [65], the settings are similar to ResNet-22+CF (.e.,
same batchsize, learning rate, weight decay, and number of
iterations), and with the angular margin set to 4.

5.2.3 Results

As listed Table 5, siblings pairs types tended to score the
highest, followed by parent-child types, and then grandpar-
ent-grandchild. Thus, the wider the generational gap, the
wider between appearances of faces.

SphereFace, which was fine-tuned on FIW, outperformed
other benchmarks with an average accuracy of 69.18 percent,
which is 1.31 and 2.11 percent better than ResNet-22+CF and
mDML, respectively, which were top the scoring methods
prior to the recent release of SphereFace. Also, out of the pre-
trained CNNs, VGG-Face scored 3.55 percent higher than
ResNet-22, and both outperformed the low-level features (i.e.,
LBP & SIFT). From such, encodings from VGG-Face were
used as features for the metric learning and AE methods.
Besides LMNN and DLML, which improved score by 0.15
and 1.30 percent, the other metric learning methods actually
worsened the performance of the descriptors extracted from
the pre-trained VGG-Face CNN. This infers that faces
encoded via VGG-Face are more discriminative when used
off-the-shelf than when certain metrics are learned on top.
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Fig. 6. Relationship type specific ROC curves. The plots show that the SphereFace CNN trained on FIW as the best benchmark.

We show a significant boost in performance when fine-
tuning CNNs on FIW data—all features from CNNs outper-
form the conventional shallow methods. The results show
that the deep learning models better encode the complex
representation needed to discriminate between kin/non-kin
(see Fig. 6). An improvement to these benchmarks, perhaps
via a deep network designed specifically for this task, is cer-
tainly a direction for future work.

5.3 Family Classification

Family classification is a one-fo-many problem. The goal is to
determine which family an unseen subject came from. In
other words, a set of families with a missing member to the
model is provided. Then, the missing (i.e., unseen) members
get classified as being from one of the families (i.e., closed
form, as we currently assume that all members at test time
belongs to one of the families modeled during training). We
next review some details for this task.

5.3.1 Experimental Setting

Data from 564 families by leaving a different single member
out in each fold for testing, while data from all the other
members were used for training (i.e., leave-one-out w.r.t.
family members). Families with at least 5 members were
used. Thus, the data was split into 5-folds with no family
overlap between folds (i.e., a minimum of 4 family members
for training and 1 for testing). Each fold contained roughly
2,700 images—about that many faces used to test each split,
while about the rest, about 12,800 faces, were used for train-
ing (i.e., a total of 13,420 images).

5.3.2 Training Philosophy

VGG-Face and ResNet-22 CNNs were fine-tuned on FIW by
replacing the loss layers of the pre-trained CNNs with a
softmax loss to predict the 564 family classes. There were a
few differences: VGG-16 used a fixed learning rate of
0.0001, a batch size of 128, and trained for 800 iterations on
one Titan X GPU; ResNet-22 used the same batch size and
number of iterations, but with a larger learning rate 0.001,
which was fixed too. For ResNet-22 + CF and SphereFace,
we followed the same training process used for verification.

5.3.3 Results

We report the accuracy scores for five runs (see Table 6). As
shown, the top-1 accuracy for modeling one-vs-rest linear
SVMs on top of deep VGG-Face features was just 3.04 per-
cent. Then, by replacing the softmax layer to target the num-
ber of families (i.e., 564), and fine-tuning on FIW, the top-1
accuracy was improved (ie., +7.38 to 10.42 percent).
ResNet-22, also fine-tuned by replacing softmax layer,
showed the second to highest accuracy with 14.17 percent,
which outscored the top performing CNN on verification
(i.e., SphereFace). The top performance was with the fine-
tuned ResNet-22 using Centerface loss with 16.18%.

5.4 Proposed Semi-Supervised Clustering

To demonstrate the effectiveness of our semi-supervised
model, we cluster FIW data using various amounts of fam-
ily-level labels as side information. We simulate two settings
for evaluation—all data and just unlabeled data—shown as
bold and dotted lines, respectively (see Fig. 7).
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TABLE 6
Classification Accuracy Scores (%) for 564 Families
Run ID Network(s) Acc.
Run-1 VGG-Face, fc; (4,096D)+one-vs-rest SVMs 3.04

Run-2 VGG-Face, replaced softmax (564D)+fine-tuned 10.42
Run-3 ResNet-22 + softmax (564D) 14.17
Run-4 SphereFace (564D) 13.86
Run-5 ResNet-22 + CF (512D) + softmax (564D) 16.18

5.4.1 Experimental Setting

We used 23,979 faces from 996 family classes. Faces were
encoded using a pre-trained VGG-Face (i.e., fcr). We varied
the ratio of unlabeled data to side information across the
horizontal axis up to 50 percent percent of labeled clusters,
while the y-axis denotes the clustering performance on the
rest of the unlabeled data by NMI. We compared to a pair-
wise constrained clustering method, LCVQE [70], which is
also a K-means-based constrained clustering method and
transforms the partition level side information into ‘must-
link” and ‘cannot-link” constraints. We used K-means as a
baseline (i.e., no side-information).

5.4.2 Results

Fig. 7 shows that more side information consistently boosts
the performance of our method. Even on the unlabeled data,
our method exceeds the K-means baseline, which further vali-
dates the effectiveness of using our method in semi-automatic
labeling scenarios. For LCVQE, the pair-wise constraints
make the cluster structure unpredictable, vulnerable to devi-
ate from the true one, and, thus, perform worse than the base-
line. This shows that imposing hard constraints on side
information, like ‘must-link’ and ‘cannot-link’, may even
damper results. On the contrary, our model leverages the side
information to only only improve when more is added.

5.5 Transfer-Learning Experiment

To demonstrate that FIW generalizes well, we fine-tune the
ResNet CNN model on the entire dataset and assess the
model on a smaller, non-overlapping image collection. Specif-
ically, we achieve state-of-the-art performance using a fine-
tuned CNN to encode faces of the renown KinWild datasets
(see Table 7). For KinWild I, we get a 4 percent increase in per-
formance (i.e., from 78.4 to 82.4 percent). For KinWild II, there
is a 5.6 percent improvement to 86.6 percent.

Notice the boost in accuracy on KinWild-I for F-D com-
pared to other types. Clearly, the small sample size of this
dataset does not properly represent the data distribution of
these pair types, while FIW has noticeably less variance
between scores of parent-child types. Regardless of the high
score of Bar Ilan University (BIU) for type F-D, our fine-
tuned network performs better on all other types, in average
accuracy, and while providing less variation in type-specific
scores. Again, this variance is considered to be caused by a
small sample size, as there is less variation in score for the
parent-child types of FIW.

5.6 Human Performance on FIW

We evaluate human performance on kinship verification
with a subset of FIW pairs. Although others conducted simi-
lar experiments [29], [30], [71], this was done with a larger
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Fig. 7. Results for clustering families using different amounts of side
information. As clearly depicted, our method obtains the top perfor-
mance. Moreover, a distinct increase in NMI for our method is shown
with an increase in the amounts of side information.

sample set made up of more relationship types (Case 1).
Additionally, an evaluation was done for the Boolean case
only (Case 2). We now discuss experimental settings, results,
and analyses of both human experiments.

5.6.1 Experimental Setting

First a list of pairs from FIW with a fair data distribution was
sampled (i.e., different and diverse families with faces of vari-
ous ages). Faces for both positive and negative pairs were
from different photos, with samples used in either just once.
Also, we used no more than one positive and negative sample
per member. We rigorously examined and, in some ways,
handcrafted the list to best control the experiment (i.e.,
replaced face images of poorer quality and famous people).
Thus, efforts were spent to better ensure a fair, unbiased
assessment. We also only used faces to avoid evidence besides
facial appearance influencing human responses [72]. The
same list of images was used for both cases: evaluating pairs
per specific relationship types and for the Boolean case only.

A Google Form was used to collect responses, and the
university and social media networks to recruit volunteers.
Answers were anonymous, although demographic informa-
tion was collected (i.e., ethnicity, country of origin, and
gender). Some volunteers completed both experiments.
However, scores and answers were not revealed. Also, there
was nearly a year between when the two experiments were
conducted, with the Boolean case being a follow-up experi-
ment to analyze how specific relationship types influence
responses. Users chose from predefined responses: Related,
Unrelated, or Skip. Participants were asked to Skip if they
had prior knowledge of one or both subjects, regardless of
knowledge about the relationships (i.e., skip any pair con-
taining an identifiable face). Face pair-types were processed
in no special order: a type-by-type basis for Case 1, then
shuffled at random for Case 2. There was a total of 406 face
pairs sampled from the 11 categories. Specifically, there
were 50 for each sibling type (i.e., 150 in total), 36 for each
parent-child type (i.e., 144 in total), and 28 for each grandpar-
ent-grandchild (i.e., 112 in total).

We had 75 and 110 volunteers for Case 1 and 2, respec-
tively. No training of any sort was provided. In both cases,
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TABLE 7
Verification Accuracy (%) for KinWild | & I1. Notice that Centerface (i.e., ResNet + CF) Trained using FIW
and then Fine-Tuned on Kin-Wild Significantly Outperformed other Methods
KinWild-I KinWild-II
Method FD FS MD MS Avg. FD FS MD MS Avg.
LBP [56] 72.8 79.5 71.7 68.1 73.0 70.8 78.4 69.0 73.2 72.9
SIFT [57] 73.9 81.4 76.4 71.1 75.7 72.2 78.8 82.2 79.6 78.2
NRML (LBP) 81.4 69.8 67.2 72.9 72.8 79.2 71.6 72.2 68.4 72.9
NRML (HOG) 83.7 74.6 71.6 80.0 77.5 80.8 72.8 74.8 70.4 74.7
BIU (LBP) 85.5 76.5 69.9 74.4 76.6 84.2 79.5 76.0 77.0 79.2
BIU (HOG) 86.9 76.5 70.6 79.8 78.4 87.5 80.8 79.8 75.6 81.0
VGG-Face [36] 72.0 77.6 78.3 80.6 77.1 68.8 74.4 76.6 74.6 73.6
ResNet + CF 78.0 83.7 87.0 80.8 82.4 87.7 86.0 86.7 87.4 86.6

the distribution of demographics was approximately 45 per-
cent Caucasian, 35 percent Asian, 10 percent Hispanic/
Latino, 4 percent African American, and 1 percent Arab; 65
percent born in the United States, 30 percent from China,
and 1-2 percent from South America, Middle East, and the
Philippines; 55 percent males and 45 percent Females. No
specific demographics were targeted (i.e., a matter who vol-
unteered on social media, per request of the authors, etc.).
Future work could involve a greater emphasis on demo-
graphics. Here, we hope to lay the framework for such a
study, along with other interesting directions that assessing
human ability to recognize kinship can take.

To compare human performance to benchmarks, we fine-
tune SphereFace CNN on the 764 families that were not
included in face pairs used for the human evaluation.

5.6.2 Results

We assess both human evaluations via box plots (see Fig. 8).

In Case 1, the minimum scores across most categories are
below random (i.e., < %50). In response, we confirmed that
no single person scored lowest in more than 1 of the 9 cate-
gories. Another observation is the distribution of averages,
and its mean of 57.5 percent, had the smallest variance—no
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Fig. 8. Box plot for humans on kinship verification. Case 1: Relationship
type dependent evalations. Case 2: Evaluations with type unspecified.

average below 50 percent or above 67.5 percent, which indi-
cates that no single, or more than a few subjects, dominated
the average scores for the better of the worse. Examining
the pairs where errors were made, three conclusions can be
made: (1) especially for relationship types spanning 1 or
more generations (i.e., parents and grandparents), the com-
mon pairs consistently marked incorrectly are cases were
the face of the expected elder is at a younger age or the face
of the descendant appears older (e.g., grandfather in his
thirties and grandson in his fifties); (2) different ethnic
groups typically made common mistakes on face pairs of
different backgrounds; (3) females often deviated from
males on the mistakes made that are common and across
different ethnic groups—varying females were always the
top scorer, but never the same twice. Apparently, nature
and nurture can play a role in humans’ ability to do kinship
verification as well. There are many interesting directions
for future work (e.g., even larger and more diverse subject
pool, or samples with added semantics like full body views
or entire photos with background context).

For Case 2, we evaluated humans’ ability to recognize
kinship in faces, but, this time, without specifying the rela-
tionship. From this, we were aiming to determine whether
the relationship direction and face age impacted human
responses. Overall, the mean values barely changed, how-
ever, the set of pairs commonly marked wrong did—rela-
tionship direction does seem to worsen human ability to
recognize kinship when the direction of the relationship
contradicts with the age appearance of face pairs; however,
in cases without the age contradiction, knowledge of the
relationship type helps humans to determine whether or
not the face pairs are of that type (i.e., even though the set of
common pairs incorrectly classified changed, the overall
mean did not, as the average fell between 57-58 percent in
both cases). Fig. 9 shows face pairs most commonly classi-
fied correctly or incorrectly considering both cases.

True-Positive False-Positive True-Negative False-Negative

Fig. 9. Samples used for human evaluation. Each column displays pairs
most commonly marked correctly and incorrectly, and in cases for where
the correct answer were true and false. Each of these pairs were prop-
erly classified by the fine-tuned CNN.
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Quantitatively, human performers scored an average of
57.5 percent. This is comparable to hand-crafted features
such as LBP and SIFT, but nearly 15 percent lower than our
fine-tuned CNN (.e., the SphereFace CNN fine-tuned for
this experiment scores 72.15 percent).

6 DiscussiON AND FUTURE WORK

The label structure of FIW are dynamic—labels can be
parsed to use the data in various ways. For instance, siblings
can be split between those who share one and both parents.
Even a slight change in paradigm can drastically change the
study—use both parents for verification (i.e., tri-subject veri-
fication [12]); use child photos only to test with for family
classification. Besides, we still need to improve our visual
recognition capability for kinship in current benchmarks.
Then, it only seems natural to aim for fine-grained categori-
zation of entire family trees (i.e., the ultimate achievement).
On a different note, generative modeling is another interest-
ing research track to pursue (e.g., given a couple and predict
the offspring, or samples of their baby and predict the
baby’s appearance as an adult). Even other pair types (e.g.,
great- and great-great-grandparents, cousins, aunts, uncles,
etc.). Also, the labeling framework introduced in this work
could be used to add video data to the families of FIW,
which can be served as a resource for template- based
search and retrieval, or even consider emotional responses
and facial expressions of family members.

We expect that as researchers advance this problem, FIW
and its uses too will advance, and especially when con-
sidering the potential for interdisciplinary collaborations—
Whether nature-based studies, generative or predictive
modeling, or security-based. We hope FIW inspires new
types of problems, and anticipate the list of uses to only
grow when FIW is in the hands of researchers worldwide.
In the end, the aim here is to attract more experts to the
problem of kinship recognition.

7 CONCLUSION

Families In the Wild is the first large-scale dataset available
for visual kinship recognition. We annotated complex hier-
archical relationships with only a small team in a fast and
efficient manner—providing the largest labeled collection of
family photos to-date. FIW was structured to support multi-
ple tasks with its dynamic label structure. We provided
several benchmarks for kinship verification and family clas-
sification. Pre-trained CNNs were used as off-the-shelf face
encoders, which outperformed conventional methods.
Results for both tasks were further improved by fine-tuning
the CNN models on FIW. We measured human observers
and compared their performance to the machine vision
algorithms, showing that CNN models already surpass
humans in recognizing kinship.

The size of FIW, along with the labels for 1,000 complex
family trees, makes it difficult to pinpoint the exact direc-
tions FIW will lead. Improving upon the benchmarks is one
route, which is the focus of past, current, and future data
challenges based on FIW. Also, additional task evaluations
(e.g., search & retrieval and tri-subject), along with cross-
discipline studies (e.g., nature-based and human percep-
tion) are also promising directions.
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