
Volcano: Bring Batch Capability 
Into Kubernetes

Da Ma (@k82cn)

Huawei Expert



Da Ma Software Architect

 Kubernetes SIG-Scheduling co-Leader

 Volcano & kube-batch creator

 Expert at Huawei (now)

 Ex-IBM Spectrum CE/L3 Team/Tech Lead

 Jilin University master’s degree, 
majoring in grid computing and distributed 
system





Gaps
Job/Queue Management

• Queue status/configuration

• Hierarchical queue

• Job with multiple pod template

• Lifecycle management of Job, e.g. restart, 

suspend/resume

• Error Handling, e.g. restart job if pod failed (MPI, TFJob)

• Indexed Job

• Task dependency, e.g. Spark (executor/driver)

• Delay Pod Creation

• …

Runtime

• Singularity

• …

Scheduler

• Coscheduling

• Faire-share

• Queue

• Preemption/Reclaim

• Reserve/Backfill

• Topology (network, accelerator)

• …

Others

• Throughput

• Round-trip

• Data locality (Data Aware Scheduling)

• …



Volcano: A Kubernetes Native Batch System

Website: https://volcano.sh

Github: http://github.com/volcano-sh/volcano

Twitter: https://twitter.com/volcano_sh

Slack: http://volcano-sh.slack.com

Email: volcano-sh@googlegroups.com

https://volcano.sh/
http://github.com/volcano-sh/volcano
https://twitter.com/volcano_sh
http://volcano-sh.slack.com/
mailto:volcano-sh@googlegroups.com


Overall Architecture

Domain frameworks:

• Deployment/Installation of framework in k8s

• Map framework’s terms/concepts into common concept, e.g. Job, 

Queue

• Enable related features for frameworks, e.g. gang-scheduling for 

TensorFlow training

Common Service for high performance workload:

• Batch scheduling, e.g. fair-share, gang-scheduling

• Enhanced job management, e.g. multiple pod template, error handling

• Accelerator, e.g. GPU, FPGA

• kubectl plugins, e.g. show Job/Queue information



Overall Architecture

 The policy in vk-scheduler is pluggable, e.g. DRF, Priority, Gang

 vk-controllers includes JobExController, QueueController

 Volcano handles high performance workload

 Kubectl creates a JobEx object in 
apiserver if all admission passed

 JobExController create Pods based 
on its replicas and templates

 vk-scheduler get the notification 
of Pod from apiserver

 vk-scheduler chooses one host for 
the Pod of JobEx based on its 
policy

 kubelet gets the notification of Pod 
from apiserver; and then start the 
container



Scenarios: MPI

mpirun

worker_1

worker_3

worker_2

• Multiple Pod Template
• Lifecycle Policy
• Gang-scheduling

• ssh or kubectl
• Complete job when mpirun completed
• Headless service



Scenarios: MPI

• The workers are deleted by job controller 
because of sshd

• The pod of mpiexec/mpirun will not be 
deleted for output

• The pod of mpiexec/mpirun may restart few 
times because of network setup delay



Scenarios: Faire Share



Gang-scheduling: Job Execution Time

http://status.openlabtesting.org/builds?project=theopenlab%2Fvolcano

• Case 1: 1 job with 2ps + 4workers

• Case 2: 2 jobs with 2ps + 4workers

• Case 3: 5 jobs with 2ps + 4workers

• No enough resource for 2 Jobs to run 

concurrently; one of them wasting resources 

without Gang-Scheduling !

• 2 of 5 jobs was finished because of deadlock 

(+20 hours)

http://status.openlabtesting.org/builds?project=theopenlab/volcano


Task-Topology + Binpack

• The execution time of 3 jobs in total; 2ps + 
4workers for each job

• The execution time is unstable when tested by 
default scheduler

• The improvement dependent on data 
exchanges between pods

• Task-topology within a Job also improved 
scheduler’s performance

• Open Source at volcano-sh/volcano#272

Reference: “Optimus: An Efficient Dynamic Resource Scheduler for Deep Learning Clusters”

https://github.com/volcano-sh/volcano/issues/272


Integrations

Framework Status API

MPI Done Volcano Job

Horovod Done Volcano Job

Kubeflow/tf-operator Done PodGroup

Kubeflow/arena Done Volcano Job

Spark-Operator On-going PodGroup

Cromwell On-going Volcano Job

PaddlePaddle On-going Volcano Job

… On-going Volcano Job / PodGroup



Pipeline

●GPU Share/Topology

●Job Management

●Queue Management

●Hierarchical Queue

●Preemption/Reclaim

●……

Call for 

Contribution


