The Stata Journal (yyyy) vv, Number 4, pp. 1-44

The brewscheme toolkit for Data Visualization
in Stata

William R. Buchanan
Minneapolis Public Schools
Minneapolis, MN, USA
William.Buchanan@mpls.k12.mn.us

Abstract. This article describes the brewscheme package, providing tools to help
users to generate customized scheme files and a tool to proof data visualizations
for perceptability among individual with color sight impairments. The brewscheme
toolkit provides more than 10 different commands to help Stata users leverage the
data visualization capabilities provided by the graph commands in Stata. Although
Stata provides ample flexibility for customizing/specifying the aesthetic properties
of data visualizations, customizing the graphs could require a substantial increase
in the amount of code needed to generate the graph; the problem is compounded
in production environments where standardized aesthetics may be required. The
brewscheme package attempts to make it easier for users to reduce the amount of
code they need to write to create graphs that meet their aesthetic needs and to
minimize the code needed to implement those aesthetics across graphs, programs,
and datasets.

Keywords: st0000, graphics, data visualization, colorblind, accessibility, brewcol-
ors, brewproof, brewscheme, brewtheme, libbrewscheme

1 Introduction

While Stata provides a robust platform for developing data visualizations, users regu-
larly encounter challenges when trying to leverage these capabilities for their use. |[Cox
(2013)), |Cox| (2014]), [Pisati| (2007)), & [Radyakin| (2009) illustrate different methods for
generating customized data visualizations and methods to properly prepare data to gen-
erate the data visualizations that users would like to create from Stata. The Statalist
and StataJournal also contain numerous resources for data visualization in Stata. In
particular, [Mitchell| (2012)) provides a comprehensive treatment of Stata’s native graph-
ics capabilities and an exploration of how the optional parameters available to the graph
commands can be used to alter the aesthetics of the visualizations. [Mitchell| (2012) also
includes a brief introduction to .scheme files in Stata. However, not all users share
positive opinions of Stata’s graphics capabilities as noted in |Anonymous| (2013)), |[Bischof
(2015)), [Briatte, (2013), & |Hsiang| (2013) for example, and summarized in [Buchanan
(2015)). In short, many users are dissatisfied with the default aesthetic choices, partic-
ularly with the s2color scheme.

Despite several attempts to provide users with the resources needed to create scheme
files [Rising| (2010)), to use the graph recorder functionality to simulate altered schemes
Crow| (2008), or by providing fixed alternate schemes such as those provided by |Atz

© yyyy StataCorp LP st0000

2 brewscheme

(2011), Bischof| (2015), Briatte (2013)), Hsiang (2013)), and (2003), no compre-
hensive solution for programmatically generating scheme files was available until an

earlier version of brewscheme discussed at the 2015 US Stata Users Group conference
(2015))). The earliest implementation of brewscheme was not without flaws
either. In particular, the earliest version of the package only allowed users to specify
the colors that could be used for different types of graphs. Unlike the solutions pro-
posed by (2011), Bischof] (2015]), Briatte| (2013), Hsiang (2013), and (2003),
the brewscheme package provides a significantly more flexible toolkit where the number
of schemes that can be created — while finite — approaches inf.

1.1 What makes brewscheme different?

Several authors have implemented some similar features to those available in the brewscheme

package. [Briatte| (2013), Hsiang (2013)), and (2007) all include capabilities re-
lated to the color palettes developed by (2002)). In the case of 2013
and (2013) the schemes focus on a single palette, and while (2007) pro-

vides more comprehensive coverage of the ColorBrewer (2002)) palettes it is
not extensible and is limited to only those palettes that are hardcoded into the program.

Others, such as (2011)) and |[Juul| (2003) have attempted to integrate suggestions of
(2001), and in one instance, Bischof| (2015)), there is an attempt to address color

sight impairment and emulation of other popular aesthetic palettes (e.g., the ggplot2
package in R (2009)).

Unlike these packages, brewscheme parses the color palettes developed by
(2002) from their source when building the dataset with the available color palettes, in-
cludes color palettes implemented in the D3js visualization library developed by [Bostock

(2011)), includes color palettes with semantic meanings researched by |Lin et al.
(2013)), includes the default color palettes available in ggplot2 (2009), and

includes culturally derived color palettes commonly found in data visualizations popu-
lar in the K-12 educational community [Buchanan| (2014). Additionally, unlike previous
attempts to implement the work of |Tufte (2001)) in Stata scheme files, the brewtheme
command provides a dafualt set of parameter values that define this type of behavior
while providing users with the flexibility to deviate from these settings at their discre-
tion. Lastly, While provided a .scheme file that is hoped to be sensitive to
the needs of individuals with color sight impairments, the brewproof command allows
users to see how their graphs might look to individuals with achromatopsia (complete
color sight impairment), protanopia (impairment in the perception/differentiation of
the color red), deuteranopia (impairment in the perception/differentiation of the color
green), and tritanopia (impairment in the perception/differentiation of the color blue).

Colorspaces

One of the challenges of integrating all of these sources is the different use of colorspace
by the different authors/sources. For example, [Brewer| (2002) provides an RGB values
for colors in the color palettes, while Bostock et al.| (2011) use hexadecimal values

Buchanan, W. R. 3

to represent the colors in RGB colorspace, and [Wickham| (2009) uses a simple linear
interpolation over the hue parameter in HSB colorspace to generate the colors used by
default in the ggplot2 package in R. Although the conversion of base 16 to base 10
values may not present a major challenge, conversion between other color spaces can be
more difficult and require intermediate transformations across several color spaces (see
Lindbloom)| (2001) for additional information). At present, brewscheme provides limited
tools for colorspace conversions, but does include a hexadecimal to RGB conversion
command as well as a Java-based plugin that provides some colorspace transformation
capabilities as part of its primary function of providing color interpolation methods.

Color sight impairment

Brettel et al.| (1997) and [Viénot et al.| (1999) provide expositions on methods to trans-
form colors in ways that simulate color sight impairments, more specifically protanopia,
deuteranopia, and tritanopia. |Viénot et al. (1999)) build on their earlier work in [Bret-
tel et al.| (1997)), to provide a description of the methodology required to transform a
given color in RGB colorspace to LMS colorspace, apply the necessary manipulations
to simulate color sight impairments, and transform the values back to RGB color space.
An implementation of these algorithms in JavaScript is available from [Wickline| (2014)).
And was implemented in Mata in the brewscheme package.

The remainder of the article will focus on the use of the package by end-users and
will include brief examples, with references to view the color images.

2 Installation and Getting Started

The brewscheme package can be installed using:
net inst brewscheme, from("http://wbuchanan.github.io/brewscheme/")

The first time you run the program and after an update the the 1ibbrewscheme Mata
library, the programs will check when the Mata source code was created and will update
itself if necessary. Additionally, the first time the brewscheme program is run, it may
take upwards of a few minutes — depending on your internet connection speed and
your computer as well — because the program will need to build the database of color
palettes used to generate the .scheme files which includes parsing the color palettes
from https://www.ColorBrewer2.org. After installing the package, the next step is to
build the database of named color styles that already exist in your Stata using the
brewcolordb command.

brewcolordb [, display refresh]

display is an option that writes the named color style and corresponding RGB values
to the console.

refresh is an option to overwrite an existing color database.

4 brewscheme

Macros

r(colorname) RGB value

The brewcolordb command searches for named color styles, parses the contents of
the files and builds a database of these files along with the RGB values used to simu-
late how the color would be perceived by individuals with achromatopsia, protanopia,
deuteranopia, and tritanopia. Additionally, based on the information provided by [Wig-
gins| (2004)), the program also installs named color styles corresponding to the colorsight
impaired versions of the colors. The modified colors can all be accessed using the nam-
ing convention [color name],[impairment name] . For example, ltblue_tritanopia would
select the tritanopia simulated value for the color 1tblue.

3 Creating customized scheme files

3.1 brewtheme

The .theme file is specific to brewscheme and provides a method to encapsulate aes-
thetic parameters which may be global in scope in a reusable way for the generation of
.scheme files. The brewtheme command generates these files for you, but is not required
to generate customized .scheme files. The optional arguments for brewtheme all use
key/value pairs delimited by quotation marks. In other words, to pass an argument to
any of the options they should use the following form:

optionname ("key; value;" "keys value, " "key, value,")

brewtheme API

brewtheme theme name [, style(string) anglestyle(string) areastyle(string)
arrowstyle(string) axisstyle(string) barlabelpos(string)

barlabelstyle(string) barstyle(string) bygraphstyle (string)
clegendstyle(string) clockdir(string) color (string) compass2dir(string)

compass3dir(string) connectstyle(string) dottypestyle (string)

graphsize (string) graphstyle(string) gridlinestyle(string)
gridringstyle(string) gridstyle(string) gsize(string) horizontal (string)
labelstyle(string) legendstyle(string) linepattern(string)
linestyle(string) linewidth(string) margin(string) medtypestyle (string)
numstyle (string) numticks(string) piegraphstyle (string)

pielabelstyle(string) plotregionstyle(string) relativepos(string)
relsize(string) special(string) starstyle(string) sunflowerstyle (string)

Buchanan, W. R. 5

symbol (string) symbolsize(string) textboxstyle(string)
tickposition(string) tickstyle(string) ticksetstyle(string)
verticaltext(string) yesno(string) zyx2rule(string) zyx2style(string)
loadthemedata]

abovebelow an optional argument with a single key: star.

anglestyle an optional argument with the following keys: horizontal_tick, vertical tick,
clegend, p, parrow, and parrowbarb. See [G-4] anglestyle or use graph query
anglestyle for additional information.

areastyle an optional argument with the following keys: foreground, background,
plotregion, inner_plotregion, twoway _plotregion, twoway_iplotregion, bar_plotregion,
bar_iplotregion, hbar_plotregion, hbar_iplotregion, dot_plotregion, dot_iplotregion,
box_plotregion, box_iplotregion, hbox_plotregion, hbox_iplotregion, combine_plotregion,
combine_iplotregion, bygraph_plotregion, bygraph_iplotregion, matrixgraph_plotregion,
matrixgraph_iplotregion, matrix_plotregion, matrix_iplotregion, legend, legend_key _region,
legend_inkey _region, inner_legend, clegend, clegend_preg, clegend_inpreg, clegend_outer,
clegend _inner, graph, inner_graph, bygraph, inner_bygraph, piegraph, piegraph_region,
inner_pieregion, inner_piegraph, combinegraph, combinegraph_inner, matrix_label,
matrix_ilabel, ci, ci2, histogram, dendrogram, dotchart, sunflower, sunflowerlb, and
sunflowerdb. See [G-4] areastyle or use graph query areastyle for additional in-
formation.

arrowstyle an optional argument with the following keys: default and editor. See
[G-4] arrowstyle or use graph query arrowstyle for additional information.

axisstyle is an optional argument with the following keys: horizontal default, ver-
tical_default, horizontal nogrid, vertical nogrid, bar_super, dot_super, bar_group,
dot_group, bar_var, dot_var, bar_scale_horiz, bar_scale_vert, dot_scale_horiz, dot_scale_vert,
box_scale_horiz, box_scale_vert, matrix_horiz, matrix_vert, sts_risktable, and clegend.
See [G-4] axisstyle or use graph query axisstyle for additional information.

barlabelpos an optional argument with a single key: bar.
barlabelstyle an optional argument with a single key: bar.
barstyle an optional argument with the following keys: default, dot, and box.

bygraphstyle an optional argument with the following keys: default, bygraph, and
combine. See [G-4] bystyle or use graph query bystyle for additional information.

clegendstyle an optional argument with a single key: default. See [G-4] clegendstyle
or use graph query clegendstyle for additional information.

clockdir an optional argument with the following keys: title_position, subtitle_position,
caption_position, note_position, legend_position, zyx2legend_position, by_legend _position,
ilabel,matrix_marklbl, p, legend_title_position, legend_subtitle_position, legend_caption_position,
legend _note_position, and clegend_title_position.

6 brewscheme

color an optional argument with the following keys: background, foreground, symbol,
backsymbol, text, body, small_body, heading, subheading, axis_title, matrix_label,
label, key_label, tick_label, tick_biglabel, matrix_marklbl, sts_risk_label, sts_risk_title,
box, textbox, mat_label _box, text_option, text_option_line, text_option_fill, filled_text,
filled, bylabel_outline, reverse_big, reverse_big_line, reverse_big_text, grid, major_grid,
minor_grid, axisline, tick, minortick, matrix, matrixmarkline, histback, plotregion,
plotregion_line, matrix_plotregion, matplotregion_line, legend, legend_line, clegend,
clegend _outer, clegend_inner, clegend_line, pboxlabelfill, plabelfill, pmarkback, and
pmarkbkfill.

compass2dir an optional argument with the following keys: p, key_label, legend fillpos,
legend key, text_option, graph_aspect, and editor.

compass3dir an optional argument with a single key: p.

connectstyle an optional argument with a single key: p. See [G-4] connectstyle or
use graph query connectstyle for additional information.

dottypestyle an optional argument with a single key: dot.

graphsize an optional argument allowing users to specify the x and y values defining
the width and height of the graph image.

graphstyle an optional argument with the following keys: default, graph, and matrix-
graph.

gridlinestyle an optional argument with a single key: default.
gridringstyle an optional argument with the following keys: spacers_ring, title_ring,

subtitle_ring, caption_ring, note_ring, legend_ring, zyx2legend_ring, clegend_ring, by_legend_ ring,

legend_title_ring, legend_subtitle_ring, legend_caption_ring, legend_note_ring, and cle-
gend_title_ring.

gridstyle an optional argument with the following keys: major and minor. See [G-
4] gridstyle or use graph query gridstyle for additional information.

gsize an optional argument with the following keys: gap, text, body, small_body,
heading, subheading, axis_title, matrix_label, label, small_label, matrix_marklbl,
key_label, note, star, text_option, dot_rectangle, axis_space, axis_title_gap, tick, mi-
nortick, tickgap, notickgap, tick_label, tick_biglabel, minortick_label, filled_text, re-
verse_big, alternate_gap, title_gap, key_gap, key_linespace, star_gap, legend_colgap,

label_gap, matrix_mlblgap, barlabel_gap, legend row_gap, legend_col_gap, legend key_gap,
legend key _xsize, legend _key _ysize, zyx2legend _key_gap, zyx2legend _key_xsize, zyx2legend _key _ysize,

zyx2rowgap, zyx2colgap, clegend_width, clegend_height, pie_explode, pielabel_gap,

plabel, pboxlabel, sts_risktable_space, sts_risktable_tgap, sts_risktable_lgap, sts_risk_label,

sts_risk_title, and sts_risk_tick. These keys take a string value like: zero, third_tiny,
half_tiny, tiny, minuscule, vsmall, small, medsmall, medium, medlarge, large, huge,
or vhuge.

horizontal an optional argument with the following keys: heading, subheading, la-
bel, key_label, body, small_body, axis_title, matrix_label, filled, text_option, editor,

Buchanan, W. R. 7

sts_risk_label, and sts_risk_title.

labelstyle an optional argument with the following keys: ilabel, matrix, editor, and
sunflower.

legendstyle an optional argument with the following keys: default and zyx2. See
[G-4] legendstyle or use graph query legendstyle for additional information.

linepattern an optional argument with the following keys: foreground, background,
ci, ci_area, histogram, dendrogram, grid, major_grid, minor_grid, axisline, tick, mi-
nortick, xyline, refline, refmarker, matrixmark, dots, dot, dot_area, dotmark, pie,
legend, clegend, plotregion, sunflower, matrix_plotregion, text_option, zyx2, p, and
pmark.

linestyle an optional argument with the following keys: background, foreground,
symbol, boxline, textbox, axis, axis_withgrid, zero_line, tick, minortick, star, ci,
ci_area, ci2, ci2_area, histogram, histback, dendrogram, grid, major_grid, minor_grid,
xyline, refline, refmarker, matrixmark, matrix, dotchart, dotchart_area, dotmark,
box_whiskers, box_median, pie_lines, legend, clegend, clegend_outer, clegend_inner,
clegend_preg, mat_label_box, reverse_big, plotregion, matrix_plotregion, dots, editor,
sunflower, sunflowerlb, sunflowerlf, sunflowerdb, sunflowerdf, text_option, sts_risktable,
zyx2, pmarkback, pboxmarkback, plabel, and pboxlabel. See [G-4] linestyle or use
graph query linestyle to see the available linestyles on your system.

linewidth an optional argument with the following keys: thin, medium, p, fore-
ground, background, grid, major_grid, minor_grid, axisline, tick, tickline, minortick,
ci, ci_area, ci2, ci2_area, histogram, dendrogram, xyline, refline, refmarker, matrix-
mark, dots, dot_line, dot_area, dotmark, plotregion, legend, clegend, pie, reverse_big,
sunflower, matrix_plotregion, text_option, zyx2, and pbar.

margin an optional argument with the following keys: graph, twoway, bygraph, com-
binegraph, combine_region, matrixgraph, piegraph, piegraph_region, matrix_plotreg,
matrix_label, mat_label_box, by_indiv, text, textbox, body, small_body, heading,
subheading, axis_title, label, key_label, text_option, plotregion, star, bargraph, box-
graph, dotgraph, hbargraph, hboxgraph, hdotgraph, legend, legend_key_region, leg-
end_boxmargin, clegend, cleg_title, clegend_boxmargin, key_label, filled_textbox, filled_box,
editor, plabel, plabelbox, pboxlabel, and pboxlabelbox.

medtypestyle an optional argument with a single key: boxplot.

numstyle an optional argument with the following keys: grid_outer_tol, legend_rows,
legend _cols, zyx2rows, zyx2cols, graph_aspect, max_wted_symsize, bar_num_dots,
dot_num_dots, dot_extend_high, dot_extend_low, pie_angle that take numeric values.

numticks an optional argument with the following keys: major, horizontal_major, verti-
cal_major, horizontal minor, vertical_minor, horizontal tmajor, vertical_tmajor, hor-
izontal_tminor, and vertical_tminor.

piegraphstyle an optional argument with a single key: piegraph.

8 brewscheme

pielabelstyle an optional argument with a single key: default.

plotregionstyle an optional argument with the following keys: graph, twoway, by-
graph, combinegraph, combineregion, matrixgraph, bargraph, hbargraph, boxgraph,
hboxgraph, piegraph, matrix, matrix_label, legend_key _region, and clegend.

relativepos an optional argument with the following keys: zyx2legend_pos, clegend_pos,
and clegend_axispos.

relsize an optional argument with the following keys: bar_gap, bar_groupgap, bar_supgroupgap,
bar_outergap, dot_gap, dot_groupgap, dot_supgroupgap, dot_outergap, box_gap, box_groupgap,
box_supgroupgap, box_outergap, box_fence, and box_fencecap. The values associated
with these keys should be of the form [neg]#pct. Where neg would indicate a neg-
ative relative size, the # represents a numeric value, and pct is a string literal for
percentage.

special an optional argument with the following keys: default_slopel, default_knotl,
default_slope2, by _slopel, by_knot1, by_slope2, combine_slopel, combine_knot1, com-
bine_slope2 matrix_slopel, matrix_knot1, matrix_slope2 take numeric values and the
keys: matrix_yaxis and matrix_xaxis take string values.

starstyle an optional argument with a single key: default.

symbol is an optional argument with the following keys: sunflower, none, histogram,
histback, dots, ci, ci2, ilabel, matrix, refmarker, p, pback, pbarback, and pdotback.

symbolsize an optional argument with the following keys: smallsymbol, star, his-
togram, histback, dots, ci, ci2, matrix, refmarker, sunflower, backsymbol, backsymspace,
p, pback, and parrow.

textboxstyle an optional argument with the following keys: title, subtitle, caption,
note, leg_title, leg_subtitle, leg_caption, leg_note, cleg_title, cleg_subtitle, cleg_caption,
cleg_note, tltitle, t2title, bltitle, b2title, rltitle, r2title, l1title, 12title, heading,
subheading, body, text_option, legend key, barlabel, axis_title, matrix_label, piela-
bel, tick, minortick, bigtick, sts_risktable, label, ilabel, key_label, small label, ma-
trix_marklbl, star, bytitle, and editor. See [G-4] textboxstyle or use graph query
textboxstyle for additional information.

tickposition an optional argument with a single key: axis_tick.

tickstyle an optional argument with the following keys: default, major, minor, ma-
jor_nolabel, minor_nolabel, major_notick, minor_notick, major_notickbig, minor_notickbig,
and sts_risktable. See [G-4] tickstyle or use graph query tickstyle for additional
information.

ticksetstyle an optional argument with the following keys: major_horiz_default, ma-
jor_vert_default, minor_horiz_default, minor_vert_default, major_horiz_withgrid, ma-
jor_vert_withgrid, major_horiz_nolabel, major_vert_nolabel, minor_horiz_nolabel, mi-
nor_vert_nolabel, major_horiz_notick, major_vert_notick, minor_horiz_notick, minor_vert_notick,
major_horiz_notickbig, major_vert_notickbig, sts_risktable, and major_clegend.

Buchanan, W. R. 9

verticaltext an optional argument with the following keys: heading, subheading,
label, key_label, body, small_body, axis_title, matrix_label, legend, text_option, and
filled.

yesno an optional argument with the following keys: textbox, text_option, connect_missings,
cmissings, pcmissings, extend_axes_low, extend_axes_high, extend_axes_full low, ex-
tend_axes_full_high, draw_major_grid, draw_minor_grid, draw_majornl_grid, draw_minornl_grid,
draw_major_hgrid, draw_minor_hgrid, draw_majornl_hgrid, draw_minornl_hgrid, draw_major_vgrid,
draw_minor_vgrid, draw_majornl_vgrid, draw_minornl_vgrid, draw_major_nl_vgrid,
draw_minor_nl_vgrid, draw_majornl_nl_vgrid, draw_minornl_nl_vgrid, draw_major_nl_hgrid,
draw_minor_nl_hgrid, draw_majornl_nl_hgrid, draw_minornl_nl_hgrid, draw_major_nt_vgrid,
draw_minor_nt_vgrid, draw_majornl_nt_vgrid, draw_minornl_nt_vgrid, draw_major_nt_hgrid,
draw_minor_nt_hgrid, draw_majornl_nt_hgrid, draw_minornl_nt_hgrid, draw_major_nlt_vgrid,
draw_minor_nlt_vgrid, draw_majornl_nlt_vgrid, draw_minornl_nlt_vgrid, draw_major_nlt_hgrid,
draw_minor_nlt_hgrid, draw_majornl_nlt_hgrid, draw_minornl_nlt_hgrid, extend_grid_low,
extend_grid_high, extend_minorgrid_low, extend_minorgrid_high, extend_majorgrid_low,
extend_majorgrid_high, grid_draw_min, grid_draw_max, grid_force_nomin, grid_force_nomax,
xyline_extend_low, xyline_extend_high, alt_xaxes, alt_yaxes, x2axis_ontop, y2axis_onright,
use_labels_on_ticks, alternate_labels, swap_bar_scaleaxis, swap_bar_groupaxis, swap_dot_scaleaxis,
swap_dot_groupaxis, swap_box_scaleaxis, swap_box_groupaxis, extend_dots, bar_reverse_scale,
dot_reverse_scale, box_reverse_scale, box_hollow, box_custom_whiskers, pie_clockwise,
by_edgelabel, by _alternate_xaxes, by _alternate_yaxes, by _skip_xalternate, by_skip_yalternate,
by _outer_xtitles, by_outer_ytitles, by_outer_xaxes, by_outer_yaxes, by_indiv_xaxes,
by_indiv_yaxes, by_indiv_xtitles, by_indiv_ytitles, by_indiv_xlabels, by_indiv_ylabels,
by _indiv_xticks, by_indiv_yticks, by_indiv_xrescale, by_indiv_yrescale, by_indiv_as_whole,
by _shrink_plotregion, by_shrink_indiv, mat_label_box, mat_label_as_textbox, legend_col first,
legend _text_first, legend_stacked, legend _force_keysz, legend force_draw, legend_force nodraw,
title_span, subtitle_span, caption_span, note_span, legend_span, zyx2legend_span,
clegend_title_span, adj_xmargins, adj_ymargins, plabelboxed, pboxlabelboxed, con-
tours_outline, contours_reversekey, and contours_colorlines.

zyx2rule an optional argument with a single key: contour. See [G-4] zyx2rulestyle or
use graph query zyx2rulestyle for additional information.

zyx2style an optional argument with a single key: default. See [G-4] zyxz2style or use
graph query zyx2style for additional information.

loadthemedata is an optional argument used to load a dataset containing the lines of
the .scheme file that are copied from the .theme file as well as to show the default
values used if no theme is passed to brewscheme.

Examples

The two following examples illustrate how a .theme file could be constructed to simulate
the aesthetics of the ggplot2 Wickham)| (2009) in Stata as well as a .theme file that
emulates the aesthetics of the s2color scheme.

10 brewscheme
b Example

do “"$articledir/brewthemeExamples.do"”

/* brewtheme example theme files */

// Change the end of line delimiter

#d ;
delimiter now ;
// Generate the theme file used to simulate ggplot2 aesthetics
brewtheme ggtheme, numticks("major 5" "horizontal_major 5" "vertical_major 5"
"horizontal_minor 10" "vertical_minor 10") color("plotregion gsi5"
"matrix_plotregion gs15" "background gs15" "textbox gsi15" "legend gsi15"
"box gs15" "mat_label_box gs15" "text_option_fill gsi15" "clegend gs15"
"histback gs15" "pboxlabelfill gs15" "plabelfill gs15" "pmarkbkfill gsi15"
"pmarkback gs15") linew("major_grid medthick" "minor_grid thin" "legend medium"
"clegend medium") clockdir("legend_position 3") yesno("draw_major_grid yes"
"draw_minor_grid yes" "legend_force_draw yes" "legend_force_nodraw no"
"draw_minor_vgrid yes" "draw_minor_hgrid yes" "extend_grid_low yes"
"extend_grid_high yes" "extend_axes_low no" "extend_axes_high no")
gridsty("minor minor") axissty("horizontal_default horizontal_withgrid"
"vertical_default vertical_withgrid") linepattern("major_grid solid"
"minor_grid solid") linesty("major_grid major_grid" "minor_grid minor_grid")
ticksty("minor minor_notick" "minor_notick minor_notick")
ticksetsty("major_vert_withgrid minor_vert_nolabel"
"major_horiz_withgrid minor_horiz_nolabel"
"major_horiz_nolabel major_horiz_default"
"major_vert_nolabel major_vert_default") gsize("minortick_label zero"
"minortick tiny") numsty("legend_cols 1" "legend_rows O")
verticaltext("legend top");
Directory exists and rebuild option not specified. No further action

VVVVVVVVVVVVVVVVVVVYV.

// Generates a theme in the style of s2color

brewtheme s2theme, graphsi("x 5.5" "y 4") numsty("legend_cols 3" "legend_rows 2")
gsize("text medium" "body medsmall" "small_body vsmall" "heading large"
"axis_title medsmall" "matrix_label medlarge" "matrix_marklbl small"

"key_label medsmall" "note small" "star medsmall" "text_option medsmall"
"minor_tick half_tiny" "tick_label medsmall" "tick_biglabel medium"

"title_gap vsmall" "key_gap vsmall" "key_linespace vsmall" "legend_key_xsize 13"
"legend_key_ysize medsmall" "clegend_width huge" "pielabel_gap zero" "plabel small"
"pboxlabel small" "sts_risktable_space third_tiny" "sts_risktable_tgap zero"
"sts_risktable_lgap zero") relsize("bar_groupgap 67pct" "dot_supgroupgap 67pct"
"box_gap 33pct" "box_supgroupgap 200pct" "box_outgap 20pct" "box_fence 67pct")
symbolsi("smallsymbol small" "histogram medlarge" "ci medium" "ci2 medium"
"matrix medium" "refmarker medlarge" "parrowbarb zero")

color("background ltbluishgray" "foreground black" "backsymbol gs8"

"heading dknavy" "box bluishgray" "textbox bluishgray"

"mat_label_box bluishgray" "text_option_line black"

"text_option_fill bluishgray" "filled bluishgray" "bylabel_outline bluishgray"
"reverse_big navy" "reverse_big_line navy" "grid ltbluishgray"

"major_grid ltbluishgray" "minor_grid gs5" "matrix navy" "matrixmarkline navy"
"histback gold" "legend_line black" "clegend white" "clegend_line black"
"pboxlabelfill bluishgray" "plabelfill bluishgray") linepattern("foreground solid"
"background solid" "grid solid" "major_grid solid" "minor_grid dot"

"text_option solid") linesty("textbox foreground" "grid grid"

"major_grid major_grid" "minor_grid minor_grid" "legend legend")

linewidth("p medium" "foreground thin" "background thin" "grid medium"
"major_grid medium" "minor_grid thin" "tick thin" "minortick thin"

"ci_area medium" "ci2_area medium" "histogram medium" "dendrogram medium"

"xyline medium" "refmarker medium" "matrixmark medium" "dots vvthin"

"dot_area medium" "dotmark thin" "plotregion thin" "legend thin" "clegend thin"

VVVVVVVVVVVVVVVVVVVVVVVVVYVVYV.

Buchanan, W. R. 11

> "pie medium" "sunflower medium" "text_option thin" "pbar vvvthin")

> textboxsty("note small_body" "leg_caption body")

> axissty("bar_super horizontal_nolinetick" "dot_super horizontal_nolinetick"

> "bar_scale_horiz horizontal_withgrid" "bar_scale_vert vertical_withgrid"

> "box_scale_horiz horizontal_withgrid" "box_scale_vert vertical_withgrid")

> clockdir("caption_position 7" "legend_position 6" "by_legend_position 6" "p 3"
> "legend_caption_position 7") gridringsty("caption_ring 5"

> "legend_caption_ring 5") anglesty("vertical_tick vertical")

> yesno("extend_axes_low no" "extend_axes_high no" "draw_major_vgrid yes"

> "use_labels_on_ticks no" "title_span no" "subtitle_span no" "caption_span no"
> "note_span no" "legend_span no") barlabelsty("bar none");

Directory exists and rebuild option not specified. No further action

end of do-file
N

It is also important to reiterate, that this step is only necessary if you wish to
change parameters that are generally more global in scope than the modifications that
will occur using the brewscheme command. Additionally, while we only specified a
single theme file in the command, the brewtheme command also constructs parallel
versions of the theme where any color values are substituted for one of the simulated
color sight impairment types. You can access these theme files directly by appending
” _achromatopsia”, ” _protanopia”, ” _deuteranopia”, or ” _tritanopia” to the theme name.

3.2 brewscheme

Like the brewtheme command, the brewscheme command also generates parallel ver-
sions of your scheme for you. The reason for generating these additional .scheme files
will be discussed later, but the same logic is used for naming of the parallel schemes.
However, unlike the brewtheme command, the brewscheme command has three different
methods available to use it:

1. A single color palette used for all graph types

2. A default color palette used for unspecified graph types and separate palettes for
specified graph types, and

3. Individual color palettes for each graph type.
The parameter names for the command all follow a standardized naming convention

that will help to shorten the discussion of the individual parameters into groups based
on the use cases described above.

brewscheme API

brewscheme, schemename (string) [allstyle(string) allcolors(#)

allsaturation(#) barstyle(string) barcolors(#) barsaturation(#)

scatstyle(string) scatcolors(#) scatsaturation(#) areastyle(string)

12 brewscheme

areacolors(#) areasaturation(#) linestyle(string) linecolors(#)
linesaturation(#) boxstyle(string) boxcolors(#) boxsaturation(#)
dotstyle(string) dotcolors(#) dotsaturation(#) piestyle(string)

piecolors(#) piesaturation(#) sunstyle(string) suncolors(#)

sunsaturation(#) histstyle(string) histcolors(#) histsaturation(#)
cistyle(string) cicolors(#) cisaturation(#) matstyle(string)
matcolors(#) matsaturation(#) reflstyle(string) reflcolors(#)
reflsaturation(#) refmstyle(string) refmcolors(#) refmsaturation(#)
constart (string) conEnd(string) consaturation(#) somestyle(string)

somecolors(#) somesaturation(#) refresh themefile(string)

symbols (string)]

schemename an option taking a string value that will name the scheme that is created.

*style these options are used to specify the name of the color palette to use for that
graph type.

*colors allows users to specify the number of colors from the palette to use for a given
graph type.

*saturation a multiplier used to modify the intensity/saturation of the colors for this
graph type.

refresh is an optional argument used to rebuild the database of color palettes.

themefile is an optional argument used to pass the name of a theme to be used to set
the global aesthetic parameters.

symbols is an optional argument used to set the symbol types used for different lay-
ers/graphs.

Examples

The following examples illustrate the creation of scheme files that use a single color
palette for all graphs, a combination of a default color palette and graph specific color
palettes, and specifying palettes for each type of graph.

b Example

. do “"$articledir/brewschemeExamples.do"”

. /* brewscheme examples */

. // Create a mono color scheme with three colors
. brewscheme, scheme(onecolorexl) allsty(ggplot2)
Directory exists and rebuild option not specified. No further action
Directory exists and rebuild option not specified. No further action

Buchanan, W. R. 13

For bugs/issues, please submit issues to:
http://github.com/wbuchanan/brewscheme

For additional information about the program visit:
http://wbuchanan.github.io/brewscheme

// Same three colors but with alternate theme settings
. brewscheme, scheme(onecolorex2) allsty(ggplot2) themef (s2theme)
Directory exists and rebuild option not specified. No further action
Directory exists and rebuild option not specified. No further action

For bugs/issues, please submit issues to:
http://github.com/wbuchanan/brewscheme

For additional information about the program visit:
http://wbuchanan.github.io/brewscheme

// Now five colors from same palette using the ggplot2 inspired theme
. brewscheme, scheme(ggplot2exl) allsty(ggplot2) allc(5) themef (ggtheme)
Directory exists and rebuild option not specified. No further action
Directory exists and rebuild option not specified. No further action

For bugs/issues, please submit issues to:
http://github.com/wbuchanan/brewscheme

For additional information about the program visit:
http://wbuchanan.github.io/brewscheme

// An Example showing the use of the some parameters
. brewscheme, scheme(somecolorexl) somest(ggplot2) somec(7) linest(dark2) ///
> linec(3) cist(pastel2) cic(6) scatsty(categoryl0) scatc(10)
Directory exists and rebuild option not specified. No further action
Directory exists and rebuild option not specified. No further action

For bugs/issues, please submit issues to:
http://github.com/wbuchanan/brewscheme

For additional information about the program visit:
http://wbuchanan.github.io/brewscheme

// An example showing a different color palette/number of colors for each graph

. // type

. brewscheme, scheme(manycolorexl) barst(paired) barc(12) dotst(prgn) dotc(7) ///

> scatstyle(setl) scatc(8) linest(pastel2) linec(7) boxstyle(accent) boxc(4) ///
> areast(dark2) areac(5) piest(mdepoint) sunst(greys) histst(veggiese) /17
> cist(activitiesa) matst(spectral) reflst(purd) refmst(set3) const(ylgn) 11/

> cone (puor)
Directory exists and rebuild option not specified. No further action
Directory exists and rebuild option not specified. No further action

For bugs/issues, please submit issues to:
http://github.com/wbuchanan/brewscheme

For additional information about the program visit:
http://wbuchanan.github.io/brewscheme

// Using different numbers of colors from the same scheme to highlight differences
. // and showing the use of the symbols parameter
. brewscheme, scheme(ggplot2ex2) const(orange) cone(blue) consat(20) ///
> scatst(ggplot2) scatc(5) piest(ggplot2) piec(6) barst(ggplot2) barc(2) /17
linest(ggplot2) linec(2) areast(ggplot2) areac(5) somest(ggplot2) somec(24) ///
> cist(ggplot2) cic(3) themef (ggtheme) symbols(diamond triangle square)

v

14 brewscheme

Directory exists and rebuild option not specified. No further action
Directory exists and rebuild option not specified. No further action

For bugs/issues, please submit issues to:
http://github.com/wbuchanan/brewscheme

For additional information about the program visit:
http://wbuchanan.github.io/brewscheme

. // Load the auto.dta dataset
. sysuse auto.dta, clear
(1978 Automobile Data)

. // Store the names of the schemes in a local macro

. loc schemes onecolorexl onecolorex2 ggplot2exl somecolorexl manycolorexl ggplot2ex2

. // Loop over the schemes
. foreach scheme of loc schemes {

2.
// Create the same graph with each of the different schemes
. tw fpfitci mpg weight ||
> scatter mpg weight if rep78 == 1 ||
> scatter mpg weight if rep78 == 2 ||
> scatter mpg weight if rep78 == 3 ||
> scatter mpg weight if rep78 == 4 ||
> scatter mpg weight if rep78 == 5, scheme(scheme”)
> legend(order(1 "Fractional Polynomial Fit"
> 2 "1978 Repair Record = 1" 3 "1978 Repair Record = 2"
> 4 "1978 Repair Record = 3" 5 "1978 Repair Record = 4"
> 6 "1978 Repair Record = 5")) name(scheme”, replace)
3.
// Export to an eps file
qui: gr export ~"$articledir/brewscheme_~scheme”.eps"”, as(eps) replace
4

.} // End of Loop over scheme files

end of do-file

d

These examples also highlight a change to brewscheme from |Buchanan| (2015). In-
ternally, brewscheme makes calls to the mata function recycle — which is distributed
with brewscheme — to deal with .scheme files using only a single value for the pcycles
attribute. In the case of the example above, brewscheme looks across all of the *colors
parameters to find the highest argument passed to all of them. Then the recycle func-
tion is called to automatically recycle the values you specified enough times to avoid
any potential error/warning messages that would be cause if the pcycles attribute was
set to a higher value than the number of colors defined for a particular graph type; in
other words, if pcycle was set to 10 and you created a graph with four or more calls to
twoway line, Stata would print an error message to the screen indicating that it could
not find the color to use defined in the .scheme file.

Additionally, unlike the version discussed in [Buchanan| (2015)), the current version of
brewscheme uses .theme files to encapsulate and modularize the creation of the . scheme
files. The primary difference between the first three examples exists in their respective
.theme files that establish parameters that tend to be independent of specific graph

~N N

Buchanan, W. R. 15

[Fractional Polynomial Fit 1978 Repair Record =@ 1978 Repair Record =@ 1978 Repair Record =@ 1978 Repair Record = 4
1978 Repair Record = 5

40

T T T T
2,000 3,000 4,000 5,000
Weight (1bs.)

Figure 1: brewscheme graph with default .theme file and single color palette for all
graphs

types (e.g., displaying horizontal reference lines in the plot area, graph region fill colors,
etc...). The major advantage to this development is the flexibility it provides to set
generic parameters that can be reused across multiple .scheme files that may specify
different configurations of color palettes for graphs.

4 Proofing your graphs for color impaired perceptibility

Checking the readability and perceptability of your data visualizations is important to
ensure your message is easily and consistently understood. One of the major challenges
with the use of color in data visualizations is how easily those colors can be perceived
by individuals with different forms of color sight impairments. The brewproof prefix
command was developed to make this process faster and easier for end users. The
primary reason that the brewtheme and brewproof commands generate parallel versions
of your .scheme and .theme files is to make it faster to proof a graph across each of the
forms of color sight impairments. The brewproof prefix is a wrapper which calls your
graph command multiple times, and passes the modified .scheme files as arguments on
each iteration before combining each of the graphs into a single ”proof” copy.

16 brewscheme

o | ®
¥
o |
o
o |
N
S
T T T T
2,000 3,000 4,000 5,000
Weight (1bs.)

I Fractional Polynomial Fit—— 1978 Repair Record =@ 1978 Repair Record + 2
° 1978 Repair Record=3 @ 1978 Repair Record =4 1978 Repair Record F 5

Figure 2: brewscheme graph with s2color inpired .theme file and single color palette
for all graphs

brewproof, scheme(string): graph command

scheme the scheme file containing the aesthetics you wish to proof.

graph command is any Stata graph command that accepts a scheme parameter

4.1 Examples

If you wanted to see how your data visualizations may be perceived by individuals with
color sight impairments, the brewproof prefix provides a convenience command to do
just that.

. do “"$articledir/brewproofExamples.do" "

. /* brewproof examples based on the brewscheme examples graphs */

. // Load the auto.dta dataset
. sysuse auto.dta, clear
(1978 Automobile Data)

Buchanan, W. R. 17

Figure 3: brewscheme graph with default .theme file and single color palette for all
graphs

. // Store the names of the schemes in a local macro
. loc schemes onecolorexl onecolorex2 ggplot2exl somecolorexl manycolorexl ggplot2ex2

. // Loop over the schemes
. foreach scheme of loc schemes {

2.
// Create the same graph with each of the different schemes
. brewproof, scheme(scheme”) : tw fpfitci mpg weight ||
> scatter mpg weight if rep78 == 1 ||
> scatter mpg weight if rep78 == 2 ||
> scatter mpg weight if rep78 == 3 ||
> scatter mpg weight if rep78 == 4 ||
> scatter mpg weight if rep78 == 5,
> legend(order(1 "Fractional Polynomial Fit"
> 2 "1978 Repair Record = 1" 3 "1978 Repair Record = 2"
> 4 "1978 Repair Record = 3" 5 "1978 Repair Record = 4"
> 6 "1978 Repair Record = 5")) name(scheme”, replace)
3.

// Export to an eps file
qui: gr export ~"$articledir/brewProof_"scheme .eps"”, as(eps) replace

// End of Loop over scheme files

[el e

~N
~N

18 brewscheme

Figure 4: brewscheme graph with default .theme file and single color palette for all
graphs

1
1
1

end of do-file

The result of the proofer program can be viewed at the project page
https://wbuchanan.github.io/brewscheme/brewproof/. The example shown there uses
the ggplot2) inspired .theme and .scheme files described above (with
minor modifications). As you’ll see, the combination of the color palette used as default
by the ggplot2 package would be especially difficult for individuals with protanopia
and deuteranopia to perceive with only a marginal improvement for individuals with
tritanopic vision.

5 Utilities

In addition to the core functionality described above, the brewscheme package also
provides a set of utilities and internals that other users may find helpful or useful. The
utility commands can be thought of as commands related to the overall goal of the
package and are intended for direct use by end users, while the internals that will be

Buchanan, W. R. 19

[Fractional Polynomial Fit 1978 Repair Record =@ 1978 Repair Record =@ 1978 Repair Record =@ 1978 Repair Record = 4
© 1978 Repair Record = 5

40

30

20

T T T T
2,000 3,000 4,000 5,000
Weight (1bs.)

Figure 5: brewscheme graph with default .theme file, default color palette, and palettes
specified for some graphs

described later are used primarily by the commands described in this and the previous
section but may have uses for other users.

brewcolors

A posting to the StataList from Wiggins| (2004) prompted the development of the brew-
colors package. In the post, |Wiggins| (2004) is responding to a query from Bill Rising
in which he describes the structure of named color styles in Stata. Although there are
many named colors already available in Stata, users — for one reason or another — may
wish to define named color styles that can be more easily referenced by a name than the
corresponding color space values. In addition to providing a tool to help facilitate the
installation of named color styles, the brewcolors command also updates the database
of named color styles that the brewscheme package uses to look up named color styles’
RGB values and their corresponding RGB values for color sight impairment simulations.

brewcolors zkcd | new [, make install colors(string) refresh]

zked is an option used to construct a dataset containing the 900+ named colors from

the 2010 XKCD survey (2010).

20 brewscheme

[Fractional Polynomial Fit 1978 Repair Record =@ 1978 Repair Record =@ 1978 Repair Record =@ 1978 Repair Record = 4
O 1978 Repair Record = 5

40

30

20

T T T T
2,000 3,000 4,000 5,000
Weight (1bs.)

Figure 6: brewscheme graph with default .theme file and palettes specified for all graphs

new is an option used to construct new named color styles based on user input.

make is an optional argument used to make — if the program is called prior to brewcol-
ordb — and update the color database file with the additional colors.

install is an optional argument used to install the named colors to make them available
to Stata graph commands and in menus for creating graphs.

colors is an optional argument used in to pass a color constructor string (when the new
syntax is used) or to provide a list of colors from the XKCD color survey
(2010) which should be installed or added to the color database.

refresh is an option used to rebuild the color database.

Examples Like the brewscheme and brewtheme commands, the brewcolors command
also automates the creation of parallel versions of the named colors for each of the forms
of color sight impairment. The first example below shows how the named
colors can be installed to the local color database. This, however, does not expose these
colors as named color styles in Stataﬂ To do that, you must also specify the install

1. A screen shot showing these colors installed on the developer’s system can be viewed at:
http://wbuchanan.github.io/brewscheme/about.html for those interested

Buchanan, W. R. 21

brewproof colorblindness proofing

Achromatopsia Simulation of Original Graph Protanopia Simulation of Original Graph

I Fractional Polynd@ii81Ripair Ret9®78 Répair Ret®78 Repair Ret®7@ R8pair Rec |:| Fractional Polyndfi8IRipair Ret®7@ Rdpair Rel97d Repair Ret978 Répair Recorc
1978 Repair Record = 5 1978 Repair Record = 5

T T T T T T T T
2,000 3,000 4,000 5,000 2,000 3,000 4,000 5,000
Weight (Ibs.) Weight (Ibs.)
Deuteranopia Simulation of Original Graph Tritanopia Simulation of Original Graph

[Fractional PolyndfilsI Ripair Retd78 Rdpair Ret®78 Repair Retd78 Rapair Rec [Fractional Polyndfil§I Ripair RetH78 Rdpair Ret978 Repair Retd7d Rapair Recorc
1978 Repair Record = 5 1978 Repair Record = 5

T T T T T T
2,000 3,000 4,000 5,000 2,000 3,000 4,000 5,000
Weight (Ibs.) Weight (Ibs.)

Figure 7: brewproof graph based on figure

option, which writes the color style file and places it along the ADOPATH.

b Example

do “"$articledir/brewcolorsExamples.do"”

. /* brewcolors examples */

. // Make the color database for the XKCD colors

brewcolors xkcd, ma
Directory exists and rebuild option not specified. No further action
Directory exists and rebuild option not specified. No further action
(2 vars, 950 obs)

// Make the color database for the XKCD colors and install the named color styles
brewcolors xkcd, ma inst

Directory exists and rebuild option not specified. No further action

Directory exists and rebuild option not specified. No further action

(2 vars, 950 obs)

. // Add a new color to the color database

brewcolors new, ma inst colors("117 200 47")
Directory exists and rebuild option not specified. No further action
Directory exists and rebuild option not specified. No further action

22 brewscheme

brewproof colorblindness proofing

Achromatopsia Simulation of Original Grapl ~ Protanopia Simulation of Original Graph

(=) (=)
¥ =+
=) =)
o o
=) =)
N N
= =
T T T T T T T T
2,000 3,000 4,000 5,000 2,000 3,000 4,000 5,000
Weight (Ibs.) Weight (Ibs.)
[Fractional Polynomil9FtRepair Ret87@ Rdpair [Rec [Fractional Polynomih9FatRepair Ret®7@ Répair[Reco:
© 1978 Repair Rec@rd 938 Repair Ret97d Rdpair Rec © 1978 Repair Recdrd 38 Repair Ret97d Rdpair Recor

Deuteranopia Simulation of Original Graph Tritanopia Simulation of Original Graph

(=] (=)
5 <+
(=3 j=3
o o
(=] j=]
N N
2 g
T T T T T T T T
2,000 3,000 4,000 5,000 2,000 3,000 4,000 5,000
Weight (Ibs.) Weight (Ibs.)
[Fractional Polynomil®F8tRepair Ret®7@ Répair [Rec [Fractional Polynomik9F8tRepair Ret®7@ Répair [Recos
© 1978 Repair Recdrd 938 Repair Ret®7d Rdpair [Rec © 1978 Repair Recdrd 38 Repair Ret®78 Rdpair Recor

Figure 8: brewproof graph based on figure [2]

// Add the same color but use the name mycolor
. brewcolors new, ma inst colors(""mycolor 117 200 47"" ")
Directory exists and rebuild option not specified. No further action
Directory exists and rebuild option not specified. No further action

end of do-file

d

This program is also designed to help users define their own named color styles with
their RGB values; this functionality, in particular, can be extremely valuable when a
project requires data visualizations to reenforce branding through a common company
color palette. The last two syntaxes in the examples above are equivalent. In the former,
the color would be named uc11720047, while the same color would be named ”mycolor”
in the later. Users can specify multiple colors by wrapping each key/value pair (e.g.,
color name and RGB values) with compound double quotes.

brewextra

In addition to providing users with methods that can be used to add named color styles
to their Stata installations, the brewextra command provides a mechanism to add data

Buchanan, W. R. 23

Figure 9: brewproof graph based on figure

to the color palette database. When called without options (which happens automat-
ically the first time the brewscheme command is used), the command adds additional
color palettes to the database containing the ColorBrewer (Brewer| (2002))) palettes and
adds the palettes defined in the D3js library Bostock et al.| (2011]), colors with semantic
meanings |Lin et al.| (2013]), and colors with socio-culturally defined meanings Buchanan
(2014} 2015).

brewextra [, files(string) refresh]

files(string) is an option used to pass a string of file names containing the data to be
added to the color palette database.

refresh an optional argument used to rebuild the database.

Examples Table [1| shows the file specification that must be followed to include a new
palette in your palette database.

Using viewsource brewextra.ado can also help you to see how the data are con-
structed from text that constructs a file that is created by the command and used to
add the additional palettes to the database internally.

24 brewscheme

Figure 10: brewproof graph based on figure

brewmeta

An additional tool is available to look up the attributes of given color palettes, although
it is primarily relevant to the colors palettes defined by Brewer] (2002).

brewmeta palette name, colorid(#) [colors(#) prcperties[(””, "all",

"colorblind"”, "lcd", "print", "photocopy", ”meta,”)] refresh]

colorid the specific color of which you are interested (e.g., color colorid of colors for a
palette)

colors the total number of colors from which the colorid should be selected (e.g., if the
palette has up to 12 colors and you were interested in color 5 when only 6 colors are
used you would pass a value of 6 to colors and a value of 5 to colorid)

properties an optional argument to define the specific attributes/properties of the
color /palette to look up.

Buchanan, W. R. 25

brewproof colorblindness proofing

Achromatopsia Simulation of Original Graph Protanopia Simulation of Original Graph

I Fractional Polynd@ii81Ripair Ret9®78 Répair Ret®78 Repair Ret®7@ R8pair Rec |:| Fractional Polyndfi8Ripair Ret®7@ Rdpair Relo7d Repair Ret978 Répair Recor(
© 1978 Repair Record = 5 © 1978 Repair Record = 5

T T T T T T T T
2,000 3,000 4,000 5,000 2,000 3,000 4,000 5,000

Weight (Ibs.) Weight (Ibs.)
Deuteranopia Simulation of Original Graph Tritanopia Simulation of Original Graph

[Fractional Polyndilsi Ripair RetH78 Rdpair Ret®78 Repair Retd78 Rapair Rec [Fractional Polyndfil§I Ripair RetH78 Rdpair Ret978 Repair Retd78 Rapair Recorc
© 1978 Repair Record = 5 © 1978 Repair Record = 5

T T T T T
2,000 3,000 4,000 5,000 2,000 3,000 4,000 5,000
Weight (Ibs.) Weight (Ibs.)

Figure 11: brewproof graph based on figure

Macros
r(palette## colorblind) Colorblind Friendliness
r(palette##_lcd) LCD Friendliness
r(palette## photocopy) Photocopy Friendliness
r(palette##_print) Print Friendliness
r(palette## meta) Additional Characteristics

Examples This command is used to quickly look up available attributes related to a
given combination of colors, palettes, and specific color values within those color x
palette definitions.

b Example

do “"$articledir/brewmetaExamples.do"”

/* brewmeta examples */

// Get the color blind attribute for the pastel2 palette with 7 colors for color
// number 5
brewmeta pastel2, colorid(5) colors(7) prop(colorblind)

The color 5 of palette pastel2 with 7 colors is Not color blind friendly

// Get the meta attribute for the dark2 palette with maximum number of colors for
// the third color

26 brewscheme

brewproof colorblindness proofing

Achromatopsia Simulation of Original Graph Protanopia Simulation of Original Graph

I Fractional Polynd@ii81Ripair Ret®78 Répair Ret®78 Repair Ret®7@ R8pair Rec I Fractional Polyndfi8IRpair Ret®7@ Rdpair Relo7d Repair Ret978 Répair Recorc
O 1978 Repair Record = 5 O 1978 Repair Record = 5

T T T T T T T T
2,000 3,000 4,000 5,000 2,000 3,000 4,000 5,000

Weight (Ibs.) Weight (Ibs.)
Deuteranopia Simulation of Original Graph Tritanopia Simulation of Original Graph

[Fractional PolyndfilsiRipair RetH78 Rdpair Ret®78 Repair Retd78 Rapair Rec [Fractional Polyndfil§I Ripair RetH78 Rdpair Ret978 Repair Retd78 Rapair Recorc
O 1978 Repair Record = 5 O 1978 Repair Record = 5

T T T T T T
2,000 3,000 4,000 5,000 2,000 3,000 4,000 5,000
Weight (Ibs.) Weight (Ibs.)

Figure 12: brewproof graph based on figure |§|

brewmeta dark2, colorid(3) prop(meta)
The color 3 of palette dark2 with 7 colors is Qualitative

// Get all of the attributes for the puor palette with the maximum number of
// colors for the 6th color
brewmeta puor, colorid(6)

The color 6 of palette puor with 10 colors is Missing Data on Colorblind Friendliness
The color 6 of palette puor with 10 colors is LCD friendly

The color 6 of palette puor with 10 colors is Not photocopy friendly

The color 6 of palette puor with 10 colors is Possibly print friendly

The color 6 of palette puor with 10 colors is Divergent

end of do-file

brewcbsim

While the brewproof command is useful for proofing graphs defined by existing schemes,
you may also want similar capabilities for individual colors. The brewcbsim command
is useful for proofing an individual - or collection of individual - colors in a single graph.
Because the brewcolors and brewcolordb commands create a database of named color
styles, the brewcbsim command is able to accept either named color styles or RGB

Buchanan, W. R. 27
Table 1: File specification for brewscheme palettes
variable storage display value variable
name type format label label
palette str1l %11s Name of Color Palette
colorblind byte %10.0g colorblind Colorblind Indicator
print byte %10.0g print Print Indicator
photocopy byte %10.0g photocopy Photocopy Indicator
led byte %10.0g lcd LCD/Laptop Indicator
colorid byte 9%10.0g Within pcolor ID for individual color look
ups
pcolor byte 9%10.0g Palette by Colors Selected 1D
rgh str1l %11s Red-Green-Blue Values to Build Scheme
Files
maxcolors byte 9%10.0g Maximum number of colors allowed for
the palette
seqid str13 %13s Sequential ID for property lookups
meta str13 %13s Meta-Data Palette Characteristics
values.

brewcbsim RGB Strings

Macros

r(original#)
r(achromatopsic#)
r(protanopic#)
r(deuteranopic#)
r(tritanopic#)

| named color styles

RGB Value

Achromatopsia Simulated
Protanopia Simulated
Deuteranopia Simulated
Tritanopia Simulated

Examples The brewcbsim command takes a single argument consisting of one or more
named color styles and/or RGB strings. The example below shows how the program
can be used with user specified colors, a Stata named color style, and a named color
style installed by the brewcolors command.

b Example

. do “"$articledir/brewcbsimExamples.do"”

. /* brewcbsim examples */

. // Simulation with XKCD installed color, RGB strings, and a Stata named color style
. brewcbsim xkcd119 "63 210 142" "8 151 233" "182 33 43" bluishgray8

. qQui:

gr export

“"$articledir/brewcbsimExl.eps" ", as(eps) replace

. // Colors typically associated with color sight impairments
. brewcbsim red green blue yellow

28 brewscheme

. qui: gr export "$articledir/brewcbsimEx2.eps"”, as(eps) replace

end of do-file

brewscheme — Color Sight Simulator

111 108 10 63 210 142 8151233 1823343 210215228
vl B H H OE O
101 101 101 173173 173 126 126 126 65 65 65 214214214
Achromatopsia | . |:| . . D
§ 119 105 8 200 185 132 111 141225 102 93 59 215213227
I
s el B @O E O OE O
g
'; 13399 18 216 178 152 82 145235 118 89 31 229 208 230
Deuteranopia - . |:| . . D
118 100 107 97200 216 0159170 1813434 210214 231
o] B @ B OB O
T T T T T
xked119 63 210 142 8151233 1823343 bluishgray8
User Specified Colors

Figure 13: brewcbsim graph with combination of named color styles and RGB values
passed as arguments

brewviewer

The brewviewer command provides a previewer for the palettes made available by
brewscheme. In addition to the basic previewer capabilities, the program also allows
users to view copies of the palette(s) that are transformed to simulate the different forms
of color sight impairments.

brewviewer palette names [, colors(numlist) combine seq impaired }

colors the number of colors to display from a given palette or the maximum number
of colors to show if the sequential option is used.

Buchanan, W. R.

Specified
Achromatopsia
5]
o
>
H
=) Protanopia -
8]
R
>
Deuteranopia
Tritanopia

brewscheme — Color Sight Simulator

29

25500 01280 00255 2552550
54 54 54 919191 181818 236 236 236
142 126 29 1241100 074 154 2552470
1601190 139 104 28 079130 25523339
253230 58118 128 08589 255236 254
T T T T
red green blue yellow
User Specified Colors

Figure 14: brewcbsim graph with colors typically associated with color sight impair-

ments

combine an option to combine graphs for separate palettes into a single graph.

seq an option used to treat the values passed to the colors parameter as the maximum
number of colors to display from the palette (e.g., a value of 6 will display the
palette with 3, 4, 5, and 6 colors). Without this option, the values passed to the
colors command are treated as discrete values (e.g., a value of 6 will display a single
set of colors for a palette with 6 colors).

impaired is an option used include the color sight impaired simulated colors in the

preview.

ExamplesExample

. do “"$articledir/brewviewerExamples.do"”

. /* brewviewer examples */

. // Use the D3js palette with upto 6 colors (e.g., 3, 4, 5, and 6) and include
. // how the colors would appear with different forms of color sight impairments

30 brewscheme

. brewviewer categoryl0, im seq c(6)
. qui: gr export ~"$articledir/brewviewerExl.eps"”, as(eps) replace

// Specify a different number of colors for each palette graphing the colors with
. // the sequential option and combining the results into a single image
. brewviewer categoryl0 category20 category20b category20c, c(5 8 10 12) comb seq

. qui: gr export ~"$articledir/brewviewerEx2.eps"”, as(eps) replace

// Use the same number of colors for multiple palettes and combine the results
. brewviewer dark2 mdebar accent pastel2 setl tableau, c(5) seq comb

. qui: gr export ~"$articledir/brewviewerEx3.eps"”, as(eps) replace

// Show a single portion of the palette for the same number of colors for multiple palettes
. brewviewer dark2 mdebar accent pastel2 setl tableau, c(5) comb

. qui: gr export ~"$articledir/brewviewerEx4.eps"”, as(eps) replace

end of do-file

BrewScheme palette: category10 colors
with simulated total, red, green, and blue colorblindness

T
3 a p d t 4 a p d t 5 a p d t 6 a p d t
a = Achromatopsia p = Protanopia d = Deuteranopia t = Tritanopia

Figure 15: brewviewer example with single palette, single sequential color, and color
sight impairment simulated values

Buchanan, W. R. 31

BrewScheme palette: category10 colors BrewScheme palette: category20 colors
=}
=] [}
-] =] |}
=] =]] o [m]
o] o [} || =] o
m] 5]]] 5] o] =]
L] =]]] = 5] u] = =}
g mo @ o 0o 0
335 445 5 3 4 5 6 7 8
Colors # Colors
BrewScheme palette: category20b colors BrewScheme palette: category20c colors
o
-] o
=] =] || =]
=] || =] || || =]
-]] =] -]] =] o]
=] || =] =] =] || =] =] o =]
-] =] || =] -] -] =] || =] -] =] =]
=] || =] o =] || =} || =] o =] || =] =]
=]] || =] o =] || =} -} || =] o =] ||] =]
-] || =] o || =] || o |} =} o || =] || o =] ||
|| =] =] o =] =] =] o || =} =} o =] =] =] o =] =]
= 8 o 8 85 & &8 @ ‘ ° o p e 8 8 &8 8 @
2 4 6 8 10 2 4 6 8 10 12
Colors # Colors

Figure 16: brewviewer example with multiple palettes and multiple sequential colors

hextorgb

hextorgb, hexcolor(string| wvarname)

hexcolor

Macros
r(red#) Red Channel Value r(green#) Green Channel Value
r(blue#) Blue Channel Value r(rgb#) Stata RGB String

r(rgbcomma#) Comma-Delimited RGB String

Examples The examples below show how the hextorgb command was used to convert
the color palettes used by the D3js (Bostock et al.|(2011])) library to RGB values used
by the brewextra command to add those color palettes to the brewscheme package.

b Example

. do “"$articledir/hextorgbExamples.do" "

32

BrewScheme palette: dark2 colors

BrewScheme palette: mdebar colors

brewscheme

BrewScheme palette: accent colors

=] 5] 5]

o -] o] o]

5]] =] 5]] o =]] o

] 5] =] 5] 5] -] 5] 5]

[] o o [] o o [] o o

T T T T T T T T T T T T T T T

3 35 4 45 5 3 35 4 45 5 3 35 4 45 5
Colors # Colors # Colors

BrewScheme palette: pastel2 colors BrewScheme palette: setl colors BrewScheme palette: tableau colors

=] 5] 5]

o -] o || o ||

5]] =] 5]] o =]] o

] 5] =]] 5] 5] -] 5] 5]

[] o o [] o o [] o o

T T T T T T T T T T T T T T T

3 35 4 45 5 3 35 4 45 3 35 4 45

Colors # Colors # Colors.

Figure 17: brewviewer example with multiple palettes and single sequential color

/* hextorgb examples */

. // Using the ten colors from the categorylO palette from the D3js library
. hextorgb, hex("#1f77b4" "#ff7f0e" "#2cal2c" "#d62728" "#9467bd" "#8c564b" ///

> "#e377c2" "#TETE7E" "#bcbd22" "#17becf")
Red Green Blue RGB RGB String
31 119 180 31, 119, 180 "31 119 180"
255 127 14 2565, 127, 14 "265 127 14"
44 160 44 44, 160, 44 "44 160 44"
214 39 40 214, 39, 40 "214 39 40"
148 103 189 148, 103, 189 "148 103 189"
140 86 75 140, 86, 75 "140 86 75"
227 119 194 227, 119, 194 "227 119 194"
127 127 127 127, 127, 127 "127 127 127"
188 189 34 188, 189, 34 "188 189 34"
23 190 207 23, 190, 207 "23 190 207"

Buchanan, W. R. 33
BrewScheme palette: dark2 colors BrewScheme palette: mdebar colors BrewScheme palette: accent colors
=} =} =}
=} =} =}
[[[
u u u
L] L] L]
3 6 3 6 i 6
Colors # Colors # Colors.
BrewScheme palette: pastel2 colors BrewScheme palette: setl colors BrewScheme palette: tableau colors
=} =} =}
o o o
[[[
]]]
L] L] L]
i 6 3 6 i 3
Colors # Colors # Colors.
Figure 18: brewviewer example with multiple palette and single color
// Display the returned results
. ret li
macros:
r(rgbcommal0) "23, 190, 207"
r(rgb10) "23 190 207"
r(bluel0) "207"
r(green10) "190"
r(red10) "a3"
r (rgbcomma9) "188, 189, 34"
r(rgb9) "188 189 34"
r(blue9) "34"
r(green9) "189"
r(red9) : "188"
r (rgbcomma8) "127, 127, 127"
r(rgb8) "127 127 127"
r(blue8) "i27"
r(green8) 127"
r(red8) : "127"
r (rgbcomma7) "227, 119, 194"
r(rgb7) "227 119 194"
r(blue7) "194"
r(green7) "119"

34

r(red7)

r (rgbcomma6)
r(rgb6)
r(blue6)
r(green6)
r(red6)

r (rgbcommab)
r(rgbb)
r(blueb)
r(green5)
r(red5)

r (rgbcomma4)
r(rgb4)
r(blued)
r(green4)
r(red4)

r (rgbcomma3)
r(rgb3)
r(blue3)
r(green3)
r(red3)

r (rgbcomma2)
r(rgb2)
r(blue2)
r(green2)
r(red2)
r(rgbcommal)
r(rgbl)
r(bluel)
r(greeni)
r(redl)

n 227"

"140, 86, 75"
"140 86 75"
"75 n

nggh

n 140"

"148, 103,
"148 103 189"
n 189“

n 103"

n 148 n

"214, 39, 40"
"214 39 40"
ll40l|

"39"

l|214|l

"44, 160, 44"
"44 160 44"
ll44ll
n 160“
"44"
"255,
"255 127 14"
n 14"

n 127"

n 255"
"31, 119,
"31 119 180"
n 180"

ni1gn

"31"

. // Or with a larger list of values

. hextorgb, hex("#1f77b4" "#aecT7e8" "#ff7fOe" "#ffbb78" "#2cal02c" "#98df8a"
> "#d62728" "#ff9896" "#9467bd" "#c5b0d5" "#8cb564b" "#c49c94" "#e377c2"

127, 14"

180"

189"

brewscheme

17/
11/

> "#E7b6d2" "#TETETE" "#cTcTc7" "#bcbd22" "#dbdb8d" "#17becf" "#9edaeb")

Red Green Blue RGB RGB String

31 119 180 31, 119, 180 "31 119 180"
174 199 232 174, 199, 232 "174 199 232"
255 127 14 255, 127, 14 "255 127 14"
255 187 120 255, 187, 120 "255 187 120"
44 160 44 44, 160, 44 "44 160 44"

152 223 138 152, 223, 138 "152 223 138"
214 39 40 214, 39, 40 "214 39 40"

255 152 150 255, 152, 150 "2565 152 150"
148 103 189 148, 103, 189 "148 103 189"
197 176 213 197, 176, 213 "197 176 213"
140 86 75 140, 86, 75 "140 86 75"

196 156 148 196, 156, 148 "196 156 148"
227 119 194 227, 119, 194 "227 119 194"
247 182 210 247, 182, 210 "247 182 210"
127 127 127 127, 127, 127 "127 127 127"
199 199 199 199, 199, 199 "199 199 199"
188 189 34 188, 189, 34 "188 189 34"
219 219 141 219, 219, 141 "219 219 141"
23 190 207 23, 190, 207 "23 190 207"
158 218 229 158, 218, 229 "1568 218 229"

Buchanan, W. R. 35

end of do-file

5.1 Java Plugins
brewterpolate

Although the commands discussed thus far provide significant options that can be used
to create/install new named color styles and generate new scheme files, there has yet to
be any discussion of generating any type of gradients and/or quantitative color scales
that provide a mapping — or interpolation — between two points in a color space.
The brewterpolate command is a Java-plugin that provides this capability to Stata
users who have Java 8 or above installed. The command requires users to specify a
starting and ending color value and the number of points between them that should be
interpolated. There are also options available

brewterpolate , scolor(string) ecolor(string) colors(#) [,

luminance (string) icspace(string) rcspace(string) inverse]

scolor starting color
ecolor ending color

colors number of points to interpolate between starting and ending colors

)

luminance (string) is an optional argument that accepts a value of ”brighter” or ”darker”.
If the colors are in RGB color spaces, the ”brighter” option returns an arbitrarily
brighter version of the colors, while the ”darker” values does the opposite. If you are
using HSB color space, the ”brighter” option returns a color that is arbitrarily more
saturated and the ”darker” option returns a color that is arbitrarily less saturated.

icspace(string) the colorspace of the starting and ending colors. If a value is passed
to this parameter it must be one of: rgb, rgba, srgb, srgba, hsb, hsba, or web.

rcspace(string) the colorspace in which the values are to be returned. If a value is
passed to this parameter it must be one of: rgb, rgha, srgh, srgbha, hsb, hsba, or
web.

inverse an optional argument to return the inverse of the colors

Macros
r(start) Starting Color Value
r(end) Ending Color value
r(totalcolors) # of colors returned
r(terpcolor#) #h Tnterpolated Color
r(interpstart) Start Index in colors/colorsdelim
r(interpend) End Index in colors/colorsdelim
r(colorstring) Space-Delimited Colors

r(colorsdelim) Comma-Delimited Colors

36 brewscheme
Examples The example below shows a basic usage of the brewterpolate command.
Regardless of whether the colors are passed with or with out comma-delimiters, the
program will handle the values appropriately. In the case where no input color space is

defined, RGB

b Example

is assumed.

. do “"$articledir/brewterpolateExamples.do"”

/* brewterpolate examples */

. // Four colors interpolated in RGB color space
. brewterpolate, sc("197 115 47") ec("5, 37, 249") c(4)

// Display the returned values

. ret 1i

macros:
r(colorsdelim) "197 115 47", "159 99 87", "120 84 128", "82 68 168", "43 53 209", "5 37 24
r(colorstring) "197 115 47" "159 99 87" "120 84 128" "82 68 168" "43 53 209" "5 37 249"
r(interpend) "B"
r(interpstart) "n
r(totalcolors) "e"
r(end) "5 37 249"
r(start) "197 115 47"
r(terpcolors6) "5 37 249"
r(terpcolor5) "43 53 209"
r(terpcolor4) "82 68 168"
r(terpcolor3) "120 84 128"
r(terpcolor2) : "159 99 87"
r(terpcolorl) "197 115 47"

// Initalize null matrices to store results for he next three examples

. mata:

hsbl = J(6, 3,

D)

. // Return the original results in HSB color space
. brewterpolate, sc("197 115 47") ec("5, 37, 249") c(4) rcs("hsb")

// Loop over returned results

. forv i =1/6 {
2.
// Store the results from the command above in a Mata matrix
. mata: hsbl["i", .] = strtoreal(tokens(st_global("r(terpcolor i“)")))
3

.} // End Loop over returned results

. // Return the matrices to Stata
. mata: st_matrix("hsbl", hsbl)

// Add column names to each of the matrices

. mat colnames hsbl =

"Hue" "Saturation" "Brightness"

// Add rownames to each of the matrices
. mat rownames hsbl =

"Color 1" "Color 2" "Color 3" "Color 4" "Color 5" "Color 6"

// Print the first result set to the screen

!

Buchanan, W. R. 37

. // From the command:

. // brewterpolate, sc("197 115 47") ec("5, 37, 249") c(4) rcs("hsb")
. // RGB input returned in HSB color space

. mat 1i hsbil

hsb1[6,3]

Hue Saturation Brightness
Color 1 27.199999 .76142132 . 77254903
Color 2 10.112354 .44892805 .62196076
Color 3 289.63636 .34428793 .50117648
Color 4 248.16 .59453034 .65960789
Color 5 236.65859 .79194634 .81803924
Color 6 232.13115 .97991968 .97647059

end of do-file

N

To make the returned values more useful to others, the starting and ending values

are reported as terpcolors. If you wanted to loop through only the values that were
actually interpolated, you could used a forvalues loop like:

forv i = ‘r(interpstart)’/‘r(interpend)’ {
di ‘"‘r(terpcolor‘i’)’"’

filesys

filesys filename [, attributes display global readable(string)

writable(string) xecutable(string) readonly]

attributes
display Prints a table of the returned attributes to the results window.

global using inconjunction with the readable, writable, and executable options. Setting
this parameter will apply the setting(s) passed to these arguments for all users.
Without this parameter, the settings will be applied only for the current system’s
user.

readable accepts either "on” or "off” to make the given file readable or not-readable.
When used with the global option, this can make the file globally readable or un-
readable.

writable accepts either "on” or "off” to make the given file readable or not-readable.
When used with the global option, this can make the file globally readable or un-
readable.

xecutable accepts either on” or ”off” to make the given file readable or not-readable.
When used with the global option, this can make the file globally readable or un-
readable.

38

readonly

Macros
r(created)
r(creatednum)
r(modified)
r(modifiednum)
r(accessed)
r(accessednum)
r(symlink)
r(regularfile)
r(filesize)
r(absolutepath)
r(canonicalpath)
r(isezecutable)
r(filename)
r(ishidden)
r(parentpath)
r(isreadable)
r(tswritable)

brewscheme

String Created Date

SIF Created Date

String Modified Date
SIF Modified Date
String Last Access Date
SIF Last Access Date
Symbolic Link Indicator
Regular File Indicator
Filesize

Absolute Filepath
Canonical Filepath
Executable Attribute Set
Filename

Hidden File Indicator
Filepath to Parent Directory
Readable Attribute Set
Writable Attribute Set

Examples One difference between the brewscheme package and other Stata programs
that include Mata libraries, is the method by which the .mlib file is created for users.
Because one of the primary methods for distributing the program is from it’s GitHub
repository, the package attempts to detect the age of the Mata library on the user’s
system and will recompile it if needed. This is handled by the brewlibcheck command,
which uses the filesys command to access file system attributes. This plugin and
command are discussed here since it is likely to be useful to a wider audience of user-
programmers. The examples below show how the program can be used interactively to
inspect these properties, as well as programmatically via returned macros.

D Example

. do “"$articledir/filesysExamples.do"

. /x filesys examples */

. // Get the file system attributes for the auto.dta file and print to screen
. filesys “c(sysdir_base) “a/auto.dta, attr dis

Attribute

File Attribute Value

Created Date
Modified Date

Last Accessed Date
Absolute File Path
Canonical File Path
Parent Path

File Name

Is Symbolic Link
Is Regular File

Is Executable

Is Hidden

Is Readable

Is Writable

20nov2015 05:44:54

20nov2015 05:44:54

08jan2016 06:52:41
/Applications/Stata/ado/base/a/auto.dta
/Applications/Stata/ado/base/a/auto.dta
/Applications/Stata/ado/base/a

auto.dta

false

true

false

false

true

true

Buchanan, W. R.

39

// Display the numeric version of the last accessed date with proper datetime mask

. di %tc “r(accessednum) ~

08jan2016 06:52:41

// Make the data set globally executable
. filesys “c(sysdir_base) “a/auto.dta, x(on) glo dis

Attribute

File Attribute Value

Created Date
Modified Date

Last Accessed Date
Absolute File Path
Canonical File Path

Parent Path
File Name

Is
Is
Is
Is
Is
Is

Symbolic Link
Regular File
Executable
Hidden
Readable
Writable

20nov2015 05:44:54
20nov2015 05:44:54
08jan2016 06:52:41

/Applications/Stata/ado/base/a/auto.dta
/Applications/Stata/ado/base/a/auto.dta

/Applications/Stata/ado/base/a
auto.dta

false

true

true

false

true

true

// And undo the change that was just made
. filesys “c(sysdir_base) "a/auto.dta, x(off) glo dis

Attribute

File Attribute Value

Created Date
Modified Date

Last Accessed Date
Absolute File Path
Canonical File Path

Parent Path
File Name

20nov2015 05:44:54
20nov2015 05:44:54
08jan2016 06:52:41

/Applications/Stata/ado/base/a/auto.dta
/Applications/Stata/ado/base/a/auto.dta

/Applications/Stata/ado/base/a
auto.dta

Is Symbolic Link false

Is Regular File true

Is Executable false

Is Hidden false

Is Readable true

Is Writable true
end of do-file

6 Internals

The commands described in this section are designed primarily for calls made by other
programs in the brewscheme package. They are included here for interested readers and

40 brewscheme

to furhter document how the program works and functions.

6.1 Stata
brewlibcheck

This program is a wrapper used to check the user’s system for the libbrewscheme Mata
library. If the library does not exist, the program compiles it from source locally. If
the file does exist, the program calls the filesys program to check when the library
file was created. If the created date is earlier than the distribution date in the file,
it will recompile the library for the user. Although this is a highly specific use case,
it serves as an example of how other developers could use the filesys command to
remove maintenance of mata libraries from the users.

brewlibcheck

brewdb

The brewdb command is used to parse and build the initial palette database for the
brewscheme command to use. The program is called internally by brewscheme if the
palette database is not found. Calling this program with the refresh option will result
in all of the additional palettes — installed by brewextra — being removed. If you
wish to rebuild the database locally, call the brewextra command with the refresh
option. However, if you were interested in seeing how the javascript source code for the
ColorBrewer |Brewer| (2002)) palettes is parsed and structured, the source code in this
file will show you how it was done.

brewdb [, refresh]

refresh an optional argument that will erase an existing instance of the color palette
database if it exists before rebuilding the ColorBrewer palettes.

dirfile

The dirfile command is used to test whether or not specific filepaths exist and includes
an option to create them if they do not exist. If the directory has files in it, this command
also includes prompts that let the user determine if they wish to delete the contents of
the subdirectory.

dirfile, path(string) |, rebuild]

path is a required parameter that takes the filepath to be tested.

rebuild is an option used to rebuild the directory passed in the path parameter and
provides an interactive method for users to approve/deny removal of files within the

Buchanan, W. R. 41

directory

brewsearch

The brewsearch command is used internally to search for named color styles and/or
RGB values. If the value is found, the macro rgb will contain the passed value, and
the remaining returned values contain the transformed RGB values. If the value is not
found, the program returns the passed value in each of the macros. This command is
used by brewtheme to test the arguments passed to the parameters of the program.

brewsearch RGB String | named color style

Macros
r(rgb) RGB Value
r(achromatopsia) Achromatopsia Simulated
r(protanopia) Protanopia Simulated
r(deuteranopia) Deuteranopia Simulated
r(tritanopia) Tritanopia Simulated

ExamplesExample
. do “"$articledir/brewsearchExamples.do"”
/* brewsearch examples */

. // Search an RGB color string
. brewsearch "255 127 14"

. // Display the returned values
. ret 1i

macros:
r(tritanopia) "255 117 126"

r(deuteranopia) "206 153 0"
r(protanopia) "183 162 25"
r(achromatopsia) "146 146 146"
r(rgb) "255 127 14"

// Search a named color style that does not exist on the system
. brewsearch "xkcd7327"

// Display the returned values

. ret 1li
macros:
r(tritanopia) "xkcd7327"
r(deuteranopia) "xkcd7327"
r(protanopia) "xkcd7327"
r(achromatopsia) "xkcd7327"
r(rgb) "xkcd7327"

// Search a named color style that does exist if the user installed the XKCD colors
. brewsearch "xkcd327"

42
. // Display the returned values
. ret 1i
macros:
r(tritanopia) : "198 236
r(deuteranopia) : "255 218
r(protanopia) : "255 231
r(achromatopsia) : "218 218
r(rgb) : "168 255
. // Display a known color style
. brewsearch "ltbluishgray"
. // Display the returned values
. ret 1li
macros:
r(tritanopia) : "236 239
r(deuteranopia) : "255 232
r(protanopia) : "244 239
r(achromatopsia) : "240 240
r(rgb) : "234 242
end of do-file
brewtransform

255"
50"
oll
218"
4II

255"
245"
241"
240"
243"

brewscheme

The brewtransform program is used to create four variables containing the transformed
RGB values in a variable in the current file. The variables created are: achromatopsia,
protanopia, deuteranopia, and tritanopia and are added to the current dataset before
populating them with the simulated values corresponding to the RGB string in the
variable passed to the command. This is used internally to add these variables to user
specified colors/palettes when updating/modifying the color and/or palette databases.
The program is used internally to install the simulated versions of the XKCD (Monroe

(2010)) named colors and the Stata named color styles.

brewtransform varname

6.2 Mata Internals

Recycle

The recycle function is not defined in an ado file, but can be called from Stata using

the syntax below.

mata: recycle(real scalar shortVec, real scalar longVec)

The function takes two arguments, which contain the length of the shorter and longer

Buchanan, W. R. 43

vectors. From the example above, the call to recycle for the case of line graphs would
be:

D Example

mata:recycle(3, 10)
N
In this case, the function returns the value 71 23 12312 3 1” in the local macro
sequence. These values are treated as indices to select the appropriate RGB values to
use for each of the 10 line color attributes.

libbrewscheme

To make installation easier for users, the brewscheme package includes an .ado file that
handles the compilation of the libbrewscheme Mata library. The syntax below describe
the use of the .ado file used to compile the library and is followed by an explanation of
the mata library itself.

However, figure [15] shows the class structure, members, and methods of the classes
defined in the libbrewscheme mata library.

libbrewscheme [, display replace size(#)]

display is an option to bring up a help file that describes the mata library.
replace overwrites any existing version of the libbrewscheme mata library.

size(#) an option to pass a size argument to the mata: mata mlib create com-
mand.

The libbrewscheme Mata library consists of several objects and methods that will
be briefly described here.

The Protanopia, Deuteranopia, and Tritanopia all inherit from the cbtype class.
Each of these classes, when initializes, sets the member variables x, y, m, and yint to
the values needed to transform an inputted RGB value into a simulated RGB value
for each of those color sight impairments. These separate objects are initialized by the
colorblind class object and the accessor methods defined in the cbtype class are used to
extract the members when transforming an inputted RGB value. Because the typical
use of Stata is more along the lines of a procedural/functional language, the library
also includes a standalone mata function named translateColor which takes a red,
green, and blue scalar arguments and returns the resulting colors to the user in the
local macros: achromatopsia, protanopia, deuteranopia, and tritanopia.

44

colorblind

types:string rowvector
typelabs:string rowvector
inputR:real scalar
inputG:real scalar
inputB:real scalar
amount:real scalar
gamma:real scalar
invgamma:real scalar
transformedRGB:real matrix
protanope:Protanopia scalar
deuteranope:Deuteranopia scalar
tritanope:Tritanopia scalar
drgbl:real matrix
drgb2:real matrix
drgb3:real matrix
drgb4:real matrix
drgb5:real matrix
powrgb:real matrix

xyz:real matrix

chroma:real matrix

sim:real matrix

diffrgb:real matrix
fitrgb:real matrix
trnsconstants:real matrix

K~
N
~ -
N\ >~ Protanopia
N
\ \
\ \\
\\ N
\ \
\ \,
\ AN
\ \,
\\ \
\ Deuteranopia

achromatopsia():void
setR():void

setG():void

setB():void
setAmount():void
setRGB():void
simulate():void
getRgbString():void
getRgbStrings():void
getR():real scalar
getG():real scalar
getB():real scalar
getGamma():real scalar
getinvGamma():real scalar
getConfuseX():real scalar
getConfuseY():real scalar
getConfuseM():real scalar
getConfuseYint():real scalar
getAmount():real scalar
condMax():real scalar
getTypes():string rowvector
getTypelabs():string rowvector
getType():string scalar
getTypelab():string scalar
getTransformedRgbs():real matrix

getTransformedRgb():real rowvector

checkRange():real rowvector

Tritanopia

brewscheme
cbtype
x:real
y:real
m:real
yint:real

setConfuseX():void
setConfuseY():void
setConfuseM():void
setConfuseYint():void
getConfuseX():real
getConfuseY():real
getConfuseM():real
getConfuseYint():real

brewcolors

meta:string matrix
color:string matrix

brewNameSearch():void
brewColorSearch():void
getNames():void

Figure 19: Class diagram of the libbrewscheme mata library

7 References
Anonymous. 2013.

to all

graph makers.

http://www.econjobrumors.com/topic/to-all-the-stata-graph-makers.

Atz, U. 2011. SCHEME_TUFTE: Stata module to provide a Tufte-inspired graphics

Buchanan, W. R. 45

scheme. Statistical Software Components, Boston College Department of Economics.
https://ideas.repec.org/c/boc/bocode/s457285. html.

Bischof, D. 2015. Figure Schemes for Decent Stata Figures: blind & color-
blind. http://danbischof.com/2015/02/04 /stata-figure-schemes/. Article download-
able from https://www.dropbox.com/s/mbviis9oybgkept/FigureScheme.pdf?d1=0.

Bostock, M., V. Ogievetsky, and J. Heer. 2011. D3: data driven documents. IEEE
Transactions on Visualization & Computer Graphics 17(12): 2301-2309. Retrieved
from http://vis.stanford.edu/papers/d3.

Brettel, H., F. Viénot, and J. D. Mollon. 1997. Computerized simulation of color appear-
ance for dichromats. Journal of the Optical Society of America A 14(10): 2647-2655.

Brewer, C. A. 2002. Color Brewer 2. [Computer Software] State College, PA: Cynthia
Brewer, Mark Harrower, and The Pennsylvania State University. Retrieved from
http://www.ColorBrewer2.org.

Briatte, F. 2013. Plotting with the BuRd scheme.
http://srqm.tumblr.com/post /44632966728 /plotting-with-burd.

Buchanan, B. 2014. Using Stata for Educational Accountabil-
ity & Compliance Reporting. Presentation to US Stata Users
Group Meeting, Bostom, MA, 31 July Downloadable from
http://www.stata.com/meeting/boston14/abstracts/materials/boston14_buchanan.pdf.

2015. Brewing color schemes in Stata: Making it easier for
end wusers to customize Stata graphs. Presentation to US Stata
Users Group Meeting, Columbus, OH, 31 July. Downloadable from
http://www.stata.com/meeting/columbusl5/abstracts/materials/columbus15_buchanan.pdf.

Cox, N. J. 2013. Strategy and Tactics for Graphic Multiples in Stata. Presenta-
tion to London Stata Users Group Meeting, London, England,. Downloadable from
http://www.timberlake.co.uk/media/pdf/proceedings/materials/uk13_cox.ppt.

. 2014. Speaking Stata Graphics. College Station, TX: Stata Press.

Crow, K. 2008. Stata tip 72: Using the Graph Recorder to create a pseudograph scheme.
The Stata Journal 8(4): 592-593.

Hsiang, S. 2013. Prettier graphs with less headache: use schemes in Stata.
http://www .fight-entropy.com/2013/01 /prettier-graphs-with-less-headache-use.html.

Juul, S. 2003. Lean mainstream schemes for Stata 8 graphics. The Stata Journal 3(3):
295-301.

Lin, S., J. Fortuna, C. Kulkarni, M. Stone, and J. Heer. 2013. Selecting Semantically-
Resonant Colors for Data Visualization. Computer Graphics Forum 32(3): 401-410.
Retrieved from http://vis.stanford.edu/files/2013-SemanticColor-EuroVis.pdf.

46 brewscheme

Lindbloom, B. 2001. RGB working space information. Retrieved from:
http://www.brucelindbloom.com/WorkingSpacelnfo.html. Retrieved on 24nov2015.

Mitchell, M. 2012. A Visual Guide to Stata Graphics. 3rd ed. College Station, TX:
Stata Press.

Monroe, R. P. 2010. Color Survey Results. http://blog.xked.com/2010/05/03/color-survey-results/.
Source data downloadable from http://xked.com/color /rgb.txt.

Pisati, M. 2007. SPMAP: Stata module to visualize spatial data. Sta-
tistical Software Components, Boston College Department of FEconomics.
https://ideas.repec.org/c/boc/bocode/s456812.html.

Radyakin, S. 2009. Advanced Graphics Programming in Stata. Presentation to
US Stata Users Group Meeting, Washington, D.C., 29 July. Downloadable from
http://www.stata.com/meeting/dcconf09/dc09_radyakin.pdf.

Rising, B. 2010. Getting Graphs a Good Look: Schemes and the
Graph Editor. Presentation to Portuguese Stata Users Group
Meeting, Braga, Portugal, 17 September. Downloadable from

http://www.stata.com/meeting/portugal10/portugal10_rising.pdf.

Tufte, E. 2001. The Visual Display of Quantitative Information. 2nd ed. Cheshire, CT:
Graphics Press.

Viénot, F., H. Brettel, and J. D. Mollon. 1999. Digital Video Colourmaps for Checking
the Legibility of Displays by Dichromats. COLOR research and application 24(4):
243-252.

Wickham, H. 2009. ggplot2: Elegant Graphics for Data Analysis. New York City, NY:
Springer Science+Business Media LLC.

Wickline, M. 2014. Color.Vision.Simulate. Retrieved from:
http://galacticmilk.com/labs/Color-Vision/Javascript /Color. Vision.Simulate. s.
Retrieved on: 24nov2015. Version 0.1.

Wiggins, V. 2004. defining new colors or scheming too hard. Statalist Archives.
http://www.stata.com/statalist /archive/2004-10/msg00209.html.

About the authors

William Buchanan is currently a data scientist in the Office of Research, Assessment, & Evalu-
ation at the Minneapolis Public Schools District, following two years as a Strategic Data Fellow
at the Mississippi Department of Education. in addition to working more directly in the field
of education, he also worked as a methodological/statistical programming consultant following
grad school.

	The brewscheme toolkit for Data Visualization in Statato.44em.Buchanan, W. R.

