
PRESENTS

Fuzzing integration for Vitess
In collaboration with the Vitess maintainers and The Linux Foundation

Authors
Adam Korczynski <adam@adalogics.com>
David Korczynski <david@adalogics.com>
Date: 14th May, 2021

This report is licensed under Creative Commons 4.0 (CC BY 4.0)

1

mailto:adam@adalogics.com
mailto:david@adalogics.com

Executive summary
This report details an engagement by Ada Logics focused on improving the fuzzing

infrastructure of Vitess. In this engagement we built upon earlier fuzzing of Vitess efforts

done by Ada Logics by developing more fuzzers that target critical parts of Vitess. The

project was stretched between March and April 2021, and the reason an Ada Logics fuzzing

audits stretches over a longer period of time in comparison to regular security audits is the

need for having the fuzzers run for an extended time as well as iteratively developing the

fuzzers based on their initial results.

Vitess has a large user base of Vitess which includes Slack and Youtube. This makes

security highly relevant for Vitess and thus improving on the Vitess continuous fuzzing efforts

must be considered a priority.

Ada Logics developed a total of 10 fuzzers that together target a significant part of the Vitess

codebase. The engagement resulted in finding 5 bugs and none of these bugs have direct

security implications. This is a testament to the security and robustness of Vitess. The

fuzzers all continuously run following this engagement by way of OSS-Fuzz, which is a free

service by Google that supports running fuzzers for critical open source projects.

Results summarised
10 fuzzers developed for both critical endpoints and critical internals.

All fuzzers and fixes pushed to upstream Vitess repository.

All fuzzers running continuously through OSS-fuzz.

5 bugs found: 3 Fixes deployed, 2 still pending.

2

Engagement process and methodology
The approach to this engagement was to work openly by way of the Vitess Github repository

and contribute to the open source project as a regular open source contributor. In addition to

communicating by way of pull requests and reviews, communication was also done by way

of a private messaging application and we also had several video conference calls

throughout the process. All of the work was done against the latest master branch on the

Vitess public repository (https://github.com/vitessio/vitess) and the scope was specified to be

the source code in https://github.com/vitessio/vitess/tree/master/go. The focus of the

engagement was to look at endpoints of the MySQL and the grpc protocols. All fuzzers were

implemented by way of go-fuzz.

3

https://github.com/vitessio/vitess
https://github.com/vitessio/vitess/tree/master/go
https://github.com/dvyukov/go-fuzz

Overview of fuzzers
In this section we will go through the fuzzers developed for Vitess and in total 10 fuzzers

were contributed to Vitess. The following table gives an overview of the fuzzers:

Fuzzer function name Path Package

FuzzIsDML go/vt/test/fuzzing sqlparser

FuzzNormalizer go/vt/test/fuzzing sqlparser

FuzzTLSServer go/mysql mysql

FuzzHandleNextCommand go/mysql mysql

FuzzReadQueryResults go/mysql mysql

Fuzz go/vt/vtgate/grpcvtgateconn grpcvtgateconn

FuzzEngine go/vt/vtgate/engine engine

Fuzz go/vt/vttablet/tabletserver/vstreamer vstreamer

Fuzz go/vt/test/fuzzing vtctl

FuzzAnalyse go/vt/vtgate/planbuilder planbuilder

We now give a short description of what each of these fuzzers do and, in particular, how they
use the fuzz payload to target Vitess.

FuzzIsDML
Targets sqlparser.IsDML with SQL queries created from the fuzzing payload.

FuzzNormalizer
Targets sqlparser.Normalize with SQL statements created from the fuzzing payload.

FuzzTLSServer
Sets up an AuthServerStatic server and establishes a connection to it. It then attempts to
find crashes by sending packets to the connection and the contents of these packets are
created by way of the fuzzing payload.

FuzzHandleNextCommand
Tests handleNextCommand with a single packet created from the fuzzing payload.

FuzzReadQueryResults
Tests the ComQuery packet wrapper with an SQL query created by the fuzzing payload.

4

grpcvtgateconn.Fuzz
Creates a fake vtgate service, connects to it and executes SQL queries against the
connection. The contents of the SQL queries are created from the fuzzing payload.

FuzzEngine
Targets vtgate/engine by executing queries created by way of the fuzzing payload.

vstreamer.Fuzz
Tests the VStream by building a plan with a filter that has a rule created with the fuzzing
payload.

vtctl.Fuzz
A high-level fuzzer that tests the robustness of the vtctl.

FuzzAnalyse
Creates a query graph with a SELECT statement created from the fuzzing payload.

FuzzTLSServer in-depth
Due to space limitations we will not go in details with all of the different fuzzers. However, to
get insight into how they are implemented, we will go into details with one of them, namely
the mysql.FuzzTLSServer. From a high level this fuzzer sets up a server, establishes a
connection to it and sends packets that are created from the fuzzing payload to the server.

The fuzzer first sets up an AuthServerStatic and create a listener on it:

func FuzzTLSServer(data []byte) int {

th := &fuzzTestHandler{}

authServer := NewAuthServerStatic("", "", 0)

authServer.entries["user1"] = []*AuthServerStaticEntry{{

Password: "password1",

}}

defer authServer.close()

l, err := NewListener("tcp", ":0", authServer, th, 0, 0, false)

if err != nil {

return -1

}

defer l.Close()

The fuzzer then proceeds with getting the host, port and root. The host and the port are
needed to establish a connection to the server, and the root is needed to set up the SSL
certificate.

host, err := os.Hostname()

if err != nil {

return -1

5

}

port := l.Addr().(*net.TCPAddr).Port

root, err := ioutil.TempDir("", "TestTLSServer")

if err != nil {

return -1

}

Next, the creates a signed certificate:

tlstest.CreateCA(root)

tlstest.CreateSignedCert(root, tlstest.CA, "01", "server", host)

tlstest.CreateSignedCert(root, tlstest.CA, "02", "client", "Client Cert")

serverConfig, err := vttls.ServerConfig(

path.Join(root, "server-cert.pem"),

path.Join(root, "server-key.pem"),

path.Join(root, "ca-cert.pem"),

"")

if err != nil {

return -1

}

l.TLSConfig.Store(serverConfig)

And the fuzzer then allows the listener to accept incoming connections:

go l.Accept()

Finally, the fuzzer connects to the server:

connCountByTLSVer.ResetAll()

// Setup the right parameters.

params := &ConnParams{

Host: host,

Port: port,

Uname: "user1",

Pass: "password1",

// SSL flags.

Flags: CapabilityClientSSL,

SslCa: path.Join(root, "ca-cert.pem"),

SslCert: path.Join(root, "client-cert.pem"),

SslKey: path.Join(root, "client-key.pem"),

}

conn, err := Connect(context.Background(), params)

if err != nil {

return -1

}

The fuzer has now completed initialization and has a working connection to a server. It is
now time to send the packets and to do this the fuzzer uses a small helper function that
converts the fuzzing payload to a packet and sends it. This helper function is defined as
follows:

6

func (c *Conn) writeFuzzedPacket(packet []byte) {

c.sequence = 0

data, pos := c.startEphemeralPacketWithHeader(len(packet) + 1)

copy(data[pos:], packet)

_ = c.writeEphemeralPacket()

}

and it is invoked by the fuzzer as follows, where query is the payload from the fuzzer:
conn.writeFuzzedPacket(query)

At this point all the necessary components for the fuzzer have been completed: A server is
created and a connection is established to it and, finally, packets defined by way of the
fuzzing payload are being sent to the connection.
However, because the server initialization is expensive in terms of performance, the fuzzer is
at this point executing approximately 1 iteration per second. To improve the execution speed
we came up with a solution to send 20 packets per fuzz iteration instead of just 1. To achieve
this, we create an array of byte arrays in the beginning of the fuzzer:

totalQueries := 20

var queries [][]byte

c := gofuzzheaders.NewConsumer(data)

for i := 0; i < totalQueries; i++ {

query, err := c.GetBytes()

if err != nil {

return -1

}

if len(query) < 40 {

continue

}

queries = append(queries, query)

}

If err in query, err := c.GetBytes() should not be nil, we abandon the fuzz iteration
and start over. This ensures that we only proceed with the expensive server setup if queries
have a length of 20. At the end of the fuzzer, instead of sending a single packet as we did
above, we send all 20 packets from queries:

for i := 0; i < len(queries); i++ {

conn.writeFuzzedPacket(queries[i])

}

The finished mysql.FuzzTLSServer can be found here.

Issues found
The table below gives an overview of the issues found by the fuzzers. Bug 0, 1 and 2 were
triggered by untrusted input, however they are all recoverable. When encountering these in a
production environment, they will not hurt a particular process but rather show up as an

7

https://github.com/vitessio/vitess/blob/master/go/mysql/mysql_fuzzer.go#L304

error. Bug 4 and 5 were found by fuzzing endpoints with trusted input. As such, none of the
found bugs represent a security risk for Vitess.

ID Public OSS-fuzz report Fix Type of Issue

0 Yes https://bugs.chromi
um.org/p/oss-fuzz/i
ssues/detail?id=323
69

https://github.com/vitess
io/vitess/pull/7925

slice bounds out of
range in sqlparser

1 No https://bugs.chromi
um.org/p/oss-fuzz/i
ssues/detail?id=324
45

https://github.com/vitess
io/vitess/pull/8033

index out of range in
sqltypes

2 No https://bugs.chromi
um.org/p/oss-fuzz/i
ssues/detail?id=317
71

Pending index out of range in
vtctl

3 No https://oss-fuzz.com
/testcase-detail/487
7295513894912

Pending runtime error in
vt/topo/shard

4 Yes https://bugs.chromi
um.org/p/oss-fuzz/i
ssues/detail?id=323
76#c4

https://github.com/vitess
io/vitess/pull/8106

Index out of range in
mysql.(*Conn).han
dleNextCommand

At the time of project termination, 3 of the 5 bugs have been fixed. We will now go into
details with the issue and fix for issue 0,1 and 4.

Issue 0: Slice bounds of range in sqlparser
This bug happens when a “@” in a query would be superseded by EOF. The fix was to check
if a particular token is equal to EOF:

go/vt/sqlparser/token.go:
if tkn.cur() == '`' {

tkn.skip(1)

tID, tBytes = tkn.scanLiteralIdentifier()

} else if tkn.cur() == eofChar {

return LEX_ERROR, ""

} else {

tID, tBytes = tkn.scanIdentifier(true)

}

8

https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32369#c4
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32369#c4
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32369#c4
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32369#c4
https://github.com/vitessio/vitess/pull/7925
https://github.com/vitessio/vitess/pull/7925
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32445
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32445
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32445
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32445
https://github.com/vitessio/vitess/pull/8033
https://github.com/vitessio/vitess/pull/8033
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=31771
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=31771
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=31771
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=31771
https://oss-fuzz.com/testcase-detail/4877295513894912
https://oss-fuzz.com/testcase-detail/4877295513894912
https://oss-fuzz.com/testcase-detail/4877295513894912
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32376#c4
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32376#c4
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32376#c4
https://bugs.chromium.org/p/oss-fuzz/issues/detail?id=32376#c4
https://github.com/vitessio/vitess/pull/8106
https://github.com/vitessio/vitess/pull/8106

Issue 1. index out of range in sqltypes
This bug is triggered due to improper encoding of the character “§” in SQL queries. The
issue was debugged in depth here. It was fixed with:

go/sqltypes/value.go
func BufEncodeStringSQL(buf *strings.Builder, val string) {

buf.WriteByte('\'')

for _, ch := range val {

if ch > 255 {

buf.WriteRune(ch)

continue

}

if encodedChar := SQLEncodeMap[ch]; encodedChar == DontEscape {

buf.WriteByte(byte(ch))

buf.WriteRune(ch)

} else {

4. Index out of range in mysql.(*Conn).handleNextCommand

The panic occurs when a packet of length 0 is successfully passed to mysql.(c *Conn)

handleNextCommand. A fix was introduced to check for 0-length cases:

go/mysql/conn.go
}

return false

}

if len(data) == 0 {

return false

}

switch data[0] {

case ComQuit:

Advice following engagement
The engagement did produce a number of great results but this is not the end. In this section
we go through ideas for future work that can improve the fuzzing infrastructure of Vitess
even further. In short, we present three areas of future work:

1. Fuzz against a complete cluster.
2. Integrating in structure-aware fuzzing.
3. Connect the VTGate handler with the endpoints.
4. Integrate Vitess fuzzing into CIFuzz.

Fuzz against a complete cluster
We briefly investigated the possibilities of running a full cluster during each fuzz iteration, but
this was deemed unachievable within the scope of the engagement. However, we suspect
this to be an interesting avenue for further research as it will stress test a complete Vitess

9

https://github.com/vitessio/vitess/issues/8026

setup in comparison to more targeted fuzzers. A good place to start with this is TestMain
from the VSchema endtoend test.

Integrate structure-aware fuzzing
Vitess accepts untrusted sql queries as input and an interesting avenue for further work is
creating a grammar-aware SQL fuzzer. This could benefit several of the existing fuzzers and
allow them to generate valid SQL queries for each fuzz iteration. This type of fuzzer is
observed in other database projects as well as in Chromium.

Connect the VTGate handler with the endpoints
The preference of the Vitess maintainers in this engagement was to focus on endpoints.
However, when investigating the reach of the endpoints in the currently Vitess build on
OSS-Fuzz, we observe that the endpoints do not reach all internal parts of Vitess. The
reason for this is that the vtgateHandler is not properly utilized and a testhandler is used
instead. Improving on this by allowing the endpoint fuzzers to reach VTGate is a potential
area of significant improvement to the fuzzing suite. It is noteworthy that to mitigate this Ada
Logics wrote fuzzers targeted VTGate, although it would be preferred to have the fuzzers
reach VTGate without through the endpoints.

Integrate Vitess fuzzing into CIFuzz
CIFuzz is a service that enables execution of fuzzer as part of a continuous integration
system. This can assist in catching bugs early in the development process and it can easily
be integrated into projects already part of OSS-Fuzz. For further information on this we refer
to CIFuzz.

Conclusions
In this engagement researchers from Ada Logics carried out an extensive fuzzing audit of

Vitess stretched over March and April 2021. A total of ten fuzzers were developed and these

fuzzers were developed iteratively based on results during the engagement. During the

engagement the fuzzers found five bugs although none of these are security critical. The

fuzzer infrastructure has been integrated into OSS-Fuzz which allows the fuzzers to run

continuously following the ending of the engagement.

Our efforts show that Vitess benefits from fuzzing and that the fuzzers are capable of finding

bugs. However, none of the bugs found in the engagement are critical, and we, therefore,

conclude that the security of Vitess is of very high standard.

We thank the Linux Foundation for sponsoring this work as well as the Vitess maintainers for

the collaboration.

10

https://github.com/vitessio/vitess/blob/master/go/test/endtoend/vtgate/vschema/vschema_test.go
https://www.cockroachlabs.com/blog/sqlsmith-randomized-sql-testing/
https://chromium.googlesource.com/chromium/src/+/refs/heads/main/third_party/sqlite/fuzz/sql_fuzzer.cc
https://github.com/vitessio/vitess/blob/master/go/vt/vtgate/plugin_mysql_server.go#L83
https://google.github.io/oss-fuzz/getting-started/continuous-integration/

