

Amigo – A Chat-Bot for Cloud Operations Management

A Project Report
Presented to

The Faculty of the College of
Engineering

San Jose State University

In Partial Fulfillment
Of the Requirements for the Degree

Master of Science in Software Engineering

By

Swetha Muchukota, Chetan Punekar, Watsh Rajneesh, Ashutosh Sharma

May 2017

Copyright © 2017

Swetha Muchukota, Chetan Punekar, Watsh Rajneesh, Ashutosh Sharma

ALL RIGHTS RESERVED

APPROVED

 Andrew Bond, Project Advisor

 Dan Harkey, Director, MS Software Engineering

 Xiao Su, Department Chair

ABSTRACT

Amigo – A Chat-Bot for Cloud Operations Management

By Swetha Muchukota, Chetan Punekar, Watsh Rajneesh, Ashutosh Sharma

 This project aims at simplifying Cloud Operations Management, triaging workflows and

DevOps, in general, using Chat-Bot as the user interface. Instead of interacting with a Web

UI, the user can send messages to the Chat-Bot, which will recognize the intent of the

messages and translate it to respective service API calls.

 Cloud Operations Management today involves a lot of operation workflows that are

repetitive and mundane. Automation of those tasks with scripting requires development

and maintenance of the script code. Using a Web UI can be slower and using a command

line interface can be tedious.

 In this project, we propose a Chat-Bot as UX (user experience) for performing cloud

operations. A user will type in the intended operations in plain English and Chat-Bot will

translate it to the corresponding one or more APIs call(s) to be made on the cloud service.

This will alleviate the tedium of remembering the commands on the command-line

interface or filling out a data form in a Web UI. Access control will be implemented so

only privileged users will be allowed to perform their operations via the Chat-Bot. In a

triage session, a user will interact with the bot performing a sequence of operations. All

triaging sessions will be recorded automatically in the backend, enabling reporting of the

whole triage session and thus building a shared knowledge base over time.

v

Acknowledgements

The authors are deeply indebted to Professor Andrew Bond and Professor Thomas

Hildebrand for their invaluable comments and guidance in the preparation of this

project.

vi

Table of Contents

CHAPTER 1. PROJECT OVERVIEW ...1

1.1 INTRODUCTION ... 1
1.1.1 Proposed Areas of Study and Academic Contribution3

1.2 LITERATURE SEARCH .. 3
1.3 CURRENT STATE OF THE ART ... 6

CHAPTER 2. PROJECT ARCHITECTURE ..9

2.1 INTRODUCTION ... 9
2.2 ARCHITECTURE SUBSYSTEMS ... 13

CHAPTER 3. TECHNOLOGY DESCRIPTIONS.. 16

3.1 CLIENT TECHNOLOGIES .. 23
3.1.1 React JS ...23
3.1.2 React Native ..23
3.1.3 Slack Bot Users ...23
3.1.4 Raspberry Pi Intelligent Assistant ..25

3.2 MIDDLE-TIER TECHNOLOGIES ... 25
3.2.1 Docker Containers ..25
3.2.2 Docker Swarm Mode..26
3.2.3 Docker Hub ...26
3.2.4 Wit.AI ..26
3.2.5 Consul ..26
3.2.6 Apache Kafka ...27
3.2.7 Apache ZooKeeper ...27
3.2.8 HA Proxy ...27
3.2.9 Elastic Search ..27
3.2.10 Logstash ...28
3.2.11 Kibana ...28
3.2.12 Logspout ..28
3.2.13 Prometheus..28
3.2.14 Grafana..29
3.2.15 Node Exporter...29
3.2.16 Google cAdvisor ..29
3.2.17 Dropwizard Java Microservices Framework30
3.2.18 Quartz Job Scheduler ..31
3.2.19 Jersey RESTful Web Services Framework ..31

3.3 DATA-TIER TECHNOLOGIES .. 31
3.3.1 Mongo DB ...31

CHAPTER 4. PROJECT DESIGN .. 33

4.1 CLIENT DESIGN .. 33

vii

4.1.1 Web UI Design ..33
4.1.2 Mobile UI Design ..36
4.1.3 Raspberry Pi Intelligent Assistant Design..40

4.2 MICROSERVICES DESIGN .. 41
4.2.1 Microservices Best Practices ...49
4.2.2 Microservices Design Patterns ..51
4.2.3 End-to-End Control Flow ..61
4.2.4 User Service...64
4.2.5 Command Processor Service ...78
4.2.6 Slack-Bot Service ..81
4.2.7 Chat-Bot Service ..83
4.2.8 Ria-Bot Service ..86

4.3 DATA-TIER DESIGN .. 90
4.3.1 User-DB ..90
4.3.2 Command-DB ..91

CHAPTER 5. PROJECT IMPLEMENTATION ... 94

5.1 CLIENT IMPLEMENTATION ... 94
5.1.1 Slack Messenger Integration ...94

5.2 MIDDLE-TIER IMPLEMENTATION .. 102
5.2.1 User Service..108
5.2.2 Slack-Bot Service ...108
5.2.3 Wit.ai Service ...109
5.2.4 Command Processor Service ..109

5.3 DATA-TIER IMPLEMENTATION ... 110
5.3.1 User DB ..110
5.3.2 Command DB ..110

5.4 IMPLEMENTATION PLAN.. 110

CHAPTER 6. TESTING AND VERIFICATION... 112

6.1 INTRODUCTION ... 112
6.1.1 Purpose ..112
6.1.2 Project Overview ..112
6.1.3 Audience ...113

6.2 TEST STRATEGY.. 113
6.2.1 Test Objectives ..113
6.2.2 Test Assumptions ...114
6.2.3 Test Principles..114
6.2.4 Scope and Levels of Testing ...115
6.2.5 Execution Strategy ...117
6.2.6 Test Cycles...118

6.3 VALIDATION AND DEFECT MANAGEMENT .. 118
6.4 TEST MANAGEMENT PROCESS ... 119

6.4.1 Test Design Process ..119

viii

6.4.2 Test Cases ..119
6.5 PROJECT MANAGEMENT .. 123

6.5.1 Test Planning (Test Lead) ...123
6.5.2 Test Team ...123
6.5.3 Development Team ..123

CHAPTER 7. PERFORMANCE AND BENCHMARKS .. 124

7.1 PERFORMANCE METRICS ... 124
7.2 PERFORMANCE TOOLS ... 125

7.2.1 Apache JMeter ...126
7.3 PERFORMANCE TESTS .. 126

7.2.2 Machine Details ...126
7.2.3 Performance Results ...127

CHAPTER 8. DEPLOYMENT, OPERATIONS, MAINTENANCE .. 130

8.1 DEPLOYMENT .. 130
8.2 OPERATION AND MAINTENANCE ... 133
8.3 DEPLOYMENT PLAN ... 133

CHAPTER 9. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 136

9.1 SUMMARY... 136
9.2 CONCLUSIONS ... 136
9.3 RECOMMENDATIONS FOR FURTHER RESEARCH ... 137

GLOSSARY.. 138

REFERENCES .. 148

APPENDICES .. 151

Appendix A. Apache Kafka... 151
Appendix B. Docker Swarm (mode) [36] .. 155
Appendix C. Docker Flow Proxy [37] [38] ... 159
Appendix D. Prometheus [39] .. 160
Appendix E. cAdvisor [40] .. 162
Appendix F. Grafana .. 163
Appendix G. Elastic Stack [41] .. 165

ix

List of Figures

FIGURE 1 - AMIGO CHATBOT ARCHITECTURE ... 10
FIGURE 2 - DOCKER SWARM (MODE) ... 12
FIGURE 3 - MOBILE UI WIREFRAME DESIGN .. 36
FIGURE 4 - MOBILE UI LOGIN SCREEN .. 37
FIGURE 5 - MOBILE UI REGISTRATION .. 37
FIGURE 6 - MOBILE UI REGISTRATION II ... 38
FIGURE 7 - MOBILE UI CHAT .. 39
FIGURE 8 – MOBILE UI CHAT II ... 39
FIGURE 9 - RASPBERRY PI INTELLIGENT VOICE ASSISTANT (RIA) .. 40
FIGURE 10 - MONOLITHIC ARCHITECTURE GOOD FOR SMALL APPLICATIONS [30] .. 42
FIGURE 11 - MONOLITHIC APPLICATIONS TEND TO BECOME LESS EFFICIENT WITH TIME [30] ... 43
FIGURE 12 - SCALING MONOLITHIC APPLICATIONS ... 44
FIGURE 13 - A TYPICAL MICROSERVICE APPLICATION [32]... 46
FIGURE 14 - API GATEWAY [33] ... 50
FIGURE 15 - SERVER-SIDE SERVICE DISCOVERY [34]... 55
FIGURE 16 - CHATBOT SEQUENCE DIAGRAM.. 62
FIGURE 17 - USER SERVICE CLASS DIAGRAM .. 73
FIGURE 18 - COMMON DB MODULE CLASS DIAGRAM .. 75
FIGURE 19 - CLASS DIAGRAM FOR USER DB .. 77
FIGURE 20 - COMMAND PROCESSOR SERVICE MODULE AND ITS DEPENDENCIES ... 79
FIGURE 21 - COMMAND PROCESSOR CLASS DIAGRAM .. 79
FIGURE 22 - SLACKBOT SERVICE MODULE DEPENDENCIES ... 82
FIGURE 23 - SLACK BOT CLASS DIAGRAM .. 83
FIGURE 24 - CHATBOT SERVICE MODULE DEPENDENCIES .. 84
FIGURE 25 – CHAT-BOT SERVICE CLASS DIAGRAM.. 85
FIGURE 26 - RIABOT SERVICE MODULE DEPENDENCIES .. 87
FIGURE 27 - RIABOT SERVICE CLASS DIAGRAM ... 88
FIGURE 28 - CONVERSATION WITH CHATBOT IN A CHANNEL NAMED “CHATOPS” ... 94
FIGURE 29 - DIRECT MESSAGE CONVERSATION WITH CHATBOT .. 95
FIGURE 30 - SIGN UP SCREEN ... 96
FIGURE 31 – LOGIN SCREEN ... 97
FIGURE 32 – CHAT ROOM SCREEN... 97
FIGURE 33 - LOGIN SCREEN .. 98
FIGURE 34 - LOGIN FAILURE .. 98
FIGURE 35 - DOCKER SWARM VISUALIZER ... 132
FIGURE 36 - DOCKER SWARM ARCHITECTURE .. 157
FIGURE 37 - PROMETHEUS ARCHITECTURE .. 161
FIGURE 38 - GRAFANA DASHBOARD ... 163

x

List of Tables

TABLE 1 - CHAT-BOT STATE OF THE ART ... 6
TABLE 2 - TEST DELIVERABLES ... 116
TABLE 3 - USER ACCEPTANCE TEST DELIVERABLES .. 117
TABLE 4 - ENTRY AND EXIT CRITERIA ... 117
TABLE 5 - BUG SEVERITY .. 118
TABLE 6 DOCKER SWARM CLUSTER CREATION ... 130

1

Chapter 1. PROJECT OVERVIEW

1.1 INTRODUCTION

 ChatOps is an approach to communication that allows teams to collaborate and manage

many aspects of their infrastructure, code, and data from the comfort and safety of a chat

room. It is a chatbot program that is designed to simulate the conversation with human

users in the context of IT operations management. It enables improving how IT teams

collaborate to handle DevOps by making it more visible, efficient and simple.

Following are the factors justifying the importance of ChatOps:

1. Collaborative DevOps - Chat solutions like Slack are highly extensible, have

integrations with AWS Lambda, and third party services, such as PagerDuty, Jira,

NewRelic, GitHub.

2. Better and easier than IRC - Registering to IRC (Internet Relay Chat) services are

cumbersome and they lack the flexibility and integrations provided by enterprise

messengers like Slack.

3. Not behind a VPN - Team collaboration services like Slack and HipChat are hosted

as SaaS applications in the cloud and can be accessed by team members without

logging in to the VPN.

4. Makes operations easy from mobile devices - Messengers like Slack and HipChat

have mobile apps which can be used to collaborate from user’s mobile phone.

Having the ChatOps support on such mobile apps will make it more convenient for

teams to collaborate and carry forward the DevOps culture.

2

5. Built-in archiving - The messages typed in the chat are persisted in the SaaS Chat

service’s DB. This can be used to search the data in previous chat sessions.

6. Easy to share screenshots, file attachments - Slack and HipChat make sharing of

screenshots and file attachments easy.

7. Makes incident response across teams much easier to handle -

• Monitoring solutions like Data Dog for AWS monitoring and PagerDuty have

integration with slack.

• GitHub has a chat bot that sends notification message on the slack channel when

a new commit is pushed to a branch.

• Jenkins has integration with Slack so users can perform build operations and run

the Jenkins jobs right from within Slack

• AWS Cloud Watch events integration with Slack - Cloud Watch events are sent to

Slack channel.

3

1.1.1 PROPOSED AREAS OF STUDY AND ACADEMIC CONTRIBUTION

 This section describes the research work carried out for knowing the state-of-the-art for

Chatbot design techniques, Natural language processing (NLP), Artificial intelligence markup

language (AIML) and micro services based architecture.

1.2 LITERATURE SEARCH

 Chabot (Chatter-Bot) is a computer program with some intelligence. It assists humans with

the ability to provide/respond with suitable answers to the user’s questions by extracting

the intent, keywords from the question/message. The input given to this program is a

natural language text and the application responds with an answer using its intelligence.

This process continues along with the conservation.

Amigo - A Chat-Bot for Cloud Operations Management is an approach to communication

that allows teams to collaborate and manage many aspects of their infrastructure, code,

and data from the comfort and safety of a chat room. It is a Chabot program that is designed

to simulate a conversation with human users in the context of IT operations management.

It enables improving how IT teams collaborate to handle DevOps by making it more visible,

efficient and simple.

The bot system began in an early nineteenth century where the first chess- playing machine

was built such that a system act as a player and another player a human can play against it,

such that system giving a feeling of another person existence. The challenge to a Chabot

4

developer here is to build a large knowledge base to make it perfect thereby ensuring

acceptable answers to the question.

Following are the areas where the literature survey was focused on for the

conceptualization of the project:

• Chatbot Architecture

• Microservice-based Architecture

• Chatbot Design Techniques

• Natural Language Processing

• Artificial Intelligence Markup Language (AIML)

• Pattern Matching

Sameera A. Abdul-Kader and Dr. John Woods (2015) work explains Chabot strategies,

fundamental design techniques. Their work has given a good introduction of three

important components of Chabot software package:

• Responder – Interface between bot’s main routine and user

• Classifier – Responsible for filtering, clustering, normalizing the input into logical

components

• Graph Master – responsible for pattern matching

They have suggested the most important techniques needed to start with Chabot. Some of

them were:

5

• Parsing – to analyze and manipulate the text.

• Pattern matching

• AIML – core technique, AIML is base of chatbot brain

• Markov Chain – to build responses that are probabilistically and consequently

applicable.

Their work has enlightened us with further areas where literature survey needs to be

focused.

Alan Shaw (2014) proposed a framework for parsing sentences from a user during the chat

a Chabot using a strategy called ‘answer strategy’. The Framework has exposed us to

concepts of pattern matching with three simple rules for searching keyword matches in an

input sentence.

Abbas Saliimi, Lokman and Jasni Mohamad Zain (2010) explains the One-Match and All-

Match Categories (OMAMC) for keywords matching in Chabot. Using this technique there

is a noticeable improvement in matching time and matching flexibility.

Md. Shahriare Satu, Md. Hasnat Parvez, Shamim-AI-Mamun (2015) work reviewed AIML

integrated applications. Their work has highlighted how AIML (Artificial Intelligence Markup

Language) helps to build simple, efficient and easy to configure conversational agent

artificially chatbot.

Amittai Axelrod (2015) presented development platform for natural language processing

using Amazon Elastic Cloud Service

6

1.3 CURRENT STATE OF THE ART

Killalea, Tom (2016) explains an approach of building distributed system using microservices

where there is clear separation and focus on attention to each service. It covers the

microservice architectural styles, deployment size, consumer driven contracts.

Table 1 - Chat-Bot State of the Art

S.No. Paper Title State-of-the Art Summary Keywords

1 Survey on Chatbot

Design Techniques in

Speech Conversation

Systems

Comparison of

different chatbot

design techniques

AIML

Chatbot

NLP

Chatbot Design

2 A System of Simple

Sentence Parsing Rules

To Produce “Answer

Matching” Chatbots

Presents a framework

to parse user input

during a chat

NLP

Pattern

Matching

3 Natural Language

Processing Research

Using Amazon Web

Services

Provides a mechanism

for using Amazon

Elastic Compute Cloud

for natural language

processing

AWS

NLP

4 Review of integrated

applications with AIML

based chatbot

Brief review of some

applications which are

used AIML chatbot for

their conversational

service

AIML Chatbot

7

5 One-Match and All-

Match Categories for

Keywords Matching in

Chatbot

Proposes a keyword

matching technique

which improves the

performance and

accuracy of matching

NLP

Pattern

Matching

6 The Hidden Dividends

of Microservices

An approach of

building

distributed system

using microservices

Microservices

7 Personaaiml: An

architecture

developing chatterbots

with personality

Flexible architecture

that

allows the use of

different models of

personality in the

construction of

chatterbots

AIML

Chatbot

8 Microservices Compares

microservices to

service-oriented

Architecture

Microservices

9 AIML Based Voice

Enabled Artificial

Intelligent Chatterbot

Shows AIML

implementation

of chatbot

AIML

Chatbot

NLP

Chatbot Design

10 Just. Chat-a platform

for processing

information to be used

in chatbots

A platform, Just. Chat,

that helps in the

creation of chatbot’s

knowledge bases

NLP Chatbot

11 The elements of AIML

Style

Basics about AIML

language

AIML

12 Evolutionary sentence

building for

chatterbots

Proposes a model in

which new sentences

can be produced from

existing ones using an

evolutionary algorithm

adapted to the

structure of the natural

language.

AIML Chatbot

NLP

Chatbot Design

8

13 A survey of chatbot

system through a

Loebner prize

competition

Explains the different

technologies used in

the chatbots which

have won the Loebner

Prize Competition

Chatbot

9

Chapter 2. PROJECT ARCHITECTURE

2.1 INTRODUCTION

Amigo Chatbot project’s architecture had the following goals:

1. To support following types of clients –

a. Enterprise messengers – like Slack or Facebook messenger.

b. Web UI

c. Mobile Application

d. Hardware virtual assistant – like Raspberry Pi based virtual assistant or

Amazon Echo.

2. To be highly scalable so several hundreds of users can be served simultaneously.

3. To be very reliable so no user message is dropped or goes un-serviced.

4. To support multiple cloud provider management.

5. To carry out all message exchanges securely.

The following diagram shows the subsystems of the architecture and how they are

connected.

10

Figure 1 - Amigo Chatbot Architecture

11

The above architecture attempts to meet the goals in the following manner:

1. Multiple client types – Slack Messenger, Web UI, Mobile App and Amazon Echo.

2. Highly scalable to serve hundreds of users concurrently –

a. Apache Kafka message queue can be scaled to deal with millions of firehose-

style events generated in rapid succession. It guarantees low-latency, “at-

least-once”, delivery of messages to consumers. It supports retention of data

for offline consumers, which means that the data can be processed either in

real-time or in offline mode.

b. Use of Docker Swarm (mode) container manager to provide auto-scaling and

fault tolerance.

The figure below shows a typical Docker Swarm cluster with 3 nodes. Node-1 is the manager

and the other 2 nodes are workers. We deploy a service to swarm cluster and swarm cluster

manager places the container for the service on one or more of the nodes in the cluster. If a

node in the cluster goes down, Swarm will re-distribute the service containers across the

remaining nodes thus ensuring that the deployed number of replicas for a service always

remains same. So, Swarm starts new service containers in the remaining nodes in the cluster.

When there is heavy load on the system the Swarm cluster can be scaled to add more nodes.

Services can be scaled horizontally to have more replicas. Services can be updated to scale

vertically by adding more resources (say increase memory limit from 200MB to 500MB).

Docker networking can be used to create multiple networks and provide isolation and

security to services. For example, as shown in the figure below, App and DB are connected

12

to App-Net overlay network. DB can only be accessed via the App REST endpoints. So other

application services will not be connected to the same App-Net network.

Figure 2 - Docker Swarm (mode)

13

2.2 ARCHITECTURE SUBSYSTEMS

Following are the major subsystems in the architecture:

1. Slack Bot Service – This service integrates with Slack messenger and listens for

all messages sent either directly to the amigo chatbot or sent to a channel in

which amigo chatbot was a participant of. Once the message is received, slack

bot service will forward it to the Chatbot service for further processing.

2. Wit.ai Service – it is a third-party service which is used to process incoming user

message and extract the intent from it.

3. Chabot Service – use the wit.ai service to parse the message for its intent. Once

the intent is found, the message is published to the user.msg topic on the Kafka

message queue. This service will be invoked by client specific adapter services

that receive messages from their respective client types and forward to this

service for further processing.

4. RIA Bot Service – will receive message from RIA (Raspberry Pi Virtual Assistant)

and forward to Chatbot service for further processing.

5. User Service – This service will provide REST endpoints for user management.

This includes registering new users, authenticate a user, persist a user profile, etc.

A user will be required to first sign up with the Amigo Chabot before using the

service in an enterprise manager. This is required because during sign-up user

can provide their cloud provider credentials, their slack user ID, their virtual

14

assistant ID to the system. Once signed up user can always login and manage their

profile information.

6. Command Processor Service – This service will poll for user messages being

published to the user.msg topic. Once the message is available, one of the

consumer threads in the Amigo Chabot consumer’s group will process the

message.

7. Apache Kafka Message Queue – Kafka is highly scalable and a reliable message

queue built like a distributed commit log. It can provide a durable record of all

transactions that can be played back to recover the state of a system. It provides

redundancy, which ensures high availability of data even when one of the servers

faces disruption. Multiple event sources can concurrently send data to Kafka

clusters, which will reliably get delivered to multiple destinations. [1]

The main reason for choosing Kafka was its easy to scale architecture and it’s “at-least once”

message delivery guarantee.

8. Apache Zookeeper Service Discovery – Kafka uses Zookeeper as the distributed

configuration store. It forms the backbone of Kafka cluster that continuously

monitors the health of the brokers. When new brokers get added to the cluster,

Zookeeper will start utilizing it by creating topics and partitions on it.

9. Docker Hub – is a registry for Docker images. It is used to store the cloud provider

specific image that pre-installs the cloud provider’s CLI client tool so the image

15

can be used to run a container that can be passed any command that the CLI tool

can execute.

10. Amazon Web Services Public Cloud – Amazon Web Services is the leading public

cloud provider. This is one of the cloud providers that can be managed via the

Chabot’s conversational interface.

11. Infrastructure Services – will provide logging, visualization and monitoring for

the application services and the Docker Swarm cluster.

16

Chapter 3. TECHNOLOGY DESCRIPTIONS

 Amigo Chatbot will be developed using modern agile methodology of software

development with microservices based software architecture and deployed on Docker

containers. Following table lists all the technologies and tools employed in the project:

Category Technology Description

Client

Technologies

React JS [2] A JavaScript library for building user

interfaces

React Native [3] Building mobile apps with React that

work same as native apps and uses same

fundamental UI building blocks as regular

iOS and Android apps using JavaScript

and React.

Slack bot users [4] Enables teams to conversationally

interact with external services or custom

code by building bot users.

Raspberry Pi Intelligent

Assistant (RIA) [5]

A voice controlled virtual assistant using

speech-to-text engines, text-to-speech

engines and conversations modules.

Middle Tier

Technologies

Docker Containers [6] Docker is a tool designed to make it easier

to create, deploy and run applications by

17

using containers. Containers allow a

developer to package up an application

with all the parts it needs, such as

libraries and other dependencies, and

ship it all out as one package. Docker

containers are much more lightweight

and use far fewer resources than virtual

machines.

Docker Swarm mode [7] Cluster management and orchestration

features embedded in the Docker engine

are built using SwarmKit. Docker engine

participating in a cluster are running in

swarm mode.

Docker Hub [8] Docker Hub is a cloud-based registry

service which allows one to link to code

repositories, build images and test them,

stores manually pushed images, and links

to the Docker Cloud so one can deploy

images to hosts. It provides a centralized

resource for container image discovery,

distribution and change management,

18

user and team collaboration and

workflow automation throughout the

development pipeline.

Wit.AI [9] Wit.AI makes it easy for developers to

build applications and devices to which

they can text to or talk to. Wit.AI learns

from every interaction from the

community and all learning is shared

across developers.

Consul [10] Consul is a tool for discovering and

configuring services in the infrastructure.

Apache Kafka [11] Kafka is used for building real-time data

pipelines and streaming apps. It is

horizontally scalable, fault-tolerant, fast

and runs in production in thousands of

companies.

Apache ZooKeeper [12] ZooKeeper is a centralized service for

maintaining configuration information,

naming, providing distributed

synchronization and providing group

services.

19

HA Proxy [13] HA Proxy (High Availability Proxy) is an

open-source load-balancer which can

load balance any TCP service. It is free,

very fast and reliable solution that offers

load balancing, high availability and

proxying for TCP and HTTP-based

applications.

Elastic Search [14] Elastic search is a highly-scalable open-

source full-text search and analytics

engine. It allows you to store, search, and

analyze big volumes of data quickly and in

near real time.

Logstash [15] Logstash is part of the Elastic Stack along

with Beats, Elasticsearch and Kibana.

It is used to collect, aggregate, and parse

your data, and then have Logstash feed

this data into Elasticsearch.

Kibana [16] Kibana is an open source analytics and

visualization platform designed to work

with Elasticsearch. Kibana is used to

search, view, and interact with data

20

stored in the Elasticsearch indices. One

can easily perform advanced data

analytics and visualize data in a variety of

charts, tables and maps.

Logspout [17] Logspout is a log router for Docker

containers that runs inside Docker. It

attaches to all containers on a host, then

routes their logs wherever you want. It

also has an extensible module system. It’s

a mostly stateless log appliance. It

captures container logs written to stdout

and stderr.

Prometheus [18] Prometheus is an open-source

monitoring system with a dimensional

data model, flexible query language,

efficient time series database and

modern alerting approach.

Grafana [19] Grafana is open source software for time

series analytics and visualization.

Node-Exporter [20] Node exporter is exporter of hardware

and OS metrics exposed by *NIX kernels

21

to Prometheus. It is designed to monitor

the host system.

Google cAdvisor [21] cAdvisor (container advisor) provides

container users an understanding of the

resource usage and performance

characteristics of their running

containers.

Dropwizard Java

Microservices

framework [22]

Dropwizard is a Java framework for

developing ops-friendly, high

performance, RESTful webservices.

Dropwizard pulls together stable, mature

libraries from the Java ecosystem into a

simple light-weight package. It has out-

of-the-box support for configuration,

application metrics, logging, operational

tools and much more.

Quartz Job Scheduler

[23]

Quartz is a richly featured, open source

job scheduling library that can be

integrated within virtually any Java

application. It can be used to create

simple or complex schedules for

22

executing tens of thousands of jobs; jobs

whose tasks are defined as standard Java

components that may execute virtually

any task. It includes many enterprise class

features like support for JTA transactions

and clustering.

Jersey JAX-RS for REST

API Client and Service

[24]

Jersey RESTful Web Services framework

is open source, production quality,

framework for developing RESTful Web

Services in Java that provides support for

JAX-RS APIs and serves as a JAX-RS (JSR

311 & JSR 339) Reference

Implementation.

Data Tier Mongo DB [25] Mongo DB is a document oriented NoSQL

database that provided high

performance, high availability and

automatic scaling.

23

3.1 CLIENT TECHNOLOGIES

 Amigo Chat-bot will integrate with enterprise messengers like Slack Messenger.

Web UI for Chat-bot where user profile will be created and login will be performed. For Web

UI, we will use HTML5, CSS3.0, React.js and Twitter bootstrap. React.js is an open source

JavaScript library which provides view to render as HTML. React is declarative, component

based library which makes it easy to create interactive UI. It only changes the component

when the state changes. It is efficient as we can reuse the component.

For mobile application, React Native will be used to build cross platform mobile UI.

Virtual Assistant integration for voice based Cloud Ops.

3.1.1 REACT JS
 React JS is an open source framework for web UI development from Facebook. In the

project, it is used to design the web UI for user registration.

3.1.2 REACT NATIVE
 React Native is used for the cross platform mobile UI implementation.

3.1.3 SLACK BOT USERS
 Slack Bot users are very like slack human users in that they too have a profile, a name and

can be part of a team or receive and send private message. The one difference is that bot

users are controlled programmatically via bot user token that accesses one or more slack

24

API. The have limited set of slack APIs access compared to human users. Also they don’t

need to authenticate or login to slack.

There are 2 kinds of bot users:

1. Custom Bots

2. App Bots

3.1.3.1 CUSTOM BOT USERS

 These are the custom bots that are local to a team. When the intent is to build a bot specific

to the needs of one slack team and not to build a bot which can be shared across teams then

a team member of a slack team can build a custom bot user.

3.1.3.2 APP BOT USERS

 When the intent is to distribute the bot user to other teams then it can be achieved by

attaching bot user with a slack app. The bot user presentation and functionality can be

controlled by the bot owner even after it has been installed. Slack App functionalities like

incoming web hooks and slash commands are also part of the distribution.

In the project, we use App Bot users as the intent is to share the Amigo slack bot user with

other teams so they can perform cloud ops management.

25

3.1.4 RASPBERRY PI INTELLIGENT ASSISTANT

 Raspberry Pi Intelligent Assistant [26] is a hardware voice assistant that is used to interact

with the cloud hosted Chatbot service and in turn perform cloud operations management

just by talking to the bot.

3.2 MIDDLE-TIER TECHNOLOGIES

 Middle tier where all the business logic is executed message coming from slack or web

application goes to AWS lambda where it passes the message to wit.ai for extracting pattern.

If the intent is found then it is pushed to Kafka queue from there it is sent to command

processor which will check if there is any intent in the database if so, it will pull the

corresponding Docker image to run the command. Java micro service framework

Dropwizard is used to build some of the services.

3.2.1 DOCKER CONTAINERS

 Docker containers will be used to package and deploy the micro services. Docker hub will

be used to pull the aws-cli image to further run the AWS command on it.

26

3.2.2 DOCKER SWARM MODE

 Docker Swarm will be used to manage the cluster of Docker containers across hosts or VMs.

All services execute as containers within the nodes of Docker swarm cluster. Docker swarm

takes care of the placement of the service containers to the right node. In case a node fails

in the cluster or a new node is added to the cluster the service containers are re-distributed

across remaining swarm cluster nodes.

3.2.3 DOCKER HUB

 Docker Hub is a registry for Docker images. It will host the Docker images for the cloud

providers’ clients (for example, sjsucohort6/docker_awscli is a Docker image with awscli tool

installed for the AWS cloud provider) with which the chatbot service will perform the control

and monitoring actions on the cloud providers for the users.

3.2.4 WIT.AI

 Wit.AI service is used for the purposes of extracting intent from the incoming messages.

3.2.5 CONSUL

 Consul service registry is built-in into the Docker engine swarm (mode). So, no separate

registry container is required to be installed.

27

3.2.6 APACHE KAFKA

 Apache Kafka message queue for storing user messages from Chat-bot micro service to the

command processor micro service. It is fast, scalable and fault tolerant which is important

aspect of our project. Apache Kafka deals with millions of transactions.

3.2.7 APACHE ZOOKEEPER

 ZooKeeper is used as a service registry for the Apache Kafka containers only.

3.2.8 HA PROXY

 This serves as API Gateway in the project and proxies for all incoming requests and routes

those requests to the right service container based on the URL pattern. For example, /users

messages are routed to user service.

In this project, a variant of HA Proxy is used which is called Docker Flow Proxy [27]. In the

project, Docker Swarm Listener [28] is used to auto configure the proxy service based on the

configuration information provided to it by each service.

3.2.9 ELASTIC SEARCH

 Elasticsearch is used as data store for service logs. Elasticsearch is the search and analysis

system. It is the place where your data is finally stored, from where it is fetched, and is

responsible for providing all the search and analysis results.

28

3.2.10 LOGSTASH

 Logstash, which is in the front, is responsible for giving structure to your data (like parsing

unstructured logs) and sending it to Elasticsearch.

3.2.11 KIBANA

 Kibana allows you to build pretty graphs and dashboards to help understand the data so

you don’t have to work with the raw data Elasticsearch returns.

3.2.12 LOGSPOUT

 Logspout service collects all service logs logged on stdout and stderr and forwards it to

Logstash service.

3.2.13 PROMETHEUS

 Prometheus is used in the project for monitoring and time series data storage. It has the

following features:

1. Dimensional data – implements a highly dimensional data model. Time series are

identified by a metric name and a set of key-value pairs.

2. Powerful queries – has a flexible query language that allows slicing and dicing of

collected time series data to generate graphs, tables and alerts.

3. Great visualization – multiple modes for visualizing data, graph, expression browser

and console template language.

4. Efficient storage – of time series in memory and on local disk in a custom format.

Scaling can be via functional sharding and federation.

29

5. Simple operation – each server is independent for reliability, relying only on local

storage.

6. Precise alerting – Alerts are defined based on the flexible query language and

maintain dimensional information.

3.2.14 GRAFANA

 Grafana is used to create dashboards with relevant tables and graphs for the monitoring

data in Prometheus data store.

3.2.15 NODE EXPORTER

 Node exporter is used to export hardware and OS metrics exposed by *NIX kernels to

Prometheus. In the project, it is used to collect stats on each swarm node in the cluster and

runs as a container within each node (global mode) of the swarm cluster.

3.2.16 GOOGLE CADVISOR

cAdvisor (Container Advisor) provides container users an understanding of the resource

usage and performance characteristics of their running containers. It is a running daemon

that collects, aggregates, processes, and exports information about running containers.

Specifically, for each container it keeps resource isolation parameters, historical resource

30

usage, histograms of complete historical resource usage and network statistics. This data is

exported by container and machine-wide.

cAdvisor has native support for Docker containers.

It also runs as a service container on any one of the swarm nodes in the cluster.

3.2.17 DROPWIZARD JAVA MICROSERVICES FRAMEWORK

 Dropwizard is lightweight Java microservice framework. It bundles following open source

tools and libraries to create a framework:

1. Jackson – a JSON library

2. Jetty – an embedded web server

3. Jersey – JAX-RS 2.0 reference implementation library

In the project Dropwizard has been used to write all microservices with REST endpoints. This

includes the following services:

1. user-service

2. command-processor-service

3. chatbot-service

31

3.2.18 QUARTZ JOB SCHEDULER

 Quartz job scheduler is used to asynchronously perform a task. In the project, it is used to

submit a job that performs a series of steps to fulfil the cloud operations management task

as desired by the user. At the end of the task the response from cloud provider is stored in

the database.

3.2.19 JERSEY RESTFUL WEB SERVICES FRAMEWORK

 Jersey is indirectly used via the Dropwizard framework. It is a reference implementation for

JAX-RS 2.0 API.

3.3 DATA-TIER TECHNOLOGIES

3.3.1 MONGO DB

Mongo DB – A document oriented NoSQL DB that is scalable and easy to use. It guarantees

atomicity at document level. In the project, MongoDB is used for the following 2 cases:

1. User DB – to store the user profile data. User service provides REST API interface for

other services to interact with the user data. User DB is a private datastore for user

service.

2. Command DB – is used at the command processor microservice to store incoming

messages and their responses and to store the user profile data at the user

32

microservice. Data stored in the command DB is also used in message de-duplication

at command processor service.

33

Chapter 4. PROJECT DESIGN

This section talks about the project design objectives and the design patterns employed to

attain those goals.

4.1 CLIENT DESIGN

4.1.1 WEB UI DESIGN

 The user should sign up on the Web UI before requesting for Amigo services, following are

the screenshots:

34

Once the user has signed up, he/she can login to the Amigo, following are the screenshots:

35

36

4.1.2 MOBILE UI DESIGN

4.1.2.1 WIREFRAME

 Below is the wireframe for our mobile application. It consists of UI elements and the layout

of the application that provides user to create account and login to access amigo services. A

user can interact with Amigo chatbot to run any cloud related task. Also, user can update

their profile.

Figure 3 - Mobile UI Wireframe Design

37

4.1.2.2 LOGIN AND REGISTRATION

Figure 4 - Mobile UI Login Screen

Figure 5 - Mobile UI Registration

38

Figure 6 - Mobile UI Registration II

4.1.2.3 CHAT UI

 UI design for chat messenger. User can interact with amigo through this interface. We are

using react-native-gifted-messenger for the implementation of chat messenger.

39

Figure 7 - Mobile UI Chat

Figure 8 – Mobile UI Chat II

40

4.1.3 RASPBERRY PI INTELLIGENT ASSISTANT DESIGN

. It is made following the nice book on the subject by Tanay Pant - Building a Virtual Assistant

for Raspberry Pi (APress). Ria uses Google STT (Speech to text) API and espeak on Linux (or

say on OSX) for TTS (Text to speech).

Figure 9 - Raspberry Pi Intelligent Voice Assistant (RIA)

The above figure illustrates the Raspberry Pi 3 connected to:

1. Speaker

2. Microphone

3. Blink (1) [29]

Speaker and microphone are attached to the Raspberry pi so the voice assistant can listen

and talk to user.

41

Blink (1) is a small USB light to give to give glance able notice of anything on one’s computer

or the internet. It makes it easy to connect data sources in the cloud or on computer to a

full-color RGB LED so one can know what’s happening without checking any windows or

going to any websites or typing any command. It has 3 dimensions of information:

1. Color

2. Brightness and

3. Pattern

When user starts talking to RIA the wake-up word is “RIA”. At that point, the blink (1) will

glow white and flash giving a perception of actively listening to the user.

Once the text has been accepted, the command will be sent to the backend RIA Bot Service

and once the result is received from the backend, the white flashing will stop and it will

either show a RED (for failure) or GREEN (for success).

4.2 MICROSERVICES DESIGN

 Building complex applications is inherently difficult. A Monolithic architecture only makes

sense for simple, lightweight applications. We will end up in a world of pain if we use it for

complex applications.

42

Figure 10 - Monolithic architecture good for small applications [30]

 As complexity keeps increasing the monolithic application based on layered design

becomes less efficient. With increasing complexity of the application, the speed to develop

(to add a new feature), test and deploy the feature keeps decreasing. The larger the code

base gets the more time a developer needs to spend in development since number of

dependencies increase. More time is spent testing too due to increased complexity.

43

. Architecture is the key to implementation of most extreme programming practices like

continuous integration, test-driven development (TDD), short development cycles, and so

on.

Figure 11 - Monolithic applications tend to become less efficient with time [30]

 Scaling of monolithic applications is very resource inefficient as everything needs to be

duplicated.

44

Figure 12 - Scaling monolithic applications

 The Microservices architecture pattern is the better choice for complex, evolving

applications despite the drawbacks and implementation challenges. The advantages of

microservices seem strong enough to have convinced some big enterprise players – like

Amazon, Netflix and eBay – to begin their transitions. As opposed to more monolithic design

structures, microservices: [31]

1. Improve fault isolation: larger applications can remain largely unaffected by the

failure of a single module.

2. Eliminates long-term commitment to a single technology stack: if you want to try out

a new technology stack on an individual service, it is easy to do so with microservice

45

architecture as each service could be written using technology stack that is most

appropriate for the task. Dependency concerns will be far lighter than with

monolithic designs, and rolling back changes much easier. The less code in play, the

more flexible you can be.

3. Makes it easier for a new developer to understand the functionality of a service.

Key aspects of microservices are:

• They do one thing or are responsible for one functionality.

• Each microservice can be built by any set of tools or languages since each is

independent from others.

• They are truly loosely coupled since each microservice is physically separated from

others.

• Relative independence between different teams developing different microservices

(if APIs they expose are defined in advance).

• Easier testing and continuous delivery or deployment

46

Figure 13 - A typical microservice application [32]

Table below lists the advantages and disadvantages of microservice architecture:

Architectures Advantages Disadvantages

Monolithic

servers

1. Good for small applications

1. Increase in complexity

or feature sets

increase the amount of

code and the time

47

required to develop a

feature and test it.

2. Scaling is resource

inefficient.

3. Technology stack once

chosen in the

beginning limits the

choice of technology

stack for development

of new features.

Microservices 1. Easy to scale and more

resource efficient. Only scale

the microservices that really

need scaling.

2. We can choose different

technology stacks across

services within the same

application thus selecting the

best solution for each service.

1. Increased operational

and deployment

complexity.

2. Reduced performance

due to remote

procedure calls

between services.

48

3. There is much less code to go

through to see what a

microservice does. IDEs work

faster that way, builds

happen in less time, tests

complete sooner and overall

it speeds up the development

time for a new feature.

4. Deployment is much faster

and easier. Rollback is also

fast. If there is an issue with

the service the fault in that

service is isolated to just that

service and other services can

continue to work.

5. There is no long-term

commitment to a technology

stack.

Weighing the above pros and cons of the 2 architectures, it was evident that microservices

architecture is more suitable for the project.

49

4.2.1 MICROSERVICES BEST PRACTICES

 Following are the best practices that need to be applied to a microservices architecture:

4.2.1.1 CONTAINERS

 Due to the number of microservices could be large for an application it can easily become

a very complex endeavor. Each service can be written in a different programming language

and can require a different server or can use a different set of libraries. If each service is

packaged as a container then most of those problems will go away. All we should do is run

the container and trust that everything needed is inside it.

In this project, we used Docker to package the microservices into containers.

4.2.1.2 REVERSE PROXY/ API GATEWAY

 For most Microservices based applications, it makes sense to implement a Reverse proxy

service, which acts as a single-entry point into a system. If there isn’t some type of

orchestration, dependency between the consumer and microservices becomes so big that it

might remove freedom that microservices are supposed to give us. The reverse proxy service

is responsible for request routing, composition, and protocol translation.

It provides each of the application’s clients with a custom API. The API Gateway can also

mask failures in the backend services by returning cached or default data. Their goal is to

invoke different microservices and return an aggregated service. They should not contain

50

any logic but simply group several responses together and respond with aggregated data to

the consumer.

Figure 14 - API Gateway [33]

 In this project, we employ Docker flow proxy (which is based on Apache HA Proxy) as the

API Gateway. All external requests come via the reverse proxy and never directly to a

microservice.

51

4.2.1.4 MINIMALISTIC APPROACH

. Microservices should contain only packages, libraries and frameworks that they really need.

The smaller they are, the better.

For each service, we use the following:

1. Alpine Linux OS – it is a security-oriented, lightweight Linux distribution based on the

musl libc and busybox.

2. Dropwizard/Jetty – embedded webserver.

4.2.2 MICROSERVICES DESIGN PATTERNS

This section describes the microservices design patterns employed in this project.

4.2.2.1 DECOMPOSE BY SUBDOMAIN

 Define services corresponding to Domain-Driven Design (DDD) subdomains. DDD refers to

the application’s problem space - the business - as the domain. A domain consists of multiple

subdomains. Each subdomain corresponds to a different part of the business.

In this project, we have defined the following microservices based on the domains:

1. User-Service: User registration subdomain

2. Slackbot-Service: Slack client adapter

3. Chatbot-Service: Generic client adapter

4. RiaBot-Service: Virtual assistant adapter

52

5. Command-Processor-Service: Cloud Ops Management action executor

4.2.2.2 SERVICE DEPLOYMENT PLATFORM

 Use a deployment platform, which is automated infrastructure for application deployment.

It provides a service abstraction, which is a named, set of highly available (e.g. load balanced)

service instances. The service deployment platform should meet the following

requirements:

1. Multiple services could be deployed.

2. Service instances are isolated from one another.

3. Quickly build and deploy a service.

4. Able to constrain the resources (CPU and memory) consumed by a service.

5. Able to monitor the behavior of each service instance.

6. Deployment should be reliable. The desired number of replicas for a service instance

should be maintained even in case of failures.

In this project, we use Docker Swarm as the service deployment platform.

4.2.2.3 MICROSERVICE CHASSIS

 Build your microservices using a microservice chassis framework, which handles cross-

cutting concerns such as externalized configuration, logging, health checks, metrics, service

registration and discovery, circuit breakers.

53

In this project, we use Dropwizard microservice framework as the chassis framework that

bundles several libraries together to handle the cross-cutting concerns for the service.

4.2.2.4 INTER-PROCESS COMMUNICATION MECHANISM

 Microservices must communicate using an inter-process communication mechanism.

When designing how services will communicate, we need to consider various issues:

1. How services interact,

2. How to specify the API for each service,

3. How to evolve the APIs, and

4. How to handle partial failure.

There are 2 kinds of IPC mechanisms that Microservices can use,

1. asynchronous messaging and

2. synchronous request/response.

In our design, we employed Apache Kafka for asynchronous messaging and REST API calls

from one service to another for synchronous request/response.

4.2.2.5 SERVICE DISCOVERY MECHANISM

 In a microservice application, the set of running service instances changes dynamically.

Instances have dynamically assigned network locations. Consequently, for a client to make

a request to a service it must use a service-discovery mechanism.

54

A key part of service discovery is the service registry. The service registry is a database of

available service instances. The service registry provides a management API and a query API.

Service instances are registered with and deregistered from the service registry using the

management API. The query API is used by the system components to discover available

service instances.

There are 2 main service discovery patterns:

1. Client-side discovery

2. Server-side discovery

In client-side discovery, clients query the service registry, select an available instance,

and make a request.

In systems that use server-side discovery, clients make requests via a router (API

gateway), which queries the service registry and forwards the request to an available

instance.

55

Figure 15 - Server-side service discovery [34]

There are 2 main ways that the service instances are registered with and deregistered

from the service registry.

1. Self-registration pattern: is for service instances to register themselves with the

service registry.

2. Third-party registration pattern: is for some other system component to handle the

registration and deregistration on behalf of the service.

In this project, we use Apache Zookeeper as self-registration server-side service registry for

Apache Kafka containers.

56

In some deployment environments, we need to set up our own service-discovery

infrastructure using a service registry such as Netflix Eureka, etcd or Apache Zookeeper. In

other deployment environments, service discovery is built in. For example, Kubernetes,

Docker Swarm and Marathon handle service instance registration and deregistration.

Docker Swarm mode as of Docker 1.12, comes with Consul Service registration built-in to

Docker engine. Docker Swarm services connected to the same Docker overlay network will

be able to communicate with each other by service’s name. All replicas of a service connect

to the same overlay network(s). There is no explicit service registration required anymore

and hence no need to host the service registry.

4.2.2.6 DATABASE PER SERVICE

 In a Microservices architecture, each microservice has its own private datastore. Different

microservices might use different SQL and NoSQL databases. While this database

architecture has significant benefits, it creates some distributed data management

challenges.

1. how to implement business transactions that maintain consistency across multiple

services

2. how to implement queries that retrieve data from multiple services.

For many applications, the solution is to use an event-driven architecture. One challenge

with implementing an event-driven architecture is how to atomically update state and how

57

to publish events. There are few ways to accomplish this, including using the database as a

message queue, transaction log mining and event sourcing.

The simplicity of our design does not face any of the above 2 problems. There are 2 services

that need their own private datastore:

1. User service – uses user-db service to store the user profile data. User service

provides REST API interface for other services to consume the data in the user-db.

No other service can directly access the user-db data.

2. Command Processor service – users command-db to store the message intent to

command mapping. Again, this datastore is only for private consumption of

command processor service alone. There is no other service that uses the data in the

command db.

4.2.2.7 DEPLOYING MICROSERVICES

 Deploying a microservices application is challenging. There are tens or even hundreds of

services written in a variety of languages and frameworks. Each one is a mini-application

with its own specific deployment, resource, scaling and monitoring requirements. There

are several microservice deployment patterns including:

1. Service instance per Virtual Machine, and

2. Service instance per Container

3. Serverless architecture like AWS Lambda. This is also known as Function as a

Service (FaaS).

58

We chose to deploy all our services with option 2 (a service per container). Following are

the benefits of this approach:

• It is straightforward to scale up and down a service by changing the number of

container instances.

• The container encapsulates the details of the technology used to build the service.

All services are, for example, started and stopped in the same way.

• Each service instance is isolated

• A container imposes limits on the CPU and memory consumed by a service instance

• Containers are extremely fast to build and start. For example, it’s 100x faster to

package an application as a Docker container than it is to package it as an AMI.

Docker containers also start much faster than a VM since only the application process

starts rather than an entire OS.

4.2.2.8 LOG AGGREGATION

 Use a centralized logging service that aggregates logs from each service instance. The users

can search and analyze the logs. They can configure alerts that are triggered when certain

messages appear in the logs.

In this project, Elasticsearch + Logstash + Kibana (ELK stack) is used to aggregate the logs

from all containers in the Docker swarm cluster.

59

4.2.2.9 APPLICATION METRICS

 Instrument a service to gather statistics about individual operations. Aggregate metrics in

centralized metrics service, which provides reporting and alerting. There are two models for

aggregating metrics:

• push - the service pushes metrics to the metrics service

• pull - the metrics services pull metrics from the service

 In this project, Prometheus is used to collect application and node metrics. The node

metrics are collected by using a node-exporter service. The container metrics are exported

by container advisor (Google’s cAdvisor) service. For both cases, push model is used where

the metrics collectors push the metrics to Prometheus which stores the metrics. Grafana is

used to then plot and build dashboards for monitoring application performance.

4.2.2.10 AUDIT LOGGING

 Record user activity in database. In this project, the user activity is logged in command DB.

Each request and response are logged and can be queried for auditing.

4.2.2.11 DISTRIBUTED TRACING

 Instrument service code such that:

1. Assigns each external request a unique external request ID

2. Passes the external request ID to all services that are involved in handling the request

3. Includes the external request ID in all log messages

60

4. Records information (e.g. start time, end time) about the requests and operations

performed when handling an external request in a centralized service.

This has the following benefits:

1. It provides useful insight into the behavior of the system including the sources of

latency

2. It enables developers to see how an individual request is handled by searching across

aggregated logs for its external request id.

 In this project, request ID is generated at the Chatbot-Service and then transferred via

the Kafka message payload to the command processor service. The request ID is

persisted in the command DB and all logging corresponding to the servicing of that

request logs the request ID with the time stamp so it is easy for the tracing the logs for a

certain request.

4.2.2.12 HEALTH-CHECK API

A service has a health check API endpoint (e.g. HTTP /health) that returns the health of the

service. The API endpoint handler performs various checks, such as

• the status of the connections to the infrastructure services used by the service

instance

• the status of the host, e.g. disk space

• application specific logic

61

A health check client - a monitoring service, service registry or load balancer - periodically

invokes the endpoint to check the health of the service instance

In this project, Dropwizard microservices framework provides a way to easily add health

check implementation. In user-service for example, health check endpoint tests the

connectivity of the service to the user-db.

4.2.3 END-TO-END CONTROL FLOW

The below figure shows the sequence diagram of message that flows from Slack UI to AWS

and the response from the backend back to the Slack user.

62

Figure 16 - Chatbot Sequence Diagram

63

Legends in the above sequence diagram are:

• Yellow colored entities are client side.

• Blue colored entities are server side.

Following are the steps shown in the above diagram:

1. Command processor service subscribes to the message queue topic (named

“user.msg”).

2. User needs to register/sign up with the Amigo Chatbot service using the Web UI or

Mobile App (or REST API client). Even though proxy service is not shown in the

sequence diagram above, all requests are routed via the proxy service.

3. User provides a unique email ID identifying the user to the system, with slack user

ID, RIA user ID and their AWS credentials. This info is persisted in user’s profile

maintained in the user-db.

4. Slack or RIA (Raspberry Pi Intelligent Assistant) virtual assistant user sends a message

to the slack or RIA bot service.

5. Slack or RIA bot service receives the message and forwards it to the Chatbot service.

6. Chatbot service gets the message intent from the wit.ai service.

7. If the message is valid then it is published on the user.msg topic on the Kafka message

queue and a response that message is being processed is returned to the user with

the generated request ID. If message is not valid (no intent found) then error is

returned to the slack or RIA user.

64

8. Command processor service consumers read the message from the topic.

9. The message payload has the intent of the message using which Command DB is

queried to find the command to execute for the intent.

10. The command is executed using the cloud provider’s CLI tool. The corresponding

Docker image (which has the cloud provider’s CLI tool pre-installed) is pulled from

the Docker hub registry.

11. The command is executed on the AWS cloud.

12. Response from the execution is returned to the slack user. In case of RIA user, the

result needs to be polled actively with the request ID. Once the status of the response

changes from IN_PROGRESS to one of SUCCESS or FAILURE, the result is

communicated to the user.

4.2.4 USER SERVICE

 User service is designed as a microservice that will provide user profile CRUD (Create, Read,

Update and Delete) functionality.

A new user of Amigo Chatbot Service will be required to first register with the system using

one of the 3 clients:

1. Web UI

2. Mobile App

3. REST API Client

User will be required to provide the following information:

65

1. User email

2. User name

3. User password

4. Slack user ID

5. RIA user ID

6. AWS Credentials

a. AWS Region

b. AWS Access Key ID

c. AWS Secret Access Key

The above information will be persisted in the user DB.

User DB will run as a separate microservice container which is only accessed by the user

service.

Any other service will access the user profile data via the REST APIs provided by user service.

Following REST APIs will be provided by the user service:

4.2.4.1 CREATE USER

 Protocol POST

URI /api/v1.0/users

Authentication Not Required

Request Headers Content-Type: application/json

Request body {
 "email": "acme@sjsu.edu",
 "name": "acme",

66

 "password":"pass",
 "slackUser":"acme",
 "riaId": "1",
 "awsCredentials": {
 "region": "us-west-2",
 "awsAccessKeyId": "secretKeyId",
 "awsSecretAccessKey": "secretAccessKey"
 }
}

Response status 201 Created

Response body {

 "entity": "acme@sjsu.edu",

 "variant": {

 "language": null,

 "mediaType": {

 "type": "application",

 "subtype": "json",

 "parameters": {},

 "wildcardType": false,

 "wildcardSubtype": false

 },

 "encoding": null,

 "languageString": null

 },

 "annotations": [],

67

 "language": null,

 "encoding": null,

 "mediaType": {

 "type": "application",

 "subtype": "json",

 "parameters": {},

 "wildcardType": false,

 "wildcardSubtype": false

 }

}

Description Requests the user to be created. Server response is 201

(created) with entity ID that can be used by the client to

retrieve the requested user.

4.2.4.2 GET USERS

 Protocol GET

URI /api/v1.0/users

Authentication Basic Authentication

Request headers None

Request body N/A

68

Response status 200 OK

Response body [

 {

 "email": "acme@sjsu.edu",

 "name": "acme",

 "password": "1a1dc91c907325c69271ddf0c944bc72",

 "slackUser": "acme",

 "riaId": "1",

 "awsCredentials": {

 "region": "us-west-2",

 "awsAccessKeyId": "secretKeyId",

 "awsSecretAccessKey": "secretAccessKey"

 }

 },

 {

 "email": "acme1@sjsu.edu",

 "name": "acme1",

 "password": "1a1dc91c907325c69271ddf0c944bc72",

 "slackUser": "acme1",

 "riaId": "1",

 "awsCredentials": {

69

 "region": "us-west-2",

 "awsAccessKeyId": "secretKeyId",

 "awsSecretAccessKey": "secretAccessKey"

 }

 }

]

Description Requests all users to be retrieved from the server.

4.2.4.3 GET A USER BY EMAIL ID

 Protocol GET

URI /api/v1.0/users/{userId}

Authentication Basic Authentication

Request headers None

Request body EMPTY

Response status 200 OK

Response body {

 "email": "acme@sjsu.edu",

 "name": "acme",

 "password": "1a1dc91c907325c69271ddf0c944bc72",

70

 "slackUser": "acme",

 "riaId": "1",

 "awsCredentials": {

 "region": "us-west-2",

 "awsAccessKeyId": "secretKeyId",

 "awsSecretAccessKey": "secretAccessKey"

 }

}

Description Requests to retrieve a user by email ID.

4.2.4.4 UPDATE USER

 Protocol PUT

URI /api/v1.0/users/{userId}

Authentication Basic Authentication

Request body {
 "email": "acme@sjsu.edu",
 "name": "acme",
 "password":"pass",
 "slackUser":"modified-acme",
 "riaId": "1",
 "awsCredentials": {
 "region": "us-west-2",
 "awsAccessKeyId": "secretKeyId",
 "awsSecretAccessKey": "secretAccessKey"
 }
}

Response status 200

71

Response body {
 "email": "acme@sjsu.edu",
 "name": "acme",
 "password":"pass",
 "slackUser":"modified-acme",
 "riaId": "1",
 "awsCredentials": {
 "region": "us-west-2",
 "awsAccessKeyId": "secretKeyId",
 "awsSecretAccessKey": "secretAccessKey"
 }
}

Description Requests the user to be updated. Server response is 200 (ok).

4.2.4.5 DELETE USER

 Protocol DELETE

URI /api/v1.0/users/{userId}

Authentication Basic Authentication

Request headers None

Request body EMPTY

Response status 200

Response body {

 "entity": "acme@sjsu.edu",

 "variant": {

 "language": null,

 "mediaType": {

72

 "type": "application",

 "subtype": "json",

 "parameters": {},

 "wildcardType": false,

 "wildcardSubtype": false

 },

 "encoding": null,

 "languageString": null

 },

 "annotations": [],

 "language": null,

 "encoding": null,

 "mediaType": {

 "type": "application",

 "subtype": "json",

 "parameters": {},

 "wildcardType": false,

 "wildcardSubtype": false

 }

}

73

Description Requests the user to be removed. Server response is 200 (ok)

meaning that the server performed the requested removal of

user and response returns the ID of the deleted user.

Figure 17 - User Service Class Diagram

Above class diagram shows the following classes:

Class Description

74

BaseResource It’s an abstract base class which defines common CRUD

methods to be implemented by any REST resource.

DBHealthCheck Implements health check by checking the connectivity to user

DB.

MongoDBClient Implements the DB client for user DB.

PrincipalUser Represents an authenticated user.

SimpleAuthentication Implements basic authentication.

UserDAO User DB Data access object.

UserResource Implements the REST endpoints for the user service.

UserServiceApplication Main entry point to the service. It initializes the service by

loading the externalized configuration in YAML configuration

file, creates a DB client, initializes the REST endpoints, starts up

the Jetty embedded web server.

75

Figure 18 - Common DB Module Class Diagram

Above class diagram shows the common DB module classes that will be used as a shared

library by services that need to access DB services. This is a common module for DB access

that will be used by both user service and command processor service.

Following are the classes shown in the above diagram:

76

Class Description

BaseDAO Common contract for all DAOs.

BaseDAOImpl Generic DAO implementation for all mongoDB entities.

It implements all methods except update method that needs to be

implemented for each entity in its DAO class.

DBClient This class encapsulates DB client operations that are not entity

specific.

DBFactory A factory class to create a new DB client. Each DB Client represents

a certain DB type. So, with factory it is easy to replace actual DB

with a mock DB or a different type of DB.

IModel A marker interface for domain models.

MongoDBClientBase Common base class for MongoDB Client.

Utilities This class has utility methods like generateMD5Hash for

encrypting passwords or any text before saving them in DB.

Validable An abstract class that is inherited from by model classes that are

validated if they have all required fields as not null etc.

ValidationException If there is a validation error this exception is thrown.

77

Figure 19 - Class Diagram for User DB

The above class diagrams are for classes that are specific to user DB:

Class Description

AWSCredentials Models the AWS credentials provided by the user during

registration. This is an embedded entity within User entity.

DatabaseModule This class is a Google Guice IoC (Inversion of Control) container’s

module that maps the MongoDBClient class as implementation of

DBClient type.

78

MongoDBClient This class provides a handle to all DAO classes of all user DB

entities.

User Models the user data provided by the user during registration.

UserDAO Represents DAO for User entity.

4.2.5 COMMAND PROCESSOR SERVICE

Shown below is the class diagram for the command processor service.

It shows the design is extensible to support multiple cloud providers. The Docker Task loads

the Docker image from Docker hub registry based on the information read from the

Command DB. So, the DockerTask is agnostic to any cloud provider or the type of command

it is executing. Till the time the intent has a mapping to a Docker image and the command

string to be passed as an argument with the Docker image while running the Docker

container, it can execute any command against any cloud provider or even an entirely

different task than cloud operations management.

 This design of using Docker image to bundle the existing AWSCLI client tool has an

additional benefit that we can execute any command on behalf of the slack user that is

supported by the awscli command. This same idea can be extended to managing other cloud

provider services from a chatbot interface and with minimal code change a new provider

can be supported on which we can perform all operations that its CLI client tool can perform.

79

Figure 20 - Command Processor Service module and its dependencies

Figure 21 - Command Processor Class Diagram

4.2.5.1 GET RESULT

80

 Protocol GET

URI /api/v1.0/cmd/response/{requestId}

Authentication Basic Authentication

Request Headers Content-Type: application/json

Request body None

Response status 200 OK

Response body {

 "_id" : "84a5-bc63ad413f0a",

 "startTime" : ISODate("2017-04-17T02:09:28.978Z"),

 "respRecvdTime" : ISODate("2017-04-

17T02:09:28.978Z"),

 "commandExecuted" : "aws iam list-users",

 "resp" : "{\n \"Users\": [\n {\n

\"UserName\": \"admin\",\n \"PasswordLastUsed\":

\"2016-02-18T04:21:55Z\",\n \"CreateDate\": \"2016-

02-13T00:20:57Z\",\n \"UserId\": \"AIDIDID\",\n

\"Path\": \"/\",\n \"Arn\":

\"arn:aws:iam::064674:user/admin\"\n },\n {\n

\"UserName\": \"rwatsh\",\n \"Path\": \"/\",\n

\"CreateDate\": \"2016-09-17T16:08:47Z\",\n

81

\"UserId\": \"DGDGFG\",\n \"Arn\":

\"arn:aws:iam::064674:user/rwatsh\"\n }\n]\n}",

 "status" : "SUCCESS"

}

Description Requests to get the result of execution of the command.

4.2.6 SLACK-BOT SERVICE

 The slack bot service is responsible for listening to all incoming messages from slack

messenger either sent to the channel where amigo chatbot is a participant or sent as a direct

message to the chatbot. It then parses the message that have been meant for amigo chatbot

explicitly by looking for messages that start with @amigo. It then gets the rest of the text

and invokes the wit.ai service to parse the message and get its intent. If wit.ai service could

not get the intent from the message, then error is returned to the user. If the service could

parse the message and get its intent, then it returns the intent to the service. In such a case

a new message payload is created and published to Kafka message queue topic named

“user.msg”.

82

Figure 22 - Slackbot service module dependencies

Below class diagram shows some of the essential classes of slack bot service.

83

Figure 23 - Slack Bot Class Diagram

4.2.7 CHAT-BOT SERVICE

84

 Chat-bot service receives the message from the various adapters for different client types.

The received message is then sent to the wit.ai service. At the wit.ai service the message is

parsed and intent of the message is inferred. If the intent could not be inferred then wit.ai

returns the entire message as-is. The inferred intent is then published to the user.msg Kafka

topic.

Figure 24 - Chatbot service module dependencies

85

Figure 25 – Chat-Bot Service Class Diagram

4.2.7.1 SEND NEW MESSAGE

 Protocol POST

86

URI /api/v1.0/chat

Authentication Basic Authentication

Request Headers Content-Type: application/json

Request body {
 "botType" : "SLACK",
 "msgReceivedTime" : "Mon May 08 00:43:38 PDT 2017",
 "userEmail" : "watsh.rajneesh@sjsu.edu",
 "userName" : "rwatsh",
 "content" : " aws help",
 "intent" : [],
 "requestId" : "",
 "channelId" : "D558L6680",
 "slackBotToken" : "xoxb-175292210080-qiwVClAzMfwVT"
}

PS: Intent and requestID are filled in at Chatbot service.

Response status 202 Accepted for success

400 Bad Request for failure (unable to process message)

Response body None – for success

Error message – for failure

Description Requests the message to be processed. Server response is 202

(accepted) with request ID that can be used by the client to

retrieve the response.

4.2.8 RIA-BOT SERVICE
The Raspberry Pi Intelligent Assistant (RIA) is a voice controlled interface to the chatbot

service. The RIA bot service is an adapter for receiving messages from RIA devices. It

then forwards those to the generic Chatbot service where the intent of the message is

87

inferred and message published on the message queue for further processing by

command processor service asynchronously.

Following are the module dependencies for the RIA bot service module:

Figure 26 - RiaBot Service module dependencies

Following is class diagram for RIA bot service:

88

Figure 27 - RiaBot Service class diagram

89

Following is the REST endpoint exposed by RIA bot service for the RIA devices to send

the messages to:

 Protocol POST

URI /api/v1.0/ria

Authentication Basic Authentication

Request Headers Content-Type: application/json

Request body {
 "content" : "aws help",
 "riaId" : "001",
 }

PS: RIA ID identifies the device with a unique ID. This ID

should be specified as part of the user’s profile during

registration.

Response status 202 Accepted for success

400 Bad Request for failure (unable to process message)

Response body None – for success

Error message – for failure

Description Requests the message to be processed. Server response is 202

(accepted) with request ID that can be used by the client to

retrieve the response.

90

4.3 DATA-TIER DESIGN

 This section describes the DB schema design. There are 2 DBs in the system and each one

is private to its respective service. Other services should not access that DB’s data directly

but only do so via the REST APIs of the service consuming that DB.

4.3.1 USER-DB

 This DB is consumed by user service and stores the user’s profile data. User service provides

the CRUD interface to the DB’s data via its REST APIs that is described in above section.

This DB is a NoSQL mongoDB and there is just one collection users and following is an

example document in that collection which shows the information that is persisted in the

DB per user.

 4.3.1.1 USERS COLLECTION

> db.users.find().pretty()

{

 "_id" : "test@gmail.com",

 "name" : "testUser",

 "password" : "password",

91

 "slackUser" : "watsh.rajneesh@sjsu.edu",

 "riaId" : "101",

 "awsCredentials" : {

 "region" : "us-west-2",

 "awsAccessKeyId" : "abc",

 "awsSecretAccessKey" : "def"

 }

}

4.3.2 COMMAND-DB

 This DB is consumed by command processor service and it stores the mapping between

intent of the message for a given cloud provider and the command that needs to be executed

on it.

4.3.2.1 PROVIDERS COLLECTION

 Providers collection contains provider name as the key, a docker image corresponding to

the provider which consists of the provider specific CLI tool pre-installed in the image and

commands list which is a mapping of intent to command.

If no mapping is found for the intent then the incoming message is passed as command to

the CLI.

92

> db.providers.find().pretty()

{

 "_id" : "aws",

 "dockerImage" : "sjsucohort6/docker_awscli",

 "commands" : [

 {

 "intent" : "iam list users",

 "cmdList" : [

 "iam",

 "list-users"

]

 }

]

}

4.3.2.2 REQUESTS COLLECTION

 The requests collection consists of request ID, start time of request, command to be

executed, time at which the response is received, the status of the command execution and

the command result.

> db.requests.find().pretty()

93

{

 "_id" : "84a5-bc63ad413f0a",

 "startTime" : ISODate("2017-04-17T02:09:28.978Z"),

 "respRecvdTime" : ISODate("2017-04-17T02:09:28.978Z"),

 "commandExecuted" : "aws iam list-users",

 "resp" : "{\n \"Users\": [\n {\n \"UserName\": \"admin\",\n

\"PasswordLastUsed\": \"2016-02-18T04:21:55Z\",\n \"CreateDate\": \"2016-02-

13T00:20:57Z\",\n \"UserId\": \"AIDIDID\",\n \"Path\": \"/\",\n \"Arn\":

\"arn:aws:iam::064674:user/admin\"\n },\n {\n \"UserName\": \"rwatsh\",\n

\"Path\": \"/\",\n \"CreateDate\": \"2016-09-17T16:08:47Z\",\n \"UserId\":

\"DGDGFG\",\n \"Arn\": \"arn:aws:iam::064674:user/rwatsh\"\n }\n]\n}",

 "status" : "SUCCESS"

}

94

Chapter 5. PROJECT IMPLEMENTATION

5.1 CLIENT IMPLEMENTATION

5.1.1 SLACK MESSENGER INTEGRATION

 The figure below show user chatting with the bot in Slack Messenger in a channel named

chatops. A channel can have multiple users conversing with the bot at the same time.

Figure 28 - Conversation with Chatbot in a Channel named “Chatops”

95

 The figure below show the user conversing with the amigo chatbot in direct message mode.

Direct message mode is when user and the chatbot are the exchanging messages without

any other users participating in the conversation or watching the messages exchanged.

Figure 29 - Direct message conversation with Chatbot

96

5.1.2 Web UI

 Web User Interface is the first step for a user to start using Amigo chatbot services. A user

should sign up on the Web UI and provide all the details that can be utilized by us to make

them easily access Amigo chatbot.

Following are the screens of the Web UI:

Figure 30 - Sign Up Screen

97

Figure 31 – Login Screen

Figure 32 – Chat Room Screen

5.1.3 Mobile Application

 To access Amigo service, user must register to our services through web portal or mobile
app. For mobile app, we are using react native so it is easy to create app for both iOS and
Android platforms.
 Below are some implementations from applications:

‘’

98

Figure 33 - Login screen

Figure 34 - Login failure

99

 Figure 33- Login Screen

Figure 34- Login Failed Screen

100

Figure 35- Register Screen

101

Figure 36 – Chat Room Screen

102

5.2 MIDDLE-TIER IMPLEMENTATION

 The middle-tier is made up of the following micro services deployed as Docker containers

within a Docker Swarm cluster.

Figure 37 - Docker Swarm Cluster running all Microservices

 Below table shows the various microservices and the legends (color) used in the above

diagram to identify them:

103

Category Microservice Legend Purpose

Reverse Proxy or API

Gateway

HA Proxy or Docker

Flow Proxy [27]

Red Reverse proxy or API gateway

the routes the incoming

messages based on the URL

pattern.

Docker Flow Swarm

Listener [28]

Auto registers any changes in

containers IP with the HA

Proxy service using its REST

endpoint.

Logging

Logspout [17] Purple Logspout is a log router for

Docker containers that runs

inside Docker. It attaches to

all containers on a host, then

routes their logs wherever

you want. It also has an

extensible module system.

It’s a mostly stateless log

appliance. It captures

container logs written to

stdout and stderr.

104

Elasticsearch [14] Elastic search is a highly-

scalable open-source full-text

search and analytics engine.

It allows you to store, search,

and analyze big volumes of

data quickly and in near real

time.

Logstash [15] Logstash is part of the Elastic

Stack along with Beats,

Elasticsearch and Kibana.

It is used to collect,

aggregate, and parse your

data, and then have Logstash

feed this data into

Elasticsearch.

Kibana [16] Kibana is an open source

analytics and visualization

platform designed to work

with Elasticsearch. Kibana is

105

used to search, view, and

interact with data stored in

the Elasticsearch indices. One

can easily perform advanced

data analytics and visualize

data in a variety of charts,

tables and maps.

Monitoring

Prometheus [18] Green Prometheus is an open-

source monitoring system

with a dimensional data

model, flexible query

language, efficient time

series database and modern

alerting approach.

Node-Exporter [20] Node exporter is exporter of

hardware and OS metrics

exposed by *NIX kernels to

Prometheus. It is designed to

monitor the host system.

106

cAdvisor [21] cAdvisor (container advisor)

provides container users an

understanding of the

resource usage and

performance characteristics

of their running containers.

Grafana [19] Grafana is open source

software for time series

analytics and visualization.

Amigo Chatbot

Services

User Service Orange Microservice for user profile

CRUD.

 User DB Persistent store for user

profile data.

 Command Processor

Service

Microservice for command

processing on cloud provider.

 Command DB Persistent store for

command to be executed,

result of the execution, etc.

107

 RIABot Service Adapter service for

Raspberry Pi Intelligent

Assistant.

 SlackBot Service Adapter service for incoming

messages from slack

messenger.

 ChatBot Service Processes all incoming

messages from different

client types by inferring the

intent from the message and

then delegates to the

command processor service

for execution.

Diagnostics Services Util It runs an instance of Alpine

Linux and runs on each node

of Swarm cluster. It is helpful

to attach to this service and

run the bash terminal and

install diagnostics tools like

drill or curl and triage an issue

when the need arises.

108

 Docker Swarm

Visualizer [35]

Not

Shown

A visualization service that

draws an image of the nodes

in the swarm cluster and the

services they are running.

5.2.1 USER SERVICE

 This micro service maintains the user profile data and provides the following endpoints

for other services to interface with it:

a. User registration with the system.

b. User authentication and session management

c. User profile query

d. User account deletion.

The database used by user service is MongoDB.

5.2.2 SLACK-BOT SERVICE
 This micro service listens to all incoming messages from slack service where the amigo

chatbot is a participant. It could be either a direct message to amigo chatbot or a message

in the channel with several other bots and users where amigo chatbot is also one of the

participants. The listener parses the messages and selects only those that are addressed

specifically to amigo chatbot.

109

 Once a message addressed to amigo chatbot is selected, the listener invokes the wit.ai

service to perform the Natural Language Processing (NLP) on the message and get the

intent from the message.

 If wit.ai returns the intent successfully then message is published to the Kafka message

queue. If it fails to get the intent from the message, then the message is dropped and an

error message is returned to the slack messenger user.

5.2.3 WIT.AI SERVICE
 This is a third-party service that consumes the message and derives the intent of the

message. Once the intent of the message can be derived successfully the chatbot service can

process the message further.

5.2.4 COMMAND PROCESSOR SERVICE
 This microservice processes the intent of the message by consuming it from the Kafka

message queue topic. It then looks up its command DB for a matching intent and cloud

provider and gets the corresponding Docker image name to use and the command to

execute against that Docker image from the DB. It then pulls the Docker image (if not already

present) or else the local cached image will be used for executing the command. The

command is executed on the cloud provider and the corresponding response is returned to

the user’s client. MongoDB is used to implement the command DB.

110

5.3 DATA-TIER IMPLEMENTATION

5.3.1 USER DB
 This DB is used for storing the user profile information. A user needs to create an account

with the amigo chatbot’s user service either using its REST APIs or through the Web UI. Once

an account exists, a Web UI or mobile App user can be authenticated.

Please note that a slack messenger user need not create an account with amigo chatbot as

that user is already authenticated through slack messenger service.

5.3.2 COMMAND DB

 This DB is used to store the mapping of an intent of message for a cloud provider to the

Docker image and command that can be executed. The intent of the message and the cloud

provider name can be used to lookup the Docker image and the command to execute. For

each intent and cloud provider pair, a unique command needs to exist. The Docker image in

most cases will be same for all commands to be executed for a given cloud provider.

5.4 IMPLEMENTATION PLAN

 The project is being implemented using Agile methodology. For Continuous integration,

Shippable and Travis CI services are used which does a build and test upon every commit to

the GitHub repository (https://github.com/sjsucohort6/amigo-chatbot) for the project.

Below table shows the last 2 sprints worth of tasks and their status:

111

Sprint 1 – Feb 11 – Feb 25

Tasks Status Completed by

Work on wit.ai service integration Completed Swetha

Kafka with docker setup Completed Chetan

Command Processor Module Completed Watsh

Build docker image with awscli pre-

installed

Completed Ashutosh

Sprint 2 – Feb 26 to March 12th

Work on slack bot service and

integrate with wit.ai

In Progress Swetha

Work on Web UI – implement user

sign-up

In Progress Chetan

User service implementation In Progress Watsh

Mobile App UI In Progress Ashutosh

112

Chapter 6. TESTING AND VERIFICATION

6.1 INTRODUCTION

6.1.1 PURPOSE

 This Test Plan document covers the necessary information required to effectively track and

define the approaches that will drive the testing of the Amigo Chabot. The documents

introduce:

• Test Strategy: Criteria on which test will be based on e.g.: objectives, assumptions,

dates etc.; description of the process to perform valid test e.g.: creation of test cases,

Schedule, Task to perform

• Execution Strategy: how to test needs to be performed and processed – reporting

issues, implementing fixes

• Test Management: handling the logistics of the test and tasks that come up during

execution e.g.: escalation procedures, communications

6.1.2 PROJECT OVERVIEW

 Amigo is an assistant tool to manage cloud operations. This tool allows user to provide the

operation he/she would like to perform in natural language text. Tool gets the intent of the

text message and maps it and calls required rest service to perform the task and gets the

result back to user.

113

The functionality of the system allows users some sets of operations (which grows gradually)

in the chat room. All the operations are subject to user’s defined security policy where

he/she can only run/performs commands he/she is authorized to.

6.1.3 AUDIENCE

• Project team members perform tasks specified in this document, and provide input

and recommendations on this document.

• Project Lead Plans for the testing activities in the overall project schedule, reviews

the document, tracks the performance of the test according to the task herein

specified, approves the document and is accountable for the results.

6.2 TEST STRATEGY

6.2.1 TEST OBJECTIVES

 The main objective of the test is to verify that the overall functionality of Amigo Chabot. As

part of this we need to test functionality of the following modules

• Chatbot Service backend

• Bot Engine

• Mobile App

• Web Application

• Slack Integration

114

• Raspberry Pi Virtual Assistant

This test covers executing and verifying critical, high and medium severity defects with high

priority and lower severity ones are prioritized for future fixing.

6.2.2 TEST ASSUMPTIONS

 Key Assumptions

• Set of supported operations by the system are available to start this Functional

Testing

• In each testing phase, number of cycles to be initiated depends on the defect rate of

previous cycle. Only if there is high defect rate in cycle n-1, cycle n will be initiated.

 General

• Performance testing is not considered for this.

• Exploratory testing will be carried out once build/module is ready for testing.

• Test environment and preparation activities will be taken care by corresponding

module developer.

• All the test cases are design will be performed respective QA members of the

module.

• System/Module will be treated as a black box; if the information/result is as

expected, it will be assumed that the DB is working correctly.

6.2.3 TEST PRINCIPLES

• Testing will be focused on meeting quality

115

• Testing process will be well defined with the ability to change as needed

• All the test activities will depend on previous stages to avoid redundant effort

• Testing will be defined into phases with well-defined goals and objectives

• There will be criteria for entrance and exit

6.2.4 SCOPE AND LEVELS OF TESTING

 Exploratory
 PURPOSE: to make critical defects fixed or removed before moving to next level of
testing.

 SCOPE: First level navigation

 TESTERS: developer and testing team

 METHOD: Carried without any test scripts and documentation

 TIMING: at the beginning of each cycle

 Functional Test

PURPOSE: will be performed to check functions of the application. It is performed

against given set of inputs and validation of the system output.

 SCOPE: below is the scope of the functional testing

• Chatbot Service backend

• Bot Engine

• Mobile App

• Web Application

• Slack Integration

116

• Raspberry Pi Virtual Assistant

 TESTERS: Testing team

 TIMING: after exploratory test is completed

 TEST ACCEPTANCE CRITERIA

1. Approved functional specification document, Use-case document must be

provided prior to start testing

2. Test cases needs to be approved

3. Development completed with unit tested features are eligible and the results of

the unit test needs to be shared to avoid duplicate efforts.

 TEST DELIVERABLES

Table 2 - Test Deliverables

S.NO Deliverable Name Author Reviewer

1. Test Plan Test Lead Project Manager

2. Functional Test Cases Test Team Project Manger

3. Logging Defects Test Team Test Lead

4. Daily/Weekly status report Test team Test Lead/Project

Manager

5. Test Closure report Test Lead Project Manager

117

User Acceptance Test (UAT)

PURPOSE: will be performed to validate the business logic. One final review of the complete

system prior to delivery

TESTERS: is performed by the end users

METHOD: Test team writes some UAT test cases and those cases are validated probably not

using scripts

TIMING: After exploratory and functional testing are completed. After completing this

testing product is ready to be released/delivered

TEST DELIVERABLES:

Table 3 - User Acceptance Test Deliverables

S. No. Deliverable Name Author

1. UAT Test cases Test team

6.2.5 EXECUTION STRATEGY

Entry and Exit Criteria
 The entry criteria refer to the desirable condition to start the test execution. The exit

criteria refer to the conditions that needs to be met to proceed with implementation. Entry

and exit criteria are flexible benchmarks.

Table 4 - Entry and exit criteria

Exit Criteria Test Team Notes

100% test scripts executed

118

95% pass rate

No open High/medium severity

criteria

6.2.6 TEST CYCLES

• Functional testing will be carried out in two cycles.

• Aim of first cycle is to discover any blocking, critical/high defects.

• Aim of the second cycle is to identify remaining high and medium defects

• UAT consists of only one cycle

6.3 VALIDATION AND DEFECT MANAGEMENT

 Testers are expected to run all the test cases in each of the cycles. Tester can log and report

the issues using xlsx sheet shared via google drive and dev team can review them and work

on fixing them. Testers/Manager are responsible for assigning the severity of the defect.

Table 5 - Bug Severity

Severity Effect

Critical (1) Bug is critical can crash the system, potential data loss, hangs

system

High (2) Bug in vital component functionality

119

Medium (3) Has workaround and could bring down the quality of the system

Low Minimum impact in the product use

Cosmetic No impact in the product use

6.4 TEST MANAGEMENT PROCESS

6.4.1 TEST DESIGN PROCESS

• Tester needs to understand each requirement and create test case to cover all

requirements

• Each test case needs to be mapped to use cases to requirements (Traceability Matrix)

• Test cases will go through peer review and testers will rework on incorporating those

comments.

6.4.2 TEST CASES

Below is the list of some of the test Cases which needs to be covered during testing:

Test

ID

Test Case Steps Expected Result

US001 User Registration Signup using REST API by doing POST

/api/v1.0/users endpoint.

201 Created

response should

be returned. User

120

should be created

in user DB.

US002 Get all users Fetch all users using REST API by doing

GET on /api/v1.0/users endpoint.

200 OK response

should be

returned.

US003 Get a user Get user by ID using REST API by doing

GET on /api/v1.0/users/{userId}

endpoint.

200 OK response

should be

returned.

US004 Update a user

profile

Update a user’s profile by doing PUT on

/api/v1.0/users/{userId} endpoint.

200 OK response

should be returned

and updated user

entity should be

returned.

US005 Delete a user Delete a user by doing DELETE on

/api/v1.0/users/{userId}.

200 OK response

returned.

US006 Web UI Tests Repeat tests US001 through to US005

with Web UI

US007 Mobile UI Tests Repeat tests US001 through to US005

with Mobile UI

121

SL008 Slack user send

message to

amigo bot

Send a message to amigo bot from slack

UI for a user who is registered with

amigo bot system.

Bot service should

respond.

SL009 Send message

that can be

parsed for intent.

Send message “aws list ec2 instances” Bot should return

the result of

command

execution.

SL010 Send message

that is known

that it cannot be

parsed for intent,

like missing cloud

provider name.

Send message “list ec2 instances” Bot should return

failure message.

SL011 Send message

that is correct

but known that it

cannot be parsed

for intent.

Send message “aws iam list-users” Bot should return

correct response

still.

SL012 Send a message

that is not

correct by itself

Send message “list iam users aws” Bot should return

aws CLI help.

122

and does not

have intent

mapping.

RI013 Send a correct

message that has

intent mapping.

Send message “list aws ec2 instances” Bot should return

success message

and blink(1) light

should glow

GREEN.

RI014 Send an incorrect

message that has

no intent

mapping.

Send message “list my instances” Bot should return

failure message

and blink(1) should

glow RED.

RI015 Send a message

that has no intent

mapping but is

correct.

Send message “aws list ec2 instances” Bot should return

success message

and blink(1) should

glow GREEN.

123

6.5 PROJECT MANAGEMENT

Project Manager: Reviews test plan, test strategy and test estimates.

6.5.1 TEST PLANNING (TEST LEAD)

• Creates test plan, test cases and expected results and execution script

• Manages defect

• Communicates with the development team

6.5.2 TEST TEAM

• Performs execution and validation

• Identifies and assigns priority to defects

• Prepares testing metrics

6.5.3 DEVELOPMENT TEAM

• Keeps test team and project team informed with feature delivery date

• Responsible for developing assigned components / features

• Fixes the defects according to the schedule

• Helps test team in validating of the results (if required)

124

Chapter 7. PERFORMANCE AND BENCHMARKS

7.1 PERFORMANCE METRICS

 The system’s performance is calculated on various factors, some are as follows:

• Response time: Response time is the time system will take to respond to the user’s

request. Our system design ensures minimal response time.

• Processing time: When user gives the input to Amigo to process some request, the time

taken to process the request is the processing time. The processing time should be

minimum.

• Throughput: This is the most important parameter from user’s perspective. It is the

number of requests a system can process in given time. If the throughput exceeds than

expected, there is a possibility of Amigo chatbot server becoming non-responsive.

• Query and reporting time: After processing inputs from user, system will query and

respond to the user with the respective output. This whole time is calculated as query

and reporting time. Our system has optimal query and reporting time.

In addition to the above, we will be capturing 5 important metrics specific to chatbot:

• Active and engaged users: It is the number of active sessions of a user w.r.t the number

of total sessions with that user, here the user reads a message sent by the bot. Engaged

rate is the number of engaged sessions per total sessions, here the user responds to a

message. We can find out the frequently typed messages from the user and can adapt

the bot accordingly.

125

• Confusion Triggers: It is the situation where chatbot doesn’t understand how to process

the user’s request. If we understand what user inputs are causing this issue and help to

optimize the programming model.

• Conversation Steps: It is the count of exchanges between Amigo chatbot and the user.

This will help us to understand the average number of conversation steps between user

and the chatbot. The length of conversations (either short or long than the average) can

help us diagnose any problem related to the chatbot performance.

• Average number of conversations per user: This parameter tells us if there is an issue

with the chatbot service.

• Retention Rate: This parameter tells us whether the users are coming back to the

chatbot service and if they are not then we can make changes in our chatbot service

accordingly.

7.2 PERFORMANCE TOOLS

 Each Amigo chatbot service has been exposed as an API, hence every API endpoint like

create user, update user, delete user etc. will be tested for single as well as multiple

concurrent threads to get the performance footprint. In addition to the above-mentioned

parameters, we will also be capturing the CPU and Memory utilization for each test. This

will give us a better picture on how and when to scale our environment.

126

7.2.1 APACHE JMETER

 We use Apache JMeter to carry out performance tests. JMeter uses a concept called Test

Plan that has number of controllable parameters like Thread Group, Timer, and Sampler etc.

Every test plan is one performance scenario. Following is the explanation of some concepts:

Thread Group: It is the beginning step of every test and consists of controllers and samplers.

In simple terms, it is the parameter to control the number of threads you require to execute

the test. Additionally, you can also control the ramp up time which is the time until all the

threads will start executing concurrently to make the simulation represent real-life scenario.

Sampler: It tells JMeter to send the requests to the server. There are number of samplers

like FTP Request, HTTP Request, and JDBC Request etc.

7.3 PERFORMANCE TESTS

 We test all the API endpoints related to Amigo chat service. To start with, we consider all
the user related APIs.

7.2.2 MACHINE DETAILS

The performance is tested on a machine with following configurations:

Processor Name Intel Core i7

Processor Speed 2.8 GHz

Number of Processors 1

Total Number of Cores 4

L2 Cache (per Core) 256 KB
L3 Cache 6 MB

Memory 16 GB

127

7.2.3 PERFORMANCE RESULTS

Each test is carried out for a duration on 2 minutes.

POST /api/v1.0/signup

of
Threads

of
Samples

Average Min Max Throughput
(request/sec)

% CPU
Utilization

Memory
Usage
(KB)

1 7082 16 3 2002 58.2 10 ~0

5 7248 78 4 2014 59.1 15 ~0
10 7618 145 4 2056 62.2 20 ~0

20 8190 285 4 2033 66.8 30 ~0

POST /api/v1.0/login

of
Threads

of
Samples

Average Min Max Throughput
(request/sec)

% CPU
Utilization

Memory
Usage
(KB)

1 1701 70 65 104 14.2 2 ~0

5 5868 101 66 192 48.9 9 ~0

10 4880 245 66 308 40.6 10 ~0

POST /api/v1.0/users

of
Threads

of
Samples

Average Min Max Throughput
(request/sec)

% CPU
Utilization

Memory
Usage
(KB)

1 1690 69 63 100 13.5 2 ~0

5 5762 98 64 185 47.5 9 ~0
10 4758 234 64 298 39.8 10 ~0

GET /api/v1.0/users

128

of
Threads

of
Samples

Average Min Max Throughput
(request/sec)

% CPU
Utilization

Memory
Usage
(KB)

1 7091 17 3 2002 58.5 10 ~0
5 7251 83 4 2009 59.7 15 ~0

10 7624 158 4 2034 62.6 20 ~0

20 8206 292 4 2027 67.3 30 ~0

GET /api/v1.0/users/{userId}

of
Threads

of
Samples

Average Min Max Throughput
(request/sec)

% CPU
Utilization

Memory
Usage
(KB)

1 7073 16 3 2001 58.5 10 ~0
5 7245 78 4 2005 59.6 15 ~0

10 7598 151 4 2029 62.2 20 ~0
20 8197 289 4 2023 66.7 30 ~0

HEAD /api/v1.0/users/{userId}

of
Threads

of
Samples

Average Min Max Throughput
(request/sec)

% CPU
Utilization

Memory
Usage
(KB)

1 7082 16 4 2002 58.7 10 ~0

5 7245 80 4 2007 59.8 15 ~0
10 7607 154 4 2030 61.9 20 ~0

20 8202 290 4 2025 67.7 30 ~0

PUT /api/v1.0/users/{userId}

of
Threads

of
Samples

Average Min Max Throughput
(request/sec)

% CPU
Utilization

Memory
Usage
(KB)

1 7085 17 3 1995 58.7 10 ~0

5 7179 79 4 1989 59.5 15 ~0

129

10 7595 145 4 2034 62.3 20 ~0

20 8194 285 4 2027 66.4 30 ~0

DELETE /api/v1.0/users/{userId}

of
Threads

of
Samples

Average Min Max Throughput
(request/sec)

% CPU
Utilization

Memory
Usage
(KB)

1 7084 17 3 2002 58.2 10 ~0
5 7248 74 4 1995 58.7 15 ~0

10 7605 144 4 2012 63.5 20 ~0
20 8195 285 4 2003 65.6 30 ~0

130

Chapter 8. DEPLOYMENT, OPERATIONS, MAINTENANCE

8.1 DEPLOYMENT

 For deployment, Docker Swarm mode is used for the project.

In the development environment, the swarm cluster can be run locally using virtualbox

driver as:

Table 6 Docker Swarm Cluster Creation

#!/usr/bin/env bash
Create swarm cluster nodes with virtualbox
for i in 1 2 3; do
 docker-machine create -d virtualbox node-$i
done

Make node1 swarm manager
eval $(docker-machine env node-1)

docker swarm init \
 --advertise-addr $(docker-machine ip node-1)

Get the token to join worker nodes
TOKEN=$(docker swarm join-token -q worker)

Make nodes 2 and 3 as swarm workers
for i in 2 3; do
 eval $(docker-machine env node-$i)

 docker swarm join \
 --token $TOKEN \
 --advertise-addr $(docker-machine ip node-$i) \
 $(docker-machine ip node-1):2377
done

echo "Created swarm cluster"

Once the cluster is created, each service is added using docker create service command as

shown below:

131

eval $(docker-machine env node-1)

Create user-db service
docker service create --name user-db \
 --network user-net \
 --log-driver=gelf \
 --log-opt gelf-address=udp://127.0.0.1:12201 \
 --log-opt tag="user-db" \
 mongo:3.2.10

Create user-service service
docker service create --name user-service \
 -e DB=user-db \
 --network user-net \
 --network proxy-net \
 --label com.df.notify=true \
 --label com.df.distribute=true \
 --label com.df.servicePath=/api/v1.0/users \
 --label com.df.port=8080 \
 --log-driver=gelf \
 --log-opt gelf-address=udp://127.0.0.1:12201 \
 --log-opt tag="user-service" \
 sjsucohort6/user-service:1.0

docker service ps user-db
docker service ps user-service

echo "Created user service and user db"

Docker networking is used to connect the services by making them join on the same overlay

network then each service can call the other by its name.

132

Figure 35 - Docker Swarm Visualizer

Docker Swarm Visualizer showing 3 nodes of the cluster running microservices across all
nodes.

133

In production, Docker Swarm cluster will be deployed on Amazon Web Services EC2

instances with Docker engine.

8.2 OPERATION AND MAINTENANCE

 To ensure that application is running successful and fulfilling its all requirements and

features. Application operation phase continues till the application life. All the operation

and maintenance of our project will be done via Kubernetes. Which will monitor system

performance and efficiency.

8.3 DEPLOYMENT PLAN

 Table 7 – Deployment Plan

Phase Plan Status

Setting up programming and

execution environment

1. Install Slack

2. Create wit.ai developer

account.also

3.Setup Docker

Completed

Set up Development

Environment

1. Set up Slack chatbot

2. Set up IDE for

Development

3. Setup Mongo DB

4.setting up Wit.ai instance

Completed

134

5. Setting up React native for

mobile development

6.Setting up Kafka Clusters

Executing programs and

hardware simulations

1. Integrate wit.ai with

chatbot service

2.Integrate Docker hub to

pull AWS - cli image

3. Develop test cases for

each module.

Completed

Implementing Modules 1. Wit.ai service to find

intent

2. Kafka message queue

3. Command processor

Module

4. Client UI Module

5. Mobile Application

Completed

Integrating Module 1. Integrate all module and

test them.

2. Test Module in

development environment.

3. Test all use cases.

Completed

135

136

Chapter 9. SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS

9.1 SUMMARY

 In this project, “Amigo: A Chatbot for cloud ops management” we have presented and

implemented a tool to assist humans to preform cloud operations by taking conversational

text as input. This bot is built with serverless framework using AWS Lambda. In depth

architecture details of Amigo including middle, client and data tier design are discussed and

shows how the bot is scalable. Amigo has been trained with few basic set of questions

related to the small set of the operations (AWS commands). As part of this project

maintenance, we aim at training our model to support wider set of operations and cloud

platforms. This new approach to communication that allows teams to collaborate and

manage various aspects of their infrastructure. It enables improving how IT teams

collaborate to handle DevOps by making it more visible, efficient and simple.

9.2 CONCLUSIONS

 Bots can help the team to be more productive and to accomplish tasks with more ease.

From our studies above, it can be said that there are various approaches and methods used

in Chatbot design. One must note that all these techniques of design are still a matter for

debate and no common approach has been identified yet. Amigo’s architecture is fully server

137

less, secure and responsive. It allows IT teams to collaborate and manage various aspects of

their infrastructure.

There is still an opportunity to add few more integrations with enterprise solutions and

thereby making it extensible platform.

9.3 RECOMMENDATIONS FOR FURTHER RESEARCH

 With the advances in Artificial Intelligence combined with rising popularity of mobile

chatting apps throws a new wave of innovation in digital commerce which is more

conversational and personal in nature. Technology has also advanced to a point where voice

digital assistants are beginning to become useful for the average consumer. This has led to

a new trend – “conversational commerce” which began pickup speed in 2016.

 Some companies like H&M are already using chatbots for marketing via messenger services

like Kik. Aside from marketing, chatbots will continue to play a role in online commerce and

of course customer service.

138

GLOSSARY

Source: Wikipedia
Table 8 – Glossary

Term Description

Amazon Echo Amazon Echo (known in-development as Doppler or

Project D and shortened and referred to as Echo) is a

smart speaker developed by Amazon.com. The device

consists of a 9.25-inch (23.5 cm) tall cylinder speaker with

a seven-piece microphone array.

Amazon Web Services
(AWS)

Amazon Web Services, a subsidiary of Amazon.com,

offers a suite of cloud-computing services that make up

an on-demand computing platform. These services

operate from 14 geographical regions across the world.

Apache Kafka

Apache Mesos Apache Mesos is an open-source cluster manager that

was developed at the University of California, Berkeley. It

"provides efficient resource isolation and sharing across

distributed applications, or frameworks". The software

139

enables resource sharing in a fine-grained manner,

improving cluster utilization.

Apache Spark Apache Spark is a fast, in-memory data processing engine

with elegant and expressive development APIs to allow

data workers to efficiently execute streaming, machine

learning or SQL workloads that require fast iterative

access to datasets.

Apache Zookeeper ZooKeeper is a centralized service for maintaining

configuration information, naming, providing distributed

synchronization, and providing group services. All of

these kinds of services are used in some form or another

by distributed applications.

Apache ZooKeeper

Artificial Intelligence
Markup Language (AIML)

AIML (Artificial Intelligence Markup Language) is an XML-

compliant language that's easy to learn, and makes it

possible for you to begin customizing an Alicebot or

creating one from scratch within minutes. The most

140

important units of AIML are: <aiml>: the tag that begins

and ends an AIML document.

Cassandra Apache Cassandra is a free and open-source distributed

database management system designed to handle large

amounts of data across many commodity servers,

providing high availability with no single point of failure.

Chat-Bot Short for chat robot, a computer program that simulates

human conversation, or chat, through artificial

intelligence. Typically, a chat bot will communicate with

a real person, but applications are being developed in

which two chat bots can communicate with each other.

Chat bots are used in applications such

as ecommerce customer service, call centers and

Internet gaming. Chat bots used for these purposes are

typically limited to conversations regarding a specialized

purpose and not for the entire range of human

communication.

One well known example of a chat bot is ALICE.

A chat bot is also called a chatterbot.

141

Cloud Computing The practice of using a network of remote servers hosted

on the Internet to store, manage, and process data,

rather than a local server or a personal computer.

Consul

DevOps DevOps (a clipped compound of development and

operations) is a term used to refer to a set of practices

that emphasizes the collaboration and communication of

both software developers and other information-

technology (IT) professionals while automating the

process of software delivery and infrastructure changes.

Docker Docker is an open-source project that automates the

deployment of Linux applications inside software

containers. Docker provides an additional layer of

abstraction and automation of operating-system-level

virtualization on Linux.

Docker Hub Docker Hub is a cloud-based registry service which allows

one to link to code repositories, build images and test

them, stores manually pushed images, and links to the

142

Docker Cloud so one can deploy images to hosts. It

provides a centralized resource for container image

discovery, distribution and change management, user

and team collaboration and workflow automation

throughout the development pipeline.

Docker Swarm Cluster management and orchestration features

embedded in the Docker engine are built using SwarmKit.

Docker engine participating in a cluster are running in

swarm mode.

Dropwizard Dropwizard is a Java framework for developing ops-

friendly, high performance, RESTful webservices.

Dropwizard pulls together stable, mature libraries from

the Java ecosystem into a simple light-weight package. It

has out-of-the-box support for configuration, application

metrics, logging, operational tools and much more.

Elasticsearch Elastic search is a highly-scalable open-source full-text

search and analytics engine. It allows you to store, search,

143

and analyze big volumes of data quickly and in near real

time.

Facebook Messenger Facebook Messenger (sometimes abbreviated

as Messenger) is an instant messaging service and

software application which provides text and voice

communication.

Google cAdvisor cAdvisor (container advisor) provides container users an

understanding of the resource usage and performance

characteristics of their running containers.

Grafana Grafana is open source software for time series analytics

and visualization.

HTTP Hypertext transfer protocol is an application protocol for

distributed, collaborative, and hypermedia information

systems. HTTP is the foundation of data communication

for the world wide web. Hypertext is structured text that

uses logical links (hyperlinks) between nodes containing

text.

144

Jersey Jersey RESTful Web Services framework is open source,

production quality, framework for developing RESTful

Web Services in Java that provides support for JAX-RS

APIs and serves as a JAX-RS (JSR 311 & JSR 339) Reference

Implementation.

Kibana Kibana is an open source analytics and visualization

platform designed to work with Elasticsearch. Kibana is

used to search, view, and interact with data stored in the

Elasticsearch indices. One can easily perform advanced

data analytics and visualize data in a variety of charts,

tables and maps.

Logspout Logspout is a log router for Docker containers that runs

inside Docker. It attaches to all containers on a host, then

routes their logs wherever you want. It also has an

extensible module system. It’s a mostly stateless log

appliance. It captures container logs written to stdout

and stderr.

145

Logstash Logstash is part of the Elastic Stack along with Beats,

Elasticsearch and Kibana.

It is used to collect, aggregate, and parse your data, and

then have Logstash feed this data into Elasticsearch.

Marathon Marathon is a production-grade container orchestration

platform for Mesosphere's Datacenter Operating System

(DC/OS) and Apache Mesos.

Microsoft Azure Microsoft Azure /ˈæʒər/ is a cloud computing platform

and infrastructure created by Microsoft for building,

deploying, and managing applications and services

through a global network of Microsoft-managed data

centers.

Natural Language
Processing (NLP)

Natural language processing is a field of computer

science, artificial intelligence, and computational

linguistics concerned with the interactions between

computers and human (natural) languages. As

such, NLP is related to the area of human–computer

interaction.

146

Node-exporter Node exporter is exporter of hardware and OS metrics

exposed by *NIX kernels to Prometheus. It is designed to

monitor the host system.

Prometheus Prometheus is an open-source monitoring system with a

dimensional data model, flexible query language,

efficient time series database and modern alerting

approach.

Quartz Job Scheduler Quartz is a richly featured, open source job scheduling

library that can be integrated within virtually any Java

application. It can be used to create simple or complex

schedules for executing tens of thousands of jobs; jobs

whose tasks are defined as standard Java components

that may execute virtually any task. It includes many

enterprise class features like support for JTA transactions

and clustering.

React JS A JavaScript library for building user interfaces

147

React Native Building mobile apps with React that work same as native

apps and uses same fundamental UI building blocks as

regular iOS and Android apps using JavaScript and React.

REST Representational State Transfer (REST) WebServices are

one way of providing interoperability between computer

systems on the internet.

Slack Slack is a cloud-based team collaboration tool co-

founded by Stewart Butterfield, Eric Costello, Cal

Henderson, and Serguei Mourachov. Slack began as an

internal tool used by their company, Tiny Speck, in the

development of Glitch, a now defunct online game.

Webhook A WebHook is an HTTP callback: an HTTP POST that

occurs when something happens; a simple event-

notification via HTTP POST. A web application

implementing WebHooks will POST a message to a URL

when certain things happen.

148

REFERENCES

[1] J. Kreps, I Heart Logs, O'Reilly Media, Inc., 2014.

[2] Facebook, "React," Facebook, 2017. [Online]. Available:

https://facebook.github.io/react/. [Accessed 15 April 2017].

[3] Facebook, "React Native," Facebook, [Online]. Available:

https://facebook.github.io/react-native/.

[4] Slack, "Slack API Bot Users," Slack, [Online]. Available: https://api.slack.com/bot-

users.

[5] T. Pant, Building a Virtual Assistant for Raspberry Pi: The practical guide for

constructing a voice-controlled virtual assistant, 1st ed., Apress, 2016.

[6] Docker, "What is Docker," Docker, [Online]. Available:

https://www.docker.com/what-docker.

[7] Docker, "Swarm mode key concepts," [Online]. Available:

https://docs.docker.com/engine/swarm/key-concepts/.

[8] Docker, "Overview of Docker Hub," [Online]. Available:

https://docs.docker.com/docker-hub/.

[9] Facebook, "wit.ai," [Online]. Available: https://wit.ai/.

[10] Hashicorp, "Introduction to Consul," [Online]. Available: https://www.consul.io/intro/.

[11] Apache, "Apache Kafka a distributed streaming platform," [Online]. Available:

https://kafka.apache.org/.

[12] Apache, "Apache ZooKeeper," [Online]. Available: https://kafka.apache.org/.

[13] HAProxy, "HAProxy," [Online]. Available: http://www.haproxy.org/.

[14] Elasticsearch, "Elasticsearch Reference," [Online]. Available:

https://www.elastic.co/guide/en/elasticsearch/reference/current/getting-started.html.

[15] Elasticsearch, "Logstash - transport and process your logs, events, or other data,"

[Online]. Available: https://github.com/elastic/logstash.

[16] Elasticsearch, "Kibana User Guide Introduction," [Online]. Available:

https://www.elastic.co/guide/en/kibana/current/introduction.html.

[17] Gliderlabs, "Log routing for Docker container logs," [Online]. Available:

https://github.com/gliderlabs/logspout.

[18] Prometheus, "Prometheus - Monitoring system & time series database," [Online].

Available: https://prometheus.io/.

[19] Grafana Labs, "Grafana," [Online]. Available: https://grafana.com/.

[20] Prometheus, "Node Exporter," [Online]. Available:

https://github.com/prometheus/node_exporter.

[21] Google, "cAdvisor," [Online]. Available: https://github.com/google/cadvisor.

149

[22] Dropwizard Team, "Dropwizard," [Online]. Available:

http://www.dropwizard.io/1.1.0/docs/.

[23] Software AG, "Quartz Job Scheduler," [Online]. Available: http://www.quartz-

scheduler.org/.

[24] Oracle Corporation, "Jersey - RESTful WebServices in Java," [Online]. Available:

https://jersey.java.net/.

[25] MongoDB, "Introduction to Mongo DB," [Online]. Available:

https://docs.mongodb.com/manual/introduction/.

[26] A. Team, "Raspberry Pi Intelligent Assistant (RIA)," [Online]. Available:

https://github.com/sjsucohort6/ria.

[27] V. Farcic, "Docker Flow Proxy," [Online]. Available:

https://github.com/vfarcic/docker-flow-proxy.

[28] V. Farcic, "Docker Flow Swarm Listener," [Online]. Available:

https://github.com/vfarcic/docker-flow-swarm-listener.

[29] blink(1), "The USB RGB LED notification light," [Online]. Available:

https://blink1.thingm.com/.

[30] V. Farcic, "Microservices: The Essential Practices," [Online]. Available:

https://technologyconversations.com/2015/11/10/microservices-the-essential-

practices/.

[31] V. Badola, "Microservice architecture: advantages and drawbacks," Cloudacademy, 30

November 2015. [Online]. Available: http://cloudacademy.com/blog/microservices-

architecture-challenge-advantage-drawback/. [Accessed 15 April 2017].

[32] C. Richardson, "Pattern: Microservice Architecture," [Online]. Available:

http://microservices.io/patterns/microservices.html.

[33] C. Richardson. [Online]. Available: http://microservices.io/patterns/apigateway.html.

[34] C. Richardson. [Online]. Available: http://microservices.io/patterns/server-side-

discovery.html.

[35] Docker, "Docker Swarm Visualizer," [Online]. Available:

https://github.com/dockersamples/docker-swarm-visualizer.

[36] Turbonomic, "Getting started with Docker Swarm," [Online]. Available:

https://turbonomic.com/blog/on-technology/getting-started-with-docker-swarm-part-

1/.

[37] T. Pant, Building a Virtual Assistant for Raspberry Pi: The practical guide for

constructing a voice-controlled virtual assistant, APress, 2016.

[38] S. Goasguen, Docker Cookbook, O'Reilly Media, Inc., 2015.

[39] K. Hightower, Kubernetes: Up and Running, O'Reilly Media, Inc., 2017.

[40] V. Farcic, The DevOps 2.0 Toolkit, Packt Publishing, 2016.

[41] B. Burke, RESTful Java with JAX-RS 2.0, 2nd Edition ed., O'Reilly Media, Inc.,

2013.

150

[42] D. M. Beazley, Python Essential Reference, 4th Edition ed., Addison-Wesley

Professional, 2009.

[43] K. Becker, Building Voice-Enabled Apps with Alexa, Bleeding Edge Press, 2017.

[44] WhatsBroadcast, "The Importance of Chatbot Metrics," [Online]. Available:

https://www.whatsbroadcast.com/the-importance-of-chatbot-metrics/.

[45] Facebook, "wit.ai," [Online]. Available: https://wit.ai/.

151

Appendices

Appendix A. Apache Kafka

Figure 16- Apache Kafka Architecture

1. Message Oriented Middleware (MOM) such as Apache Qpid, Rabbit MQ, Microsoft

MQ and IBM MQ Series were used for exchanging messages across various

components. While these products are good at implementing the

publisher/subscriber pattern (Pub/Sub), they are not specifically designed for dealing

with large streams of data originating from thousands of publishers. Most of the

MOM software have a broker that exposes Advanced Message Queuing Protocol

(AMQP) protocol for asynchronous messaging.

2. Kafka is designed from the ground up to deal with millions of firehose-style events

generated in rapid succession. It guarantees low-latency, “at-least-once”, delivery of

messages to consumers. Kafka also supports retention of data for offline consumers,

which means that the data can be processed either in real-time or in offline mode.

152

3. Kafka is designed to be a distributed commit log. Much like relational databases, it

can provide a durable record of all transactions that can be played back to recover

the state of a system.

4. Kafka provides redundancy, which ensures high availability of data even when one of

the servers faces disruption.

5. Multiple event sources can concurrently send data to a Kafka cluster, which will

reliably get delivered to multiple destinations.

6. Key concepts:

• Message – Each message is a key/value pair. Irrespective of data type, Kafka

always converts messages into byte arrays.

• Producers – or publisher clients that produce data

• Consumers – are subscribers or readers that read the data. Unlike subscribers

in MOM, Kafka consumers are stateful, which means they are responsible for

remembering the cursor position, which is called an offset. The consumer is

also a client of Kafka cluster. Each consumer may belong to a consumer group.

The fundamental difference between a MOM and Kafka is that the clients will

never receive message automatically. They must explicitly ask for a message

when they are ready to handle it.

• Topics – logical collection of messages. Data sent by producers are stored in

topics. Consumers subscribe to a specific topic that they are interested in.

153

• Partition – Each topic is split into one or more partitions. They are like shards

and Kafka may use the message key to automatically group similar messages

into partition. This scheme enables Kafka to dynamically scale the messaging

infrastructure. Partitions are redundantly distributed across the Kafka cluster.

Messages are written to one partition but copied to at least two more

partitions maintained on different brokers within the cluster.

• Consumer groups – consumers belong to at least one consumer group, which

is typically associated with a topic. Each consumer within the group is mapped

to one or more partitions of the topic. Kafka will guarantee that a message is

only read by a single consumer in the group. Each consumer will read from a

partition while tracking the offset. If a consumer that belongs to a specific

consumer group goes offline, Kafka can assign the partition to an existing

consumer. Similarly, when a new consumer joins the group, it balances the

association of partitions with the available consumers.

It is possible for multiple consumer groups to subscribe to the same topic. For

example, in the IoT use case, a consumer group might receive messages for

real-time processing through an Apache Storm cluster. A different consumer

group may also receive messages from the same topic for storing them in

HBase for batch processing.

154

The concept of partitions and consumer groups allows horizontal scalability

of the system.

• Broker – Each Kafka instance belonging to a cluster is called a broker. Its

primary responsibility is to receive messages from producers, assigning

offsets, and finally committing the messages to the disk. Based on the

underlying hardware, each broker can easily handle thousands of partitions

and millions of messages per second.

The partitions in a topic may be distributed across multiple brokers. This

redundancy ensures the high availability of messages.

• Cluster – A collection of Kafka broker forms the cluster. One of the brokers in

the cluster is designated as a controller, which is responsible for handling the

administrative operations as well as assigning the partitions to other brokers.

The controller also keeps track of broker failures.

• ZooKeeper – Kafka uses Apache ZooKeeper as the distributed configuration

store. It forms the backbone of Kafka cluster that continuously monitors the

health of the brokers. When new brokers get added to the cluster, ZooKeeper

will start utilizing it by creating topics and partitions on it.

155

Appendix B. Docker Swarm (mode) [36]

Docker Swarm is Docker’s native clustering technology. It works very well with the Docker

command line tools like docker and docker-machine, and provides the basic ability to deploy

a Docker container to a collection of machines running the Docker Engine. Docker Swarm

does differ in scope, however, from what we saw when reviewing Amazon ECS.

Amazon ECS leverages its own technology stack to run Docker containers. This includes EC2

instances to host the virtual machines, auto-scaling to scale those virtual machines up and

down, Elastic Load Balancers (ELB) to distribute load to your Docker containers, and more.

Docker Swarm, on the other hand, is only a clustering technology: you register the servers

that can run Docker Containers with Swarm and Swarm will deploy containers to those

machines. It is your responsibility to start and stop machines, register and deregister

machines with Swarm, and register and deregister your containers with your own load

balancing solution.

While Amazon ECS is probably the preferred way of clustering Docker in AWS, Docker Swarm

does have the ability to run anywhere, including outside of Amazon. Many organizations are

embracing the cloud slowly and many organizations are running in a hybrid cloud

environment, in which some applications or additional instances of applications are running

in a public cloud while the remaining applications are running in a local data center.

156

Regardless of whether you have embraced a cloud platform, are running a hybrid cloud, or

running solely in your own data center, Swarm will enable to you to take advantage of

Docker in any environment.

So how does Docker Swarm work?

Docker Swarm is implemented using two different types of components:

A manager container, which runs on a virtual machine, manages the environment, deploys

containers to the various agents, and reports the container status and deployment

information for the cluster; it is your primary interface into Docker Swarm

Agents are containers running on virtual machines that register themselves with the

manager and run the actual Docker containers.

157

Figure 36 - Docker Swarm Architecture

In this example, we have a Docker Swarm Manager that is managing two agents (Agent1 and

Agent2). Those two agents are running two instances of an Nginx Container. Both the

manager and agents are “docker machines” that contain the Docker Engine and are capable

of running Docker containers. As we’ll see in the next section, Docker machines are very

similar to Docker containers themselves, with the exception that they are started using the

docker-machine command instead of the docker command.

The example in the next section will demonstrate how to setup a Docker Swarm cluster on

your local machine (hence the reference to “Your Laptop” as the Docker Host in figure 1). In

158

production, both the manager as well as the agents will run directly on their own virtual

machines.

159

Appendix C. Docker Flow Proxy [37] [38]

The docker flow proxy uses HAProxy as a proxy and adds custom logic that allows on-

demand reconfiguration of the proxy. It provides an easy way to reconfigure proxy every

time a new service is deployed, or when a service is scaled.

Docker flow proxy can be configured through docker environment variables and/or by

creating a new image based on vfarcic/docker-flow-proxy.

160

Appendix D. Prometheus [39]

Prometheus is an open-source systems monitoring and alerting toolkit. It was originally built

by SoundCloud.

Following are its features:

• A multi-dimensional data model (time series identified by metric name and

key/value pairs)

• A flexible query language to leverage this dimensionality

• No reliance on distributed storage; single server nodes are autonomous

• Time series collection happens via a pull model over HTTP

• Pushing time series is supported via an intermediary gateway

• Targets are discovered via service discovery or static configuration

• Multiple modes of graphing and dashboarding support

Prometheus ecosystem consists of the following components (some of which are optional):

• The main Prometheus server which scrapes and stores time series data

• Client libraries for instrumenting application code

• A push gateway for supporting short-lived jobs

• Special-purpose exporters (for HAProxy, statsD, graphite etc)

• An alert manager

• various support tools

Following diagram shows the architecture:

161

Figure 37 - Prometheus Architecture

Prometheus scrapes the metrics from jobs, either directly or via an intermediary push

gateway for short-lived jobs. It stores all scraped samples locally and runs rules over this data

to either record new time series from existing data or generate alerts. Grafana or API

consumers can be used to visualize the collected data.

162

Appendix E. cAdvisor [40]

cAdvisor (Container Advisor) provides container users an understanding of the resource

usage and performance characteristics of their running containers. It is a running daemon

that collects, aggregates, processes, and exports information about running containers.

Specifically, for each container it keeps resource isolation parameters, historical resource

usage, histograms of complete historical resource usage and network statistics. This data is

exported by container and machine-wide.

cAdvisor has native support for Docker containers and should support just about any other

container type out of the box.

163

Appendix F. Grafana

Figure 38 - Grafana dashboard

Grafana is an open source, feature rich metrics dashboard and graph editor for Graphite,

Elasticsearch, Open TSDB and Prometheus.

Its features include:

• Graphing

i. Fast rendering, even over large timespans

ii. Click and drag to zoom

iii. Multiple y-axis, log scales

iv. Bars, lines and points

v. Smart Y-axis formatting

vi. Legend values and formatting options

vii. Grid thresholds, axis labels

164

viii. Any panel can be rendered to PNG

• Dashboards

i. Create, edit, save and search dashboards

ii. Change column spans and row heights

iii. Templating

iv. Scripted dashboards

v. Dashboard playlists

vi. Time range controls

vii. Share snapshots publicly

• Prometheus

i. Feature rich query editor UI

• Alerting

i. Define alert rules using graphs and query conditions

ii. Schedule and evaluate alert rules, send notifications to Slack, etc.

165

Appendix G. Elastic Stack [41]

The ELK stack consists of Elasticsearch, Logstash and Kibana. Elasticsearch along with

Logstash and Kibana, provides a powerful platform for indexing, searching and analyzing

data.

Data constantly flows into your systems, but it can quickly grow to be fat and stale. As your

data set grows larger, your analytics will slow up, resulting in sluggish insights. And this is

likely to be a serious business problem. So, the BIG question for your big data is: how can

you maintain valuable business insights?

• Elasticsearch is a log search tool with following benefits:

o Real-time data and real-time analytics

o Scalable, high-availability and multi-tenant

o Full text search

o Document oriented – data stored as JSON documents

• Logstash is a tool for log data intake, processing and output. It is a pipeline for event

processing, it takes precious little tie to choose the inputs, configures the filters and

extract the relevant, high-value data from logs. Then integrate with Elasticsearch to

persist the filtered data and super-fast queries against mountains of data.

• Kibana is for visualizing log data in dashboard. It is used to visualize logs and other

time stamped data.

