YouTube Vitess

Anatomy of a Distributed Database on Kubernetes

CoreOS Meetup
January 27,2016

Anthony Yeh, Software Engineer, YouTube

YouQ[[: http://vitess.io/

Outline

= N

Vitess

Kubernetes

Databases on Kubernetes
Vitess on Kubernetes

Vitess

Vitess 1.0

e YouTubeisa MySQL app
e Vitess started in YouTube data centers
o Connection-pooling proxy
e Early adopter of Go (golang.org)
o First commit (in original repo) in 2010
o 2 years before Go 1.0
o Cheap connections, goroutines
e In production at YouTube since 2011

(1] Tube]

golang.org

Renee French
(not pictured)

Google

4

Vitess 1.5

e YouTube moved into Borg!"

©)

Google MySQL

e Adapted Vitess to Borg environment

@)

Dynamically scheduled container
cluster

e Overtime, Vitess evolved within Borg

@)

O O O O

@)

Database protection

Query rewriting/blacklisting
Row-based cache

Shard routing

Cluster management
Monitoring

[1] http://research.google.com/pubs/pub43438.html

(1] Tube]

=

}] [web browsersl

config
file = -
command-line
borgcfg] [tools

_

~

Cell

|

scheduler [

Y

BorgMaster | read/Ul

shard

persistent store
(Paxos)

link shard

d Py —~ pd
Al | £ 1
L T

(oo || ((Bomte 1] || |{ Beret 11|[{[Borger 1
— —

] I - } -
V=) 5]

Google

Growing with YouTube

e YouTube stats!"
o >1Busers
o 400 hrs/min of new videos (24K s/s)
o 80% of views from outside U.S.
e Schema constantly evolving
o Content ID, channel admin, live
streams, video editing, music
e Developed live resharding

[1] youtube.com/yt/press/statistics.html

(1] Tube]

Google

6

Vitess 2.0

Vitess in 2014
e Worked great in YouTube, but

outside...
o Users can't get past build
step

o Custom patched MySQL
o No docs for settingup a
deployment
o Only client is Python
e Along comes Kubernetes
o Like open-source Borg

(1] Tube]

Vitess in 2015

e BYO MySQL 5.6 or MariaDB 10

e Dockerimages

e Out-of-the-box deployment config
o Anywhere Kubernetes runs

(AWS, GCP, rackspacse, ...)
e Step-by-step guides
e C(Clients in Python, PHP, Java, Go
Vitess in 2016...

e Moving toward drop-in MySQL
compatibility (Vindexes, drivers)

Google

Vitess Terminology

[app server

[victid | [[p—]

vitablet

[app server | mysqld

master

[appserver — X | __.__

*F vttablet | vttablet
[batch job]—-"’ { mysqld I mysqld
replicas batch
- > replicas

App ! Vitess

Kubernetes

KU bel’n eteS (k8S) kubernetes.io

An ocean of

e Provides glue for distributed apps user containers

o Dynamic scheduling 4 \

o Declarative deployment config -

o Service discovery o] mmand 'me]]@bmwsem]]

o High-availability replica pools f

o Rolling updates - B},,gMast;f == ““

o Component grouping/metadata i

e Abstracts cloud-platform-specific pieces <

o VM instance creation and config . \«- ‘

2 Elxettworklng config | 't%gij' 59'“ | BE:':‘]' ﬁ”"'[;' M
ernal load balancers = gl)V =

o Persistent storage volumes (PD, EBS) = oo

dynamically onto nodes

(1] Tube] Google 10

Kubernetes Terminology

Node - Physical machine or VM, member of k8s cluster
Container - Docker, rkt

Pod - Scheduling unit (group of containers)

Volume - Storage mounted into pods/containers
Replication Controller - Ensures a pool of N copies of a
pod template.

Service - Discovery + LB Proxy based on Labels.

(1] Tube] Google 11

Databases on Kubernetes

Pets vs. Cattlel"

Your servers might be pets if...

Your servers might be cattle if...

You can log into them by hostname or IP.

You know only that a bunch of them are out there,
somewhere.

You load data onto them and tell them what to do.

They go off and join the herd without being told to.

You try to fix them when they go down.

You wait for others to take over their jobs when
they go down.

Your app knows which servers to send which
queries to.

Your app throws queries over a magic wall and
results appear.

You know when your last master failover was.

You have a monitoring graph of failovers per day.

[1] Noah Slater, blog.engineyard.com/2014/pets-vs-cattle

(1] Tube]

Google

13

Cattle Databases

e Why do we want to run databases in Kubernetes?
o It's how we run them in Google (Borg)
o Resource utilization
o Horizontal scalability
o Cluster management
e Why is it hard?
o Make 1000s of servers look like 1 DB to the app
o Pods are, by design, not durable
o Durability comes only from pools of replicas

(1] Tube] Google 14

Where do you put data in Kubernetes?

e emptyDir e Persistent Volumes

o Local, ephemeral o
e hostPath
o Local, node-specific
e (gcePersistentDisk,
awsElasticBlockStore
o Manually create one
for every pod

O O O O

(1] Tube]

PV :EBS :: node:VM
Pool of PVs

PV Claim (PVC)

PVC : PV : pod: node
Compute and storage
decoupled

Google 15

Pet Set Proposal [1]

Replication Controller Pet Set

e Ensurethere are N e Ensurethere are N
identical copies of this similar copies of this
pod template. pod template, such that:

o Atmost1haslIDO
At most 1 hasID 1

O
o ..
o (atany pointin time)

[1] https://github.com/kubernetes/kubernetes/pull/18016

(1] Tube] Google 16

Vitess on Kubernetes

vitess.io/getting-started

Vitess Terminology Review

[app server

[victid | [[p—]

vitablet

[app server | mysqld

master

[appserver —~_ 1 @ > __._._

*F vttablet | vttablet
[batch job]—-"” { mysqld I mysqld
replicas batch
- > replicas

App ! Vitess

ipaddr=$(hostnane -1)
peer_url="http://$ipaddr:7801"
client_url="htep: //$ipaddr:4801"

etcd (distributed config)

€Xport ETCD_NAMESSHOSTHAME

export ETCD_DATA_DIR=/VL/vtdataroot/etcd-SETCD_NAME
export ETCD_STRICT_RECONFIG_CHECK=Lrue

export ETCD_ADVERTISE CLIENT URLS=$client url
export ETCD_INITIAL_ADVERTISE_PEER_URLS=Speer_url
. ° export ETCD_LISTEN_CLIENT URLS=Sclient url
e Rep lication Controller

if [-d SETCO_DATA_DIR]; then
we've been restarted with an intact datadir
Just run without trying to do any bootstrapping

echo "Resuming with existing data dir: $ETCD_DATA_DIR"
else

This 1s the first run for this member.
If there's already a functioning cluster, join it.
ET C D D I S C OV E RY S RV echo "checking for existing cluster by trying to join..."
— —

if result=s(etcdctl -C http://etcd-{{cell}}:4861 member add SETCD_NAME Speer_url); then
[["Sresult” =~ ETCD_INITIAL_CLUSTER=\"([*\"]*)\"]] && \

EXpOrt ETCD_INITIAL_CLUSTER="${BASH_REMATCH[1]}"
Eexport ETCO_INITIAL_CLUSTER_STATE=existing
echo "Joining existing cluster: SETCD_INITIAL_CLUSTER"
L] L] L] L]
| I I l else
O M ake Idel l ICa | repl ICaS do d I erel I o T s e v e

FIrsSt register with global topo, if we aren't global.
if ["{{cell}}” lobal®]; then
thi d tSet!
hings (needs PetSet!

echo "Registering cell "{{cell}}" with global etcd..."
until etcdctl -C "http://etcd-global:4681" \

set "/vt/cells/{{cell}}" "http://etcd-{{cell}}:4081"; do
echo "[$(date)] waiting for global eted to register cell '{{cell}}'"
sleep 1
L
.
o ervice: etcad-giona
.

done

Use DNS to bootstrap
FIrst wait for the desired number of replicas to show up
° ° .
o -
. . °

echo "Waiting for {{replicas}} replicas in SRV record for etcd-{{cell}}-srv..

until [S{getsrv etcd-server top etcd-{{cell}}-srv | wc -1) -eq {{replicas}} I; do
echo "[$(date)] waiting for {{replicas}} entries in SRV record for etcd-{{cell}}-srv"
sleep 1

done

EXport ETCD_DISCOVERY_SRv=etcd-{{cell}]-srv
echo "Bootstrapping with DNS discovery:®
getsrv etcd-server tep etcd-{{cell}}-srv

fi
fi

github.com/youtube/vitess/tree/master/examples/kubernetes

(1] Tube]

Google 19

victld (admin interface

e Replication Controller
e Service
e kubectl proxy
o Web Ul
e kubectl port-forward
o CLI(gRPC.io)

(1] Tube]

Vitess

55 DASHBOARD
B8 TOPOLOGY BROWSER
= SCHEMA MANAGER

> ROUTING INDEXES

Shard Status

Shard Record £

Keyspace/Shard test keyspace/0

Master Tablet test-100

Tablets (by cell)
TEST

test-100 [master]

Host enisoc.mtv.corp.google.com:15100 Host enisocO.mtv.corp google.com:15101
IP Address 172.2774.9715100 IP Address 172.277497:15101
Seconds Behind Master 0 Seconds Behind Master 0
Health Error None Health Error None
STATUS STATUS
Host ‘enisoc).mtv.corp.google.com:15102
1P Address 172.27.74.97.15102
Seconds Behind Master 0
Health Error None

]

Google 20

vtgate (client entrypoint)

e Replication Controller

e Service
e DNS

conn = vtgatev2.connect ({'vt': []}, timeout)

(1] Tube] Google 21

vttablet (the hard part)

e Pod e emptyDir
o vttablet container o Shared by both
o mysqld container containers
e No RC yet... o It's... an empty dir.
o Containers restart o Where does the data
o But pods don't get come from?
rescheduled e Vitess Backup/Restore

o Pulls latest snapshot
from GCS/NFS

(1] Tube] Google 22

Sneak Peeks

Toward Drop-in Sharding (Vindexes)

e vitess.io/doc/VTGateV3Features
e VTGate parses and understands queries.

def

hashlib.md5 ()
m.update (uint64.pack (user id))

return m.digest () [:8]

cursor = conn.cursor ('test keyspace', 'replica',)
cursor.execute (
'SELECT message FROM messages WHERE user id=%(user id)s ORDER BY time created ns',
{'user id': user id})

return [row[0] for row in cursor.fetchall ()]

(1] Tube] Google 24

Automated Master Election (Orchestrator)

e Orchestrator
o by Shlomi Noach (GitHub, formerly Booking.com)
o github.com/outbrain/orchestrator

Sutbrain

Home ~

5.5.32-log STATEMENT 0 seconds lag

i 00.1: o o | 12700122983 #
5 |
:.I;stzelrog STATEMENT 0 seconds lag 5.5.32-log STATEMENT 0 seconds lag

127.0.0.1:22990 L
5.5.32-log STATEMENT 0 secends lag

(1] Tube] Google 25

Resources

Try Vitess
vitess.io/getting-started
vitess.io/user-guide/sharding-kubernetes.html

Contribute
github.com/youtube/vitess

Contact Us
vitess@googlegroups.com

Get Updates
groups.google.com/d/forum/vitess-announce

Cloud Native Computing Foundation
cncf.io

Kubernetes
kubernetes.io

