
Vitess
The Complete Story

Percona Live Data Performance Conference
April 20, 2016

Sugu Sougoumarane, Anthony Yeh

http://vitess.io

What is Vitess?
"Flipkart's developers might soon forget what MySQL sharding is,
thanks to Vitess."

"With Vitess, it is possible to shard your application data out of the box,
with not more than 10 changed lines of code!"

"After researching many different sharding strategies and tools used by the
biggest companies we could find, Vitess was the obvious choice."

"We had to come up with something that would leap ahead of the curve
instead of just fighting fires. When we finally built the initial feature list, it
was obvious that we were addressing problems that are common to all
growing organizations."

Outline
● Vitess Overview

○ Cluster Architecture
○ Client Libraries
○ Sharding Demo

● V3 API Deep Dive
○ Evolution
○ Concepts
○ Example

Vitess Overview

Encapsulated MySQL Scalability

Built on proven technologies:
● MySQL Replication
● InnoDB

Using proven techniques:
● Shared-nothing shards
● Consistent hashing

And proven at scale:
● Continuously deployed at

YouTube (1B+ users)
● Thousands of DB servers,

one oncall

Encapsulation means:
● The app is hidden from Vitess

○ Nothing YouTube-specific
● Sharding is hidden from the app

○ Looks like one logical DB
● Complexity is hidden from the

operator
○ Operator overhead is O(1)

as number of servers grows
● Maintenance is hidden from end

users
○ No user-visible downtime

5

The Secret Vitess Master Plan

Phase 1
YouTube never has to worry about DB scalability again.

Phase 2
Anyone can run MySQL at YouTube scale in the cloud.

Phase 3
More workloads move into the cloud. ($$$)

6

What's New

Client Libraries
● Java (JDBC)
● PHP (PDO)
● Python (PEP 0249)
● Go (database/sql)

Query Support
● Cross-shard auto-increment
● Cross-shard joins
● Automatic shard lookup tables

(secondary vindexes)

7

Percona Live 2015

Scorecard: Last year's Roadmap slide

8

● MySQL 5.6
● Benchmarks (YCSB)
● VTGate V3

○ Automatic lookup tables
○ Cross-shard auto_increment
○ MySQL binary protocol

● High-level automation
○ One-click resharding
○ Rolling (OOB) schema changes

● More documentation
○ Architecture / design
○ How-to guides

● Kubernetes
○ API server proxy for debug access
○ Replication controllers for tablets
○ Cloud plugins for backup/restore

(Google Cloud Storage)
● More client support

○ gRPC
○ PHP

● Long-term
○ Cross-shard transactions (2PC)
○ Cross-shard joins/aggregation

Cluster Architecture

Components

10

shard

vtgate

app server

app server

app server

mysqld

vttablet

master

vtgate

batch job

Vitess

etcd

mysqld

vttablet

mysqld

vttablet

replicas

mysqld

vttablet

batch
replicas

mysqld

vttablet

vtctld

App

Topology

11

Keyspace

Shard

Tablet

range custom unsharded

Vitess

-80 80- 0 1 0

master

replica

batch

master

replica

batch

master

replica

batch

master

replica

batch

master

replica

batch

Tablet
Tablet

Toposphere

Consistent Hashing
● Keyspace ID: hash of sharding key (e.g. user ID)
● Shard Name: [start]-[end]

○ keyspace_id, [start] and [end] are all byte arrays
○ Compare byte arrays lexicographically (string compare):

■ [start] <= keyspace_id < [end]
○ Leave out [start] or [end] to make that side unbounded

12

Shard Name Key Range (assuming 64-bit keyspace IDs)

-80 00 00 00 00 00 00 00 00 - 7F FF FF FF FF FF FF FF

80- 80 00 00 00 00 00 00 00 - FF FF FF FF FF FF FF FF

Bonus Question: What's the first shard name if you want 512 equal shards?

Hint: What's the first key range for 256 shards? What's the midpoint of that range?

Client Libraries

Java

● JDBC-compatible interface
○ Contributed by Flipkart
○ https://github.com/youtube/vitess

Connection conn =

DriverManager.getConnection("jdbc:vitess://vtgate:15991/keyspace", null);

String sql = "select * from test_table where id = ?";

PreparedStatement preparedStatement = conn.prepareStatement(sql);

preparedStatement.setInt(1, 10);

rs = preparedStatement.executeQuery();

14

https://github.com/youtube/vitess
https://github.com/youtube/vitess

PHP

● PDO-compatible interface
○ Open-sourced by Pixel Federation
○ https://github.com/pixelfederation/vitess-php-pdo

$pdo = new PDO("vitess:dbname=keyspace;host=vtgate;port=15991");

$stmt = $pdo->prepare("SELECT * FROM user WHERE user_id IN (?, ?)");

$result = $stmt->execute([151, 152]);

15

https://github.com/pixelfederation/vitess-php-pdo
https://github.com/pixelfederation/vitess-php-pdo

Python

● PEP 249-compatible interface
○ https://github.

com/youtube/vitess/blob/master/examples/kubernetes/guestbook

conn = vtgate_client.connect('grpc', 'vtgate:15991', timeout)

cursor = conn.cursor(tablet_type='replica', keyspace='keyspace')

cursor.execute('SELECT message, time_created_ns FROM messages WHERE page=:page
ORDER BY time_created_ns', {'page': page})

entries = [row[0] for row in cursor.fetchall()]

16

https://github.com/youtube/vitess/blob/master/examples/kubernetes/guestbook
https://github.com/youtube/vitess/blob/master/examples/kubernetes/guestbook
https://github.com/youtube/vitess/blob/master/examples/kubernetes/guestbook

Go

● database/sql driver
○ https://godoc.org/github.com/youtube/vitess/go/vt/vitessdriver

db, err := vitessdriver.Open("vtgate:15991", "master", timeout)

tx, err := db.Begin()

_, err := tx.Exec("INSERT INTO test_table (msg) VALUES (?)", "V is for speed")

err := tx.Commit()

17

https://godoc.org/github.com/youtube/vitess/go/vt/vitessdriver
https://godoc.org/github.com/youtube/vitess/go/vt/vitessdriver

Sharding Demo
vitess.io/getting-started
vitess.io/user-guide/sharding-kubernetes.html

Guestbook

http://vitess.ddns.net

19

http://vitess.ddns.net
http://vitess.ddns.net

Kubernetes

20

vtctld

21

vttablet

22

Sharding Information

Schema

CREATE TABLE messages (

 page BIGINT(20) UNSIGNED,

 time_created_ns BIGINT(20) UNSIGNED,

 message VARCHAR(10000),

 PRIMARY KEY (page, time_created_ns)

) ENGINE=InnoDB

VSchema

{

 "Sharded": true,

 "Vindexes": { "hash": {"Type": "hash"} },

 "Tables": {

 "messages": {

 "ColVindexes": [

 {"Col": "page", "Name": "hash"}

]

 }

 }

}

23

Live Migration

24

New Shards Running

Old Shards Running

DB Read Availability

DB Write Availability DB Write Downtime DB Write Availability

< 5 seconds

Old and new shards overlap during migration.

“Snorkeling” by Live Zakinthos, License: (CC BY 2.0)

V3 API Deep Dive Snorkel

https://creativecommons.org/licenses/by/2.0/

Evolution

V0

27

App

topology

VTTablets
query

Full topo

V1

28

App

topology

query
shard#

keyranges

VTGate

topo info

VTTablets

V2

29

App

topology

query
keyspace id VTGate

all info

VTTablets

V3

30

App

topology &
vschema

query VTGate VTTablets

Game changer

● Drop-in replacement*

● Feel like a unified database
● DB-compliant APIs

○ Third party tools can integrate
● Sharding key can be an afterthought

* mostly

31

Concepts

What’s an index

● Enforces constraints
● Lets you scan a subset of the rows

33

● An index is a table
● A table can act as an index

Vindexes (Vitess Indexes)

● Analogous to SQL indexes
● Output of a Vindex is one or many keyspace ids
● May be Unique or NonUnique
● A Primary Vindex must be Unique
● A Vindex can be Functional or Lookup
● A Vindex can be user-defined

○ Pluggable sharding scheme

34

Index vs Vindex

35

SQL Vitess

Row ID (not in MySQL) Keyspace ID

Primary Key Primary Vindex (usually the sharding key)

Secondary index Lookup Table (cross-shard index)

Foreign Key Shared Lookup Table

Auto-inc Sequences

Custom Index (pluggable sharding)

Vindex usage

● Routing: Where should a query be sent
● Sharding: Where should a row be sent

○ No explicit designation of sharding key
○ Works equally well with user-defined vindexes

36

What’s a table

37

● A SELECT can stand-in for a table
● A database can serve SELECTs
● A database can be treated like a table

Parallels

38

table

indexCPU

RAM

SQL engine

Constraints
Pointers

Cache

Locking

Scans

Vitess

sharded
database

lookup
database

VTGate

rowcache

Routes

Constraints
Pointers

schema

Plan building

vschema

Plan building

Some differences

● Network hops are much more expensive
● Each node is versatile

● Full databases underneath, instead of dumb tables
● Entire queries (or chunks) can be outsourced
● Results can still be combined like a traditional engine
● VTGate is both an engine and a router

39

Example
https://github.com/.../examples/demo

Schema

41

user
user_id

music
user_id
music_id

music_like
music_id
listener_id

user_idx
hash

music_id
lookup

music_lookup
music_id
keyspace_id

VSchema

Unsharded

music_like
music_id
listener_id
user_id

Queries

● select * from user where user_id=5
● select * from user where user_id in (1, 5)
● select * from music where user_id=5
● select * from music where music_id=2
● select * from music_like where music_id=2
● select * from user

42

Joins and subqueries

● Treat databases as tables
● Outsource as much as possible to the databases
● Do only wire-up work in VTGate

43

Join queries

● select u.name, m.song from user u join music m on u.user_id=m.user_id
where user_id=5

● select m.song, u.name from music m join music_like ml on m.
music_id=ml.music_id join user u on ml.listener_id=u.user_id where m.
music_id=2
○ select m.song, ml.listener from music m join music_like ml on m.

music_id=ml.music_id where m.music_id=2
○ select u.name from user u where u.user_id=:ml_listener

● select u1.name, u2.name from user u1 join user u2 on u1.user_id = u2.
fan_id

44

Current limitations

● Cross-shard post-processing
● Cross-shard subqueries

● Any work that cannot be outsourced (other than joins)

45

Distributed transactions

“If a group of transactional engines provide a certain
durability guarantee, then it’s possible to extend the same
guarantee to distributed transactions that span those
engines”

46

Exclusions
● Commit should be non-failable
● No internal errors
● No isolation guarantees

The End…?

Automated Master Election

● Orchestrator
○ by Shlomi Noach (GitHub, formerly Booking.com)
○ github.com/outbrain/orchestrator

48

Automated Background Schema Rollout

● For schema changes that are too slow to replicate
● Options

○ pt-online-schema-change
○ https://github.com/square/shift
○ Google MySQL "Pivot"

49

https://github.com/square/shift
https://github.com/square/shift

Resources
Cloud Native Computing Foundation
cncf.io

Kubernetes
kubernetes.io

Try Vitess
vitess.io/getting-started

Contribute
github.com/youtube/vitess

Contact Us
vitess@googlegroups.com

Get Updates
groups.google.com/d/forum/vitess-announce
blog.vitess.io

Extra Slides

Join example
select a.id, a.a1, b.b1 from a join b on a.n = b.n where a.id = 5

52

Select

J

a b

a.n = b.n

a.id = 5

a.id a.a1 b.b1
G

H

O

L

Select

J

a b

a.n = b.n

a.id = 5

a.id a.a1 b.b1
G

H

O

L

Build plan

R0

Sel

a

Scatter
User R0

Sel

b

Scatter
User

J

a.n = b.na.id = 5

Equal
User
idx
5

Equal
User
name
a.n

a.id a.a1 b.b1

L0 L1 R0

b.n = :a_n

“a_n”: 2

a.n

R1

Finalize plan

54

R R0

J

Equal
User
idx
5

Equal
User
name
a.n

L0 L1 R0

“a_n”: 2

R

select a.id, a.a1, a.n
from a
where a.id = 5

select b.b1
from b
where b.n = :a_n

