
APRStt Implementation Notes

Version 1.2 - June 2015

Introduction

APRStt allows a user, equipped with only DTMF (commonly known as Touch Tone) generation capability,
to enter information into the global APRS data network.

You can find more information here: http://www.aprs.org/aprstt.html

This document explains how it was implemented in the Dire Wolf application. No special hardware is
required. Audio, from the receiver, is captured by the computer’s soundcard. DTMF decoding is all in
software. This will run on Windows and various flavors of Linux including single board computers such
as the Raspberry Pi, Beaglebone, etc.

Touch Tone Transmission Overview

All transmissions are a sequence of touch tone button presses concluded by the # button. If there are

multiple parts, they are separated by the * button. A complete transmission might look like these:

B3123456 * C1 * A9A2B42A7A7C71 #

You can think of * and # as being like commas and a period in an English sentence.

 * is used only to separate the different parts, which we call “fields” here.

 # means it is the end of a complete group to be processed together.

The first character of each field identifies the type of field:

A = callsign or object characteristics
B = position data
C = comment text or status
D = message text – not defined anywhere, not implemented
0 - 9 = compact all numeric form (macros in this implementation)

All touch tone transmissions must contain a callsign or object name so we can associate the other data
with some name.

http://www.aprs.org/aprstt.html

In most examples, the callsign is shown at the end like this:

B3123456 * C1 * A9A2B42A7A7C71 #

but that is not a requirement (at least in this implementation). Any other order, such as

A9A2B42A7A7C71 * C1 * B3123456 #

Is also valid. Typically the callsign is shown at the end because it is convenient to store your callsign and
the terminating # in a DTMF memory. You manually press buttons for location and/or status
information then send your call from memory.

There are other cases where the opposite order would be more convenient. Suppose you were at a
fixed location reporting which runner, bicycle, canoe, parade vehicle, etc. is passing by. In this case, you
might manually enter the object number, on your HT keypad, and then send your location and the
terminating # from your HT memory.

Any partially accumulated touch tone sequence will be discarded after 5 seconds of no Touch Tone
activity. If you make a mistake just wait a while for it to be cleared out and start over.

Modes of Operation

(1) TNC / application server mode.

When a Touch Tone transmission is received, it is placed in the normal APRS packet format and sent to
any attached applications for processing. The data type identifier of “t” is used. The rest of the
information field is the raw Touch Tone key press data. This is temporary until the official APRS
standard has a better way for a dumb TNC, with a DTMF decoder, to convey raw touch tone data to a
client application.

Here is an example of what it looks like on the screen in monitoring format:

The source and destination might contain information useful for troubleshooting but the application
should not rely on this because it might change between versions. There are no configuration options.

This only gets sent to client applications. It is not sent over the air. The sample application “ttcalc”
provides an example of how you might develop your own application to process the DTMF tone
sequences and send a reply.

(2) APRStt gateway mode.

Touch Tone transmissions are transformed into regular APRS Object Report format and transmitted as
AX.25 frames. If the IGate feature is enabled, they also go directly to an IGate server so we don’t rely on
some other system to receive them over the air and pass them along.

Most of this document describes which features were implemented, clarifications of ambiguities, rules
for composing touch tone sequences, configuration options, and how the tone sequences are
interpreted.

Keypad Layout 1

Letters are assigned to number keys using the same standard arrangement found on modern
telephones. Some older ham equipment might have different labeling so watch out.

1

2
ABC

3
DEF

A

4
GHI

5
JKL

6
MNO

B

7
PQRS

8
TUV

9
WXYZ

C

* 0
space

D

There are two different encodings called:

 Multi-press -- Used for comments.

Letters are represented by one or more presses of the same key depending on their
order listed on the button. e.g. Press 5 key once for J, twice for K, thrice for L.

To specify a digit use the number of letters listed on the button plus one. e.g. Press 5
key four times to get digit 5. When two characters in a row use the same key, use the
"A" key as a separator.

 Two-key -- Used for callsigns.

Digits are represented by a single key press.

Letters (or space) are represented by the corresponding key followed by A, B, C, or D
depending on the order of the letter in the order listed.

Examples:

Character Multi-press Two-Key Comments

0 00 0

1 1 1 No letters on 1 button.

2 2222 2 3 letters -> 4 key presses

9 99999 9

W 9 9A

X 99 9B

Y 999 9C

Z 9999 9D

space 0 0A

There are no punctuation characters other than the space which is handled like the letters. There are no
“editing” key sequences. If you make a mistake, wait 5 seconds for the incomplete transmission to be
cleared out. If impatient, you could press # before adding the callsign and an invalid transmission will be
rejected.

Keypad Layout 2

The QIKcom-2 APRStt satellite project (http://aprs.org/qikcom-2.html) uses a different encoding for
callsigns. This is based on an older keypad layout where Q and Z were on the 1 button.

1
QZ

2
ABC

3
DEF

4
GHI

5
JKL

6
MNO

7
PRS

8
TUV

9
WXY

* 0
space

Callsigns are encoded as 6 digits corresponding to the buttons of the callsign characters. An additional 4
digits specify which of the possible characters are used in each case.

http://aprs.org/qikcom-2.html

This is best explained by example.

 W B 4 A P R Callsign.

 9 2 4 2 7 7 Button for each character above.
 1 2 0 1 1 2 Position for each character.
 0 for the digit.
 1 for first letter, 2 for second letter, etc.
 Space is like first letter for the 0 button.

The bottom line of numbers is treated like base 4. When converted to base 10, it becomes 1558. The
final result would be 9242771558. For callsigns shorter than 6 characters, we append spaces which are
represented by “0” for the button and 1 in the base 4 number because it is like the first letter.

Conversion Utilities

Two converter applications are provided to perform the conversions.

 text2tt – Converts text to various types of encodings.

 tt2text – converts Touch Tone button sequences to text.

Examples of usage:

$ text2tt abcdefg 0123

Push buttons for multi-press method:

"2A22A2223A33A33340A00122223333" checksum for call = 5

Push buttons for two-key method:

"2A2B2C3A3B3C4A0A0123" checksum for call = 1

$ tt2text 2A22A2223A33A33340A00122223333

Could be either type of encoding.

Decoded text from multi-press method:

"ABCDEFG 0123"

Decoded text from two-key method:

"A2A222D3D3334 00122223333"

$ text2tt wb4apr

Push buttons for multi-press method:

"922444427A777" checksum for call = 9

Push buttons for two-key method:

"9A2B42A7A7C" checksum for call = 4

Push buttons for fixed length 10 digit method:

"9242771558"

$ tt2text 9242771558

Could be either type of encoding.

Decoded text from multi-press method:

"WAGAQ1KT"

Decoded text from two-key method:

"9242771558"

Decoded callsign from 10 digit method:

"WB4APR"

Audible Responses

None at this time.

Callsigns

The following formats are recognized:

Att...ttvk - Full callsign in two key method, numeric overlay, checksum.
Att...ttvvk - Full callsign in two key method, letter overlay, checksum.

Annnvk - “Suffix” abbreviation with 3 digits, numeric overlay, checksum.
Annnvvk - “Suffix” abbreviation with 3 digits, letter overlay, checksum.

Annn - “Suffix” abbreviation with 3 digits. No overlay. No checksum.

 (Not sure yet about the “spelled suffixes.”)

A “suffix” abbreviation / overlay combination will be replaced by the corresponding full callsign if found
in memory of recent activity.

Object Names & Symbols

This is an implementation-specific extension to the “standard.” Even if this is never sent over the air, it
is still very useful combined with macros described later.

These new formats overcome several shortcomings in the standard:

 It is possible to enter 9 character object names, not just 6 character identifiers (callsigns).

 Checksums are not required. Imagine the difficulty in calculating the identifier checksum for
each bicycle whizzing by in a race!

 Symbols, other than a box with an overlay character, can be specified.

Notice how a callsign or abbreviation touch tone sequence always has a digit after the initial “A.” This
leaves open the opportunity to define other formats that have A, B, C, or D after the initial A.

Dire Wolf adds these unique extensions:

AAtt... - Object name, two key method, up to 9 characters. Object name may
 contain letters, digits, and space. No checksum.

AB1nn - Symbol from primary symbol table. Two digits nn are the
 same as in the GPSCnn generic address used as a destination.

AB2nn - Symbol from alternate symbol table. Two digits nn are the
 same as in the GPSEnn generic address used as a destination.

AB0nnvv - Symbol from alternate symbol table. Two digits nn are the
 same as in the GPSEnn generic address used as a destination.
 vv is an overlay digit or letter in two key method.

ACnnnnnnnnnn - Callsign represented in APRStt3 format represented by exactly 10 digits
 as defined in earlier section.

AD... - Possible future use for other object properties.

Locations

APRStt literature lists a wide variety of location formats which are still evolving. Early 2013, we found
this in the specification:

B0x One of 10 special positions

B1xy 1 digit XY (10 mi in 60 mi area) (default)

 (or 1 mi in 10 mi area)

 (or .1 mi in 1 mi area)

B2xxyy 2 digit XY (1 mi in 60 mi area) (default)

 (or .1 mi in 10 mi area)

 (or 60 ft in 1 mi area)

B3xxxyyy 3 digit XY (.1 mi in 60 mi area) (default)

 (or 60 ft in 10 mi area)

B4xxxxyyyy 4 digit XY (60 ft in 60 mi area) (default)

B5zzzmm at bearing zzz range mm miles

B6eeennn SAR UTM Grid - Easting and Northing

B7rrrmmm Road RRR, Milemark MMM

B8haaaoooo Space Format (hemisphere, MSB's of lAt and lOng

B9... Table Interpolation. Example B9nn for a list of

 100 named locations at Jamboree, then nn digits

 can specify any of those 99 locations

The Jamboree 2013 APRStt literature instructed people to use the Byyyxxx format. This doesn’t
correspond to any of the above which always have a fixed format identifier digit after the B. In August,
the spec was changed so that locations use the Y X (latitude, longitude) order rather than the previous X
Y order. This makes more sense because we usually use Latitude then Longitude order. UTM
coordinates always X (easting) then Y (northing).

Trying to keep up with all of these variations would be quite a chore. Rather than hard-coding these
formats, they are defined in the configuration file.

This implementation generalizes most of them into four very flexible types:

 Point – a specific location.

 Vector – bearing and distance from a specified point.

 Grid – a rectangular area, based on latitude and longitude.

 UTM – a rectangular area, based on distances in meters.

Locations – Point

The more general point type implements these 3 standard types

 B0… ten positions

 B7… route / mile mark

 B9… hundred named locations

The configuration file format looks like this:

TTPOINT Bn… latitude longitude

Where, n… is one or more digits.

In each case, the latitude and longitude can be listed as signed decimal degrees (negative for south or
west) or in degrees / minute / hemisphere format. The degree symbol is not part of ASCII so ^ can be
used instead.

Examples:

TTPOINT B01 37^55.37N 81^7.86W -- special position 1 of 10

TTPOINT B7495088 42.605237 -71.34456 -- route 495, mile mark 88

TTPOINT B934 42.605237 -71.34456 -- location 34 out of 100

If the received data was “B934”, it would simply look for an exact match among the points listed.

Locations – Vector

The vector type has a starting point, bearing, and distance. Configuration file format:

TTVECTOR B5bbbddd… latitude longitude scale unit

Where, 5 must match the tone received after the B.
 bbb is a place holder for 3 digit bearing in degrees, clockwise from north.
 ddd… is a place holder for distance, at least 1 digit.
 Scale is a multiplier to apply to the received digits. This allows us to
 have fractions. For example distance of “1234” and a scale of
 0.01 would represent 12.34 km or miles.
 Unit is km, mile, or other common unit.

Example: Configuration file: for Hilltop Tower center. Exactly 3 digits are required for the bearing. In
this case the distance is also 3 digits.

TTVECTOR B5bbbddd 37^55.37N 81^7.86W 0.01 mi

Received data:

B5206070

This means 0.70 mile in the direction of 206 degrees (SSW). It should end up at the Archery & Target
Range.

Locations – Grid

The rectangular grid format has a variable number digits for latitude (y) and longitude (x). Each
configuration file item can have optional fixed digits that must match and x and y characters for the
coordinate positions.

Coordinates define the edges of the box area.

 Latitude for minimum value (y… = all zeros).
 Longitude for minimum value (x… = all zeros).
 Latitude for maximum value (y… = all nines).
 Longitude for maximum value (x… = all nines).

They can be any arbitrary locations but they correspond to fractional digits in these examples.

TTGRID B1xy 12.0 34.0 12.9 34.9

TTGRID B2xxyy 12.0 34.0 12.99 34.99

TTGRID B3xxxyyy 12.0 34.0 12.999 34.999

TTGRID B4xxxxyyyy 12.0 34.0 12.9999 34.9999

TTGRID Byyyxxx 37^50.00N 81^00.00W 37^59.99N 81^09.99W

Examples of received tones and resulting latitude and longitude:

 B100 12.0 34.0
 B101 12.0 34.1
 B102 12.0 34.2
 B109 12.0 34.9
 B189 12.8 34.9
 B199 12.9 34.9

The Byyyxxx example is the format mentioned in http://www.aprs.org/aprs-jamboree-2013.html,
version of mid February 2013. Note that the x, y order is reversed from the others. It’s all handled by
the same general code that treats the y digit positions as latitude and x positions as longitude.

The received touch tone sequence B533686 would be translated to 3755.33’ N 8106.86’ W.

Do you want to send coordinates in the X Y order or Y X order? This implementation doesn’t care. No
coding changes are required. Just change one line of the configuration file. You can even do bizarre
things like interleaving the coordinates (e.g. B2xyxy) but it’s probably not a sensible thing to do.

Positions – UTM

UTM coordinates use distances in meters rather than angles in degrees. The configuration file items
have this format:

TTUTM B6xxx…yyy… Zone [Scale [X-offset Y-offset]]

Where, 6 must match the first digit sent after B.
 xxx… is a placeholder for up to 6 “easting” (X coordinate) digits

yyy… is a placeholder for up to 7 “northing” (Y coordinate) digits.
Zone is the UTM zone and optional latitude band to indicate hemisphere.

 Scale is a multiplier to apply to the received digits. This allows us to
 drop trailing digits for less resolution.
 X-offset & Y-offset are added to the received data so leading digits can be
 omitted from the transmission.

How do we know if the coordinates are in the northern or southern hemisphere? A zone with only a
number is assumed to be northern hemisphere. It can also be suffixed with a latitudinal band of N, P, Q,
R, S, T, U, V, W, or X. It doesn’t matter which one because the Y coordinate is relative to the equator,
not the band. For the southern hemisphere, a suffix of C, D, E, F, G, H, J, K, L, or M must be used. Again,
it doesn’t matter which one because the Y coordinate is relative to 10,000 km south of the equator.

http://www.aprs.org/aprs-jamboree-2013.html

The simplest configuration file format would need room for 6 digits of “easting” (X) coordinate and 7
digits for the “northing” (Y) coordinate.

TTUTM B6xxxxxxyyyyyyy 19

Sample received data:

B63075094721178

That’s a lot of digits to enter. If your application doesn’t need resolution of a meter, you can drop the
last digit of each coordinate and specify a scaling factor for the transmitted string of digits. For example,
to get 10 meter resolution we can use only 5 and 6 digits with a scale factor of 10:

TTUTM B6xxxxxyyyyyy 19 10

That’s still pretty long. In many cases, the region of interest will not be that large so it is feasible to use a
smaller number of digits. For example, when searching a forest for a lost person, it might be possible to
express the entire region in a form like this:

 30xxx0 472yyy0

The xxx and yyy ranges would extend over a 10 x 10 km area with 10 meter resolution. Use a
configuration like this:

TTUTM B6xxxyyy 19 10 300000 4720000

Transmitted data can now be much more compact. E.g.

B6613601

This will get transformed into 306130 4726010

Notice that a received string could match multiple patterns. Does the received B533686 match pattern
Byyyxxx (location on grid) or B5bbbdd (bearing and 2digit distance)? The patterns are tested in the
order defined and the first match wins.

Two utilities, ll2utm and utm2ll, are included to convert between Latitude / Longitude and UTM
coordinates.

Examples:

$ ll2utm 43.775 11.25896

UTM zone = 32, hemisphere = N, easting = 681795, northing = 4849363

MGRS = 32TPP85 32TPP8149 32TPP818494 32TPP81804936 32TPP8179549363

USNG = 32TPP84 32TPP8049 32TPP817493 32TPP81794936 32TPP8179549363

$ utm2ll 32 681795 4849363

from UTM, latitude = 43.774999, longitude = 11.258957

$ utm2ll 32TPP81794936

from USNG, latitude = 43.774974, longitude = 11.258894

from MGRS, latitude = 43.774974, longitude = 11.258894

There are numerous on-line and downloadable coordinate converters available. You know how to use
Google to find them. If using Debian/Ubuntu/Raspbian, you can install one with:

sudo apt-get install geotranz

Dire Wolf is using some of the conversion functions from this package. “The product was developed
using GEOTRANS, a product of the National Geospatial-Intelligence Agency (NGA) and U.S. Army
Engineering Research and Development Center.” http://earth-info.nga.mil/GandG/geotrans/index.html

Positions – USNG & MGRS

These a different representation of UTM coordinates. USNG & MGRS are essentially the same but
results might differ by about a meter due to the slightly different mathematical conversion models used.
To reduce the number of digits that need to be sent, the zones are broken into 100 km squares
represented by two letters. Finally we have a variable number of digits depending on precision
requirements. The same number of digits (same precision) must be used for both easting and northing.

 32T PP 8179 4936

 Grid zone 100 km easting northing
 Square (right) (up)

For more details, see http://www.fgdc.gov/usng

The same location could be represented by any of these depending on the desired precision:

32T PP somewhere in 100 km x 100 km square
32T PP 8 4 10 km x 10 km square
32T PP 80 49 1 km x 1 km square
32T PP 817 493 100 m x 100 m square
32T PP 8179 4936 10 m x 10 m square – MOST COMMON
32T PP 81795 49363 1 meter x 1 meter square

Notice how the low order digits are truncated. There is no rounding when reducing to a smaller number
of digits. 49 is truncated to 4 rather than rounded up to 5. Truncating the lower digits means that the
resulting location is the lower left (south west) corner of the region. The number of digits implies the
size.

The configuration file items have this format:

TTUSNG B[n]xxx…yyy… zone_square

TTMGRS B[n]xxx…yyy… zone_square

http://earth-info.nga.mil/GandG/geotrans/index.html
http://www.fgdc.gov/usng

Where, n is an optional digit which must match the first digit sent after B. 6 is suggested.
 xxx… is a placeholder to match 1 to 5 “easting” (X coordinate) digits

yyy… is a placeholder for “northing” (Y coordinate) digits. Must be same length as xxx…
zone_square is the zone and two letter square.

Configuration file example:

TTUSNG Bxxxxyyyy 32TPP

Notice that we will match “B” followed by exactly 8 digits. Sample received data:

B81794936

The zone & square, in the configuration, is combined with the received digits and we end up with
32TPP81794936.

Locations – APRStt Satellite Grid Squares

As described here, http://aprs.org/qikcom-2.html , the first two letters of a Maidenhead locator can be
represented by two digits. This only includes about 1/3 of the Earth’s surface but it’s the part with
nearly all of the human population.

The format must be the “B” button, optionally some other button, and exactly four lower case x
characters to match the digits.

TTSATSQ BAxxxx

For example, if we received the tone sequence “BA1819” it would be first translated to “FM19” and then
to the corresponding latitude and longitude.

Comment / Status

This implementation recognizes all standard types:

Cn - Exactly one digit indicates a predefined comment.
 0 = (none, default)

 1 = /off duty
 2 = /enroute
 3 = /in service
 4 = /returning
 5 = /committed
 6 = /special
 7 = /priority
 8 = /emergency

http://aprs.org/qikcom-2.html

 9 = /custom 1
Cnnnnnn - Exactly 6 digits are a frequency.
Cttt…ttt - Anything else is general text in multi-press encoding.

Compact all numeric form (macros)

Pressing all those buttons can get pretty tedious and error prone. Suppose you wanted to use APRStt to
report positions of runners, bicycles, boats, or parade vehicles along some route. You might send a
sequence something like this to report that bicycle 123 is near predefined position 78 along the route;
the rider is injured and needs medical attention.

C8 * B978 * AB166 * AA2B4C5B3B0A123 #

C8 = predefined “emergency” comment
B978 = standard form for one of 100 defined locations.
AB166 = primary symbol table, bicycle.
AA… = object name “BIKE 123”

Try entering that on your HT keypad correctly as bicycles go whizzing by! There has been some
discussion about a very compact form that could be used for situations like this. It was also desirable
that the A, B, C, and D buttons would not be required because some radios do not have them or can’t
store them in DTMF memories. This lead to discussions of a “runner mode” with short touch tone
sequences like this:

 bbnnn…#

where,
 bb is a 2 digit location.
 nnn is the “runner” number with a configurable number of digits.

Rather than hard-coding numerous special cases for every new situation, a more flexible, and simple,
approach has been taken. The system operator can define new formats rather changing the source
code.

Macros allow you to define very short transmission formats and their longer equivalent.

The TTMACRO configuration option is used to map compact all numeric fields into the longer standard
form before processing. The general form is:

TTMACRO x…y…z… Touch tone sequence with x, y, and z for substitutions.

Where, x…y…z… are specific digits that must match and/or the lower case letters
 x, y, or z as placeholders for separating a received digit sequence

 into fixed length pieces.

This should be easier to understand with a couple examples.

Configuration file: These are the actual characters, not some meta representation.

TTMACRO xxyyy B9xx*AB166*AA2B4C5B3B0Ayyy

Here we are saying that when we receive a touch tone sequence of 5 digits, followed by #, of course,
this rule will be applied. Take the first two digits and remember them as x. Take the other 3 digits and
remember then as y. Substitute the received digits into the x and y positions in the definition.

To report bike 123 at location 78, simply press these buttons: 78123#.

There are five digits so it would match the macro pattern for five digits. xx would be 78 and yyy would
be 123.

 Original pattern: B9xx*AB166*AA2B4C5B3B0Ayyy
 After substitution: B978*AB166*AA2B4C5B3B0A123

This expanded form would not be visible outside. It is not passed along to an attached client
application. It is just used internally. It is processed as if it had been heard over the air and converted to
an APRS Object and transmitted. The object name would be “BIKE 123” and the location would be
whatever was defined with “TTPOINT B978 …”

Suppose you also wanted the ability to attach an optional status to the object. You could define a rule
on how to process a sequence with exactly 6 digits.

TTMACRO xxyyyz Cz*B9xx*AB166*AA2B4C5B3B0Ayyy

Here we are saying that when we receive a touch tone sequence of 6 digits, always terminated by #, of
course, this rule will be applied. Take the first two digits and remember them in the x variable. Take the
next 3 digits and remember them as y. Remember the final digit as z. Substitute the received digits into
the x, y, and z positions in the defintion. If we were to receive 781239#, xx would be 78, yyy would be
123, and z would be 9.

 Original pattern: Cz*B9xx*AB166*AA2B4C5B3B0Ayyy
 After substitution: C9*B978*AB166*AA2B4C5B3B0A123

Status would be set to “Custom 1.”

Alternatively, you might define a single digit macro to generate the status. This would be less error
prone.

TTMACRO z Cz

The transmitted touch tone sequence would then be:

 9*78123#

This is first separated, at the *, into two fields of “9” and “78123”. The field with one digit is expanded
by the macro rule for one digit. The field with five digits expanded as before. Again, we end up with

C9*B978*AB166*AA2B4C5B3B0A123

which is processed as if someone had typed that all in manually.

Suppose there were multiple types of objects to track. It would be nice to have different name prefixes
and even display icons to easily distinguish them.

 Object numbers 100 – 199 = bicycle
 Object numbers 200 – 299 = fire truck
 Others = dog

Define these 3 rules:

TTMACRO xx1yy B9xx*AB166*AA2B4C5B3B0A1yy

TTMACRO xx2yy B9xx*AB170*AA3C4C7C3B0A2yy

TTMACRO xxyyy B9xx*AB180*AA3A6C4A0Ayyy

The touch tone sequence 78123# would match the first one because it requires 1 in the middle position.

The touch tone sequence 78223# would match the second one because it requires 2 in the middle
position. The object name is “FIRE 223” and the fire truck icon is used.

The touch tone sequence 78323# would match the third one because y in the middle position matches
anything and the earlier patterns did not catch it. The object name is “DOG 323” and the puppy dog
icon shows up on the map.

Traditional forms and macros can be combined. For example,

 C3*C146520*78223#

means the fire truck is “in service” and listening on 146.52 MHz.

Punch this in on the old keypad:

 9*01123#

 C3*C146520*02223#

 03323#

The troubleshooting output illustrates the transformation process.

Suppose we wanted to process the QIKcom-2 format message. It’s not necessary to write any new
code. Just define a macro like this:

 TTMACRO xxxxzzzzzzzzzz BAxxxx*ACzzzzzzzzzz

The sequence of 14 digits would get broken in to groups of 4 and 10. The first 4 are processed as a
satellite grid location. The other 10 are treated as a callsign. Let’s look at what happens when this is
heard:

*18199242771558#

The sequence of 14 digits matches a pattern which splits it into groups of 4 and 10 digits. The first 4 are
treated as a satellite square. The other 10 are processed as the new fixed length call format. It’s
converted to an object and transmitted.

The “corral”

APRStt users might not report their position. In this case, we only know they are in range of the
receiver. How do we represent their location? How can they be positioned on a map?

The traditional approach is to assign them arbitrary locations in the “corral.” Some implementations
always place this next to the gateway location. This implementation is a little more flexible. The corral
can be positioned in some other sparsely populated location on the map.

TTCORRAL latitude longitude offset

In the first example below, the list starts at the top and grows downward. In the second example, we
start at the bottom and go up from there. In each case the spacing is 0.02 minute.

TTCORRAL 37^56.00N 81^7.00W 0^0.02S

TTCORRAL 37^55.50N 81^7.00W 0^0.02N

This has a couple unfortunate consequences. It gives the illusion that we know where the station is
located. It might be obvious when displayed on a map, but a text only display, built in to transceiver,
doesn’t make it clear. A suitable offset also depends on the map display scale. If zoomed out too far,
the stations will be piled on top of each other and unreadable.

Enhanced position reporting ?

This behavior is a good approximation and backward compatible with existing systems, but it has some
weaknesses. In some cases, the conversion loses information. In some cases, the conversion supplies a
made up location.

When looking at a map, you can make a pretty good guess what is in the “corral” due to an unknown
location. However, it is not clear to a station with a text only display such as TM-D710A. Actual
positions, and those assigned by the APRStt gateway look the same.

The APRStt gateway operator needs to set corral parameters such as starting location and spacing. A
good spacing for one display might not be so good for a different display size or zoom level. An APRStt-
aware application might want to want to use a different location for the corral but it doesn't have a
good way of telling whether the user provided a position or if the Gateway supplied it.

Another case is now being discussed where multiple objects might be at the same location. Besides
tracking "runners" we might also use APRStt to track the movement of medical staff and special
equipment at first aid stations. If each of the objects was reported with the same location (e.g. B925 for
first aid station 25), they would all be piled on top of each other on a map. If an APRStt-aware
application knew they were all at predefined location 25, it could perform its own "corral" function to
display them in a non-overlapping way.

The intention of APRS is to be a real time tactical information system, not just a bunch of icons on a
map. An application might want to keep track of what people and special equipment and are at each
location. This is difficult to do when everything gets boiled down to just a latitude and longitude.

I would like to propose a simple extension to retain more information for possible use by applications.
The idea is to add something indicating whether the location is unknown or one of the predefined
locations. This should be human readable so someone with a text-only display can instantly see that an
object is at first aid station 25 or the location is unknown (the corral).

Rather than making up something new, the "!DAO!" option already exists to add enhanced information
about the lat/lon position. The gateway would add another 5 characters to the end of the comment to
provide more clarification about how the location was derived. The formats might be:

 !T ! The position is unknown.
 (the "corral" lat/lon were assigned by the gateway.)

 !Tn ! The position is one of ten predefined
 locations (i.e. the B0n tone sequence)
 (where 'n' represents some digit 0-9.)

 !Tnn! The position is one of 100 predefined
 locations (i.e. the B9nn tone sequence)

 !TBn! The position was specified by some
 other method. n is the character following
 B in the position. For example, “!TB6!” indicates
 UTM coordinates where used. A display application
 might want to use this to provide UTM coordinates
 instead of or in addition to the latitude and longitude.
 “!TBA” would indicate it came from the Satellite Grid MAP
 If the earlier “TTSATSQ” sample configuration was used.

Advantages:

 It is simple.

 It is uses an existing part of the protocol specification rather than making up something new.

 It is backward compatible. Most applications would just ignore these characters in the
comment.

 It is human readable. Someone with a text only display would recognize "!T25!" as being
location 25, e.g. first aid station 25. If you saw "!T !" you would know the actual location is
unknown and not to look for someone at the object coordinates.

An application, capable of recognizing this could use the information in a couple different ways.

It could override the object lat/lon and perform its own corralling based on the display size and zoom
level. One region for unknown locations ("!T "). Possibly other regions for checkpoints ("!T25!").

This also gets back to the principle that APRS is a real time tactical awareness tool, not just icons on a
map. Someone might want to know who is at first aid station 25. A suitable application could easily
display a list of objects that had "!T25!" in the comment.

Object Report Format

The object header format is represented in the configuration file with the TTOBJ command. It contains:

 Radio channel for DTMF input.

 Radio channel for object packet transmission.

 Optional via path.

In these examples, the DTMF decoder is listening on channel 1 and APRS packets will be transmitted on
channel 0. It is possible, but unusual, for both channels to be the same.

TTOBJ 1 0 WIDE2-1,WIDE1-1

TTOBJ 1 0

It shows up on the screen something like this:

This is the configuration option that actually enables the gateway. In earlier versions, the DTMF
decoder was always active because it took a negligible amount of CPU time. Unfortunately this
sometimes resulted in too many false positives from some other types of digital transmissions heard on
HF.

Starting in version 1.0, the DTMF decoder is enabled only when the APRStt gateway is configured.

Starting in version 1.2, it is possible to enable the DTMF decoder without the APRStt gateway. This is
useful for client applications that want to do their own processing of tone sequences. See “ttcalc” as an
example.

Beaconing

There is nothing special for APRStt. Announce the gateway with the same technique you would use to
advertize a digipeater or other station with a fixed location. Example:

OBEACON DELAY=0:15 EVERY=10:00 VIA=WIDE1-1

 OBJNAME=WB2OSZ-tt SYMBOL=APRStt

 LAT=42^37.14N LONG=71^20.83W

 COMMENT="APRStt Gateway"

This should all be on a single line in the configuration file. It is shown as multiple lines here due to page
width limitations.

