
Vitess
The Complete Story

Percona Live Data Performance Conference
April 20, 2016

Sugu Sougoumarane, Anthony Yeh

http://vitess.io



What is Vitess?
"Flipkart's developers might soon forget what MySQL sharding is, 
thanks to Vitess."

"With Vitess, it is possible to shard your application data out of the box, 
with not more than 10 changed lines of code!"

"After researching many different sharding strategies and tools used by the 
biggest companies we could find, Vitess was the obvious choice."

"We had to come up with something that would leap ahead of the curve 
instead of just fighting fires. When we finally built the initial feature list, it 
was obvious that we were addressing problems that are common to all 
growing organizations."
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Vitess Overview



Encapsulated MySQL Scalability

Built on proven technologies:
● MySQL Replication
● InnoDB

Using proven techniques:
● Shared-nothing shards
● Consistent hashing

And proven at scale:
● Continuously deployed at 

YouTube (1B+ users)
● Thousands of DB servers,

one oncall

Encapsulation means:
● The app is hidden from Vitess

○ Nothing YouTube-specific
● Sharding is hidden from the app

○ Looks like one logical DB
● Complexity is hidden from the 

operator
○ Operator overhead is O(1)

as number of servers grows
● Maintenance is hidden from end 

users
○ No user-visible downtime
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The Secret Vitess Master Plan

Phase 1
YouTube never has to worry about DB scalability again.

Phase 2
Anyone can run MySQL at YouTube scale in the cloud.

Phase 3
More workloads move into the cloud. ($$$)
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What's New

Client Libraries
● Java (JDBC)
● PHP (PDO)
● Python (PEP 0249)
● Go (database/sql)

Query Support
● Cross-shard auto-increment
● Cross-shard joins
● Automatic shard lookup tables

(secondary vindexes)
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Scorecard: Last year's Roadmap slide
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● MySQL 5.6
● Benchmarks (YCSB)
● VTGate V3

○ Automatic lookup tables
○ Cross-shard auto_increment
○ MySQL binary protocol

● High-level automation
○ One-click resharding
○ Rolling (OOB) schema changes

● More documentation
○ Architecture / design
○ How-to guides

● Kubernetes
○ API server proxy for debug access
○ Replication controllers for tablets
○ Cloud plugins for backup/restore

(Google Cloud Storage)
● More client support

○ gRPC
○ PHP

● Long-term
○ Cross-shard transactions (2PC)
○ Cross-shard joins/aggregation



Cluster Architecture



Components
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Topology
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Consistent Hashing
● Keyspace ID: hash of sharding key (e.g. user ID)
● Shard Name: [start]-[end]

○ keyspace_id, [start] and [end] are all byte arrays
○ Compare byte arrays lexicographically (string compare):

■ [start] <= keyspace_id < [end]
○ Leave out [start] or [end] to make that side unbounded
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Shard Name Key Range (assuming 64-bit keyspace IDs)

-80 00 00 00 00 00 00 00 00 - 7F FF FF FF FF FF FF FF

80- 80 00 00 00 00 00 00 00 - FF FF FF FF FF FF FF FF

Bonus Question: What's the first shard name if you want 512 equal shards?

Hint: What's the first key range for 256 shards? What's the midpoint of that range?



Client Libraries



Java

● JDBC-compatible interface
○ Contributed by Flipkart
○ https://github.com/youtube/vitess

Connection conn =

DriverManager.getConnection("jdbc:vitess://vtgate:15991/keyspace", null);

String sql = "select * from test_table where id = ?";

PreparedStatement preparedStatement = conn.prepareStatement(sql);

preparedStatement.setInt(1, 10);

rs = preparedStatement.executeQuery();
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PHP

● PDO-compatible interface
○ Open-sourced by Pixel Federation
○ https://github.com/pixelfederation/vitess-php-pdo

$pdo = new PDO("vitess:dbname=keyspace;host=vtgate;port=15991");

$stmt = $pdo->prepare("SELECT * FROM user WHERE user_id IN (?, ?)");

$result = $stmt->execute([151, 152]);
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Python

● PEP 249-compatible interface
○ https://github.

com/youtube/vitess/blob/master/examples/kubernetes/guestbook

conn = vtgate_client.connect('grpc', 'vtgate:15991', timeout)

cursor = conn.cursor(tablet_type='replica', keyspace='keyspace')

cursor.execute('SELECT message, time_created_ns FROM messages WHERE page=:page 
ORDER BY time_created_ns', {'page': page})

entries = [row[0] for row in cursor.fetchall()]
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Go

● database/sql driver
○ https://godoc.org/github.com/youtube/vitess/go/vt/vitessdriver

db, err := vitessdriver.Open("vtgate:15991", "master", timeout)

tx, err := db.Begin()

_, err := tx.Exec("INSERT INTO test_table (msg) VALUES (?)", "V is for speed")

err := tx.Commit()
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Sharding Demo
vitess.io/getting-started
vitess.io/user-guide/sharding-kubernetes.html



Guestbook

http://vitess.ddns.net
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Kubernetes
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vtctld
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vttablet
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Sharding Information

Schema

CREATE TABLE messages (

  page BIGINT(20) UNSIGNED,

  time_created_ns BIGINT(20) UNSIGNED,

  message VARCHAR(10000),

  PRIMARY KEY (page, time_created_ns)

) ENGINE=InnoDB

VSchema

{

  "Sharded": true,

  "Vindexes": { "hash": {"Type": "hash"} },

  "Tables": {

    "messages": {

      "ColVindexes": [

        {"Col": "page", "Name": "hash"}

      ]

    }

  }

}
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Live Migration
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New Shards Running

Old Shards Running

DB Read Availability

DB Write Availability DB Write Downtime DB Write Availability

< 5 seconds

Old and new shards overlap during migration.



“Snorkeling” by Live Zakinthos, License: (CC BY 2.0)

V3 API Deep Dive Snorkel

https://creativecommons.org/licenses/by/2.0/


Evolution



V0
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28

App

topology

query
shard#

keyranges

VTGate

topo info

VTTablets



V2
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V3
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Game changer

● Drop-in replacement*

● Feel like a unified database
● DB-compliant APIs

○ Third party tools can integrate
● Sharding key can be an afterthought

* mostly
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Concepts



What’s an index

● Enforces constraints
● Lets you scan a subset of the rows
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● An index is a table
● A table can act as an index



Vindexes (Vitess Indexes)

● Analogous to SQL indexes
● Output of a Vindex is one or many keyspace ids
● May be Unique or NonUnique
● A Primary Vindex must be Unique
● A Vindex can be Functional or Lookup
● A Vindex can be user-defined

○ Pluggable sharding scheme
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Index vs Vindex
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SQL Vitess

Row ID (not in MySQL) Keyspace ID

Primary Key Primary Vindex (usually the sharding key)

Secondary index Lookup Table (cross-shard index)

Foreign Key Shared Lookup Table

Auto-inc Sequences

Custom Index (pluggable sharding)



Vindex usage

● Routing: Where should a query be sent
● Sharding: Where should a row be sent

○ No explicit designation of sharding key
○ Works equally well with user-defined vindexes
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What’s a table
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● A SELECT can stand-in for a table
● A database can serve SELECTs
● A database can be treated like a table



Parallels
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Some differences

● Network hops are much more expensive
● Each node is versatile

● Full databases underneath, instead of dumb tables
● Entire queries (or chunks) can be outsourced
● Results can still be combined like a traditional engine
● VTGate is both an engine and a router
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Example
https://github.com/.../examples/demo



Schema
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Queries

● select * from user where user_id=5
● select * from user where user_id in (1, 5)
● select * from music where user_id=5
● select * from music where music_id=2
● select * from music_like where music_id=2
● select * from user
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Joins and subqueries

● Treat databases as tables
● Outsource as much as possible to the databases
● Do only wire-up work in VTGate
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Join queries

● select u.name, m.song from user u join music m on u.user_id=m.user_id 
where user_id=5

● select m.song, u.name from music m join music_like ml on m.
music_id=ml.music_id join user u on ml.listener_id=u.user_id where m.
music_id=2
○ select m.song, ml.listener from music m join music_like ml on m.

music_id=ml.music_id where m.music_id=2
○ select u.name from user u where u.user_id=:ml_listener

● select u1.name, u2.name from user u1 join user u2 on u1.user_id = u2.
fan_id
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Current limitations

● Cross-shard post-processing
● Cross-shard subqueries

● Any work that cannot be outsourced (other than joins)
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Distributed transactions

“If a group of transactional engines provide a certain 
durability guarantee, then it’s possible to extend the same 
guarantee to distributed transactions that span those 
engines”
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Exclusions
● Commit should be non-failable
● No internal errors
● No isolation guarantees



The End…?



Automated Master Election

● Orchestrator
○ by Shlomi Noach (GitHub, formerly Booking.com)
○ github.com/outbrain/orchestrator
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Automated Background Schema Rollout

● For schema changes that are too slow to replicate
● Options

○ pt-online-schema-change
○ https://github.com/square/shift
○ Google MySQL "Pivot"
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Resources
Cloud Native Computing Foundation
cncf.io

Kubernetes
kubernetes.io

Try Vitess
vitess.io/getting-started

Contribute
github.com/youtube/vitess

Contact Us
vitess@googlegroups.com

Get Updates
groups.google.com/d/forum/vitess-announce
blog.vitess.io



Extra Slides



Join example
select a.id, a.a1, b.b1 from a join b on a.n = b.n where a.id = 5
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Finalize plan
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