
YouTube Vitess
Cloud-Native MySQL

Oracle OpenWorld Conference
October 26, 2015

Anthony Yeh, Software Engineer, YouTube

http://vitess.io/

Spoiler Alert

Spoilers
1. History of Vitess
2. What is Cloud-Native Computing?
3. What is Cloud-Native MySQL?
4. Vitess Architecture
5. Transparent Live Resharding
6. Example Resharding Workflow
7. Cloud Scaling Benchmarks
8. Vitess Roadmap
9. It was all a dream

Histoir de Vitess

Vitess 1.0

● YouTube is a MySQL app
● Vitess started in YouTube data centers

○ Connection-pooling proxy
● Early adopter of Go (golang.org)

○ First commit (in original repo) in 2010
○ 2 years before Go 1.0
○ Cheap connections, goroutines

● In production at YouTube since 2011

5

golang.org

Vitess 1.5

● YouTube moved into Borg[1]

○ Google MySQL
● Adapted Vitess to Borg environment

○ Dynamically scheduled container
cluster

● Over time, Vitess evolved within Borg
○ Database protection
○ Query rewriting/blacklisting
○ Row-based cache
○ Shard routing
○ Cluster management
○ Monitoring

6

[1] http://research.google.com/pubs/pub43438.html

Growing with YouTube

● YouTube stats[1]

○ >1B users
○ 400 hrs/min of new videos (24K s/s)
○ 80% of views from outside U.S.

● Schema constantly evolving
○ Content ID, channel admin, live

streams, video editing, music
● Developed live resharding

7

[1] youtube.com/yt/press/statistics.html

Vitess 2.0

Vitess in 2014
● Worked great in YouTube, but

outside…
○ Users can't get past build

step
○ Custom patched MySQL
○ No docs for setting up a

deployment
● Along comes Kubernetes

○ Like open-source Borg

8

Vitess in 2015
● Bring-your-own MySQL 5.6
● Docker images
● Out-of-the-box deployment config

○ Runs on any cloud platform
supported by Kubernetes
(AWS, Azure, GCP, …)

● Lots more documentation
● Step-by-step guides

Cloud-Native Computing

Cloud Native Computing Foundation (cncf.io)

Distributed systems paradigm
● Container packaged

○ Dependency management
○ Resource isolation

● Dynamically scheduled
○ Increase utilization
○ Simplify operations

● Microservices-oriented
○ Distributed applications
○ Service endpoints

10

Kubernetes (κυβερνήτης)

● Provides glue for distributed apps
○ Dynamic scheduling
○ Declarative deployment config
○ Service discovery
○ High-availability replica pools
○ Rolling updates
○ Component grouping/metadata

● Abstracts cloud-platform-specific pieces
○ VM instance creation and config
○ Networking config
○ External load balancers
○ Persistent storage volumes (PD, EBS)

11

kubernetes.io

Cloud-Native MySQL

Pets vs. Cattle[1]

13

[1] Noah Slater, blog.engineyard.com/2014/pets-vs-cattle

Your servers might be pets if... Your servers might be cattle if...

You can log into them by hostname or IP. You know only that a bunch of them are out there,
somewhere.

You load data onto them and tell them what to do. They go off and join the herd without being told to.

You try to fix them when they go down. You wait for others to take over their jobs when
they go down.

Your app knows which servers to send which
queries to.

Your app throws queries over a magic wall and
results appear.

You know when your last master failover was. You have a monitoring graph of failovers per day.

Dynamic Scale-Out

● Scale-out by adding more cattle to the herd

14

● Dynamic scheduling means you don't worry about...
○ What server is this going to be launched on?
○ How is it going to get a snapshot of existing data?
○ How is it going to find and connect to the master?
○ How are app servers going to find out it exists?

● With live resharding, it even works for scaling master
traffic.

$ kubectl create -f vttablet.yaml

Query Routing as a Service

● Separation of concerns
○ App doesn't know anything about cluster topology
○ MySQL doesn't know it's inside Kubernetes
○ Vitess connects everything

● Distributed Vitess components
○ Use service discovery to find each other
○ Communicate over defined RPC APIs

15

Vitess Architecture

Vitess Components

17

shard

vtgate

app server

app server

app server

mysqld

vttablet

master

vtgate

batch job

Vitess

etcd

mysqld

vttablet

mysqld

vttablet

replicas

mysqld

vttablet

batch
replicas

mysqld

vttablet

vtctld

App

Vitess Concepts

18

Keyspace

Shard

Tablet

range custom unsharded

Vitess

-80 80- 0 1 0

master

replica

batch

master

replica

batch

master

replica

batch

master

replica

batch

master

replica

batch

Tablet
Tablet

Range-Based Sharding

Basic Hashing

19

cursor = conn.cursor('test_keyspace', 'replica', keyspace_ids=[my_hash(user_id)])
cursor.execute(
 'SELECT message FROM messages WHERE user_id=%(user_id)s ORDER BY time_created_ns',
 {'user_id': user_id})
return [row[0] for row in cursor.fetchall()]

Consistent Hashing

User ID Shard

...
1234
1235
1236
...

-40

40-80

80-

ShardUser ID

...
1234
1235
1236
...

Keyspace ID

...
7F FF FF FF
80 00 00 00
80 00 00 01
...

0

1

2

Transparent Live Resharding

Vitess Resharding

21

-40

40-80

80-

ShardUser ID

...
1234
1235
1236
...

Keyspace ID

...
7F FF FF FF
80 00 00 00
80 00 00 01
...

Key Range

00 00 00 00 - 3F FF FF FF

40 00 00 00 - 7F FF FF FF

80 00 00 00 - FF FF FF FF

-40

40-80

80-C0

C0-

...
1234
1235
1236
...

...
7F FF FF FF
80 00 00 00
80 00 00 01
...

00 00 00 00 - 3F FF FF FF

40 00 00 00 - 7F FF FF FF

80 00 00 00 - BF FF FF FF

C0 00 00 00 - FF FF FF FF

Before

After

ShardUser ID Keyspace ID Key Range

Transparent to the Application

● The app has no knowledge of what shards exist.
● The app keeps running normally during resharding.

22

cursor = conn.cursor('test_keyspace', 'replica', keyspace_ids=[my_hash(user_id)])
cursor.execute(
 'SELECT message FROM messages WHERE user_id=%(user_id)s ORDER BY time_created_ns',
 {'user_id': user_id})
return [row[0] for row in cursor.fetchall()]

def my_hash(user_id):
 m = hashlib.md5()
 m.update(uint64.pack(user_id))
 return m.digest()[:8]

Live Migration

23

New Shards Running

Old Shards Running

DB Read Availability

DB Write Availability DB Write Downtime DB Write Availability

< 5 seconds

● Old and new shards overlap during migration.

Masters are cattle too

● Transparent Live Resharding means you can scale
master traffic too, by adding cattle.

● When resharding stops being scary…
○ You don't have to predict and provision for years of

growth.
○ Provision for good utilization.
○ Start small and scale out as needed.
○ Cool down hot shards one at a time.

24

Resharding Workflow
vitess.io/user-guide/sharding-kubernetes.html

Prepare Schema

● Initial sharding
○ Add Keyspace ID column
○ Populate along with new rows
○ Backfill Keyspace ID for existing rows

● Example: Multi-tenant Guestbook (vitess.io/getting-started/)

26

CREATE TABLE messages (
 page BIGINT(20) UNSIGNED,
 time_created_ns BIGINT(20) UNSIGNED,
 keyspace_id BIGINT(20) UNSIGNED,
 message VARCHAR(10000),
 PRIMARY KEY (page, time_created_ns)
) ENGINE=InnoDB

Provision New Shards

Moo

27

$ kubectl create -f vttablet.yaml

Copy Data

● Split Clone
○ Pauses replication on a backup slave

■ So it's consistent with a known GTID set
○ Streams rows to new shards

■ Doesn't use extra disk space on source shard

28

$ vtworker SplitClone --strategy=-populate_blp_checkpoint test_keyspace/0

Filtered Replication

● Vitess annotates DMLs with the Keyspace ID
● New shards subscribe to filtered replication stream
● Let new shards catch up to old shard master

29

-40

40-80

80-
80-C0

C0-

INSERT INTO messages
(page, ...) VALUES (...)

Filtered Replication

Verify Data Integrity

● Split Diff
○ Pauses replication on backup slave in old shard
○ Pauses filtered replication on new shards

■ At the equivalent GTID set
○ Performs a row-by-row comparison

■ Also detects rows only present on one side

30

$ vtworker SplitDiff test_keyspace/0

Shard Migration

Migrate non-master traffic to new shards

31

$ vtctlclient MigrateServedTypes test_keyspace/0 replica

Migrate master traffic to new shards
$ vtctlclient MigrateServedTypes test_keyspace/0 master

Scaling Benchmarks

Scaling Writes by adding Shards

33

Scaling Reads by adding Replicas

34

Vitess Roadmap

Vitess 2.0.0

● Stable releases
○ API freeze (no breaking changes)
○ Release changelogs (github.com/youtube/vitess/releases)
○ Versioned Docker images (hub.docker.com/u/vitess/)

● What's new in 2.0
○ Deployment configs for Kubernetes 1.0

■ Users reported success on both AWS and Google Cloud Platform
○ Official client libraries for Java, Python, PHP, Go, and Hadoop
○ MySQL 5.6 support
○ Built-in cloud backup/restore
○ HTTP/2-based gRPC protocol (grpc.io)

36

Future Plans

● Drop-in drivers for JDBC, PDO, PEP 249
○ Already have Go driver for database/sql

● Cross-shard joins/aggregations
● Automatic master election
● Automated out-of-band schema changes

37

Resources
Cloud Native Computing Foundation
cncf.io

Kubernetes
kubernetes.io

Try Vitess
vitess.io/getting-started/
vitess.io/user-guide/sharding-kubernetes.html

Contribute
github.com/youtube/vitess

Contact Us
vitess@googlegroups.com

Get Updates
groups.google.com/d/forum/vitess-announce

