mridc.collections.reconstruction.models.multidomain package
Submodules
mridc.collections.reconstruction.models.multidomain.multidomain module
- class mridc.collections.reconstruction.models.multidomain.multidomain.MultiDomainConv2d(fft_type, in_channels, out_channels, **kwargs)[source]
Bases:
torch.nn.modules.module.Module
Multi-domain convolution layer.
- training: bool
- class mridc.collections.reconstruction.models.multidomain.multidomain.MultiDomainConvBlock(fft_type, in_channels: int, out_channels: int, dropout_probability: float)[source]
Bases:
torch.nn.modules.module.Module
A multi-domain convolutional block that consists of two multi-domain convolution layers each followed by instance normalization, LeakyReLU activation and dropout.
- training: bool
- class mridc.collections.reconstruction.models.multidomain.multidomain.MultiDomainConvTranspose2d(fft_type, in_channels, out_channels, **kwargs)[source]
Bases:
torch.nn.modules.module.Module
Multi-Domain convolutional transpose layer.
- training: bool
- class mridc.collections.reconstruction.models.multidomain.multidomain.MultiDomainUnet2d(in_channels: int, out_channels: int, num_filters: int, num_pool_layers: int, dropout_probability: float, fft_type: str = 'orthogonal')[source]
Bases:
torch.nn.modules.module.Module
Unet modification to be used with Multi-domain network as in AIRS Medical submission to the Fast MRI 2020 challenge.
- training: bool
- class mridc.collections.reconstruction.models.multidomain.multidomain.StandardizationLayer(coil_dim=1, channel_dim=- 1)[source]
Bases:
torch.nn.modules.module.Module
Multi-channel data standardization method. Inspired by AIRS model submission to the Fast MRI 2020 challenge. Given individual coil images \(\{x_i\}_{i=1}^{N_c}\) and sensitivity coil maps \(\{S_i\}_{i=1}^{N_c}\) it returns
\[[(x_{sense}, {x_{res}}_1), ..., (x_{sense}, {x_{res}}_{N_c})]\]where
\({x_{res}}_i = xi - S_i X x_{sense}\) and
\(x_{sense} = \sum_{i=1}^{N_c} {S_i}^{*} X x_i\).
- forward(coil_images: torch.Tensor, sensitivity_map: torch.Tensor) torch.Tensor [source]
Forward pass.
- training: bool
- class mridc.collections.reconstruction.models.multidomain.multidomain.TransposeMultiDomainConvBlock(fft_type, in_channels: int, out_channels: int)[source]
Bases:
torch.nn.modules.module.Module
A Transpose Convolutional Block that consists of one convolution transpose layers followed by instance normalization and LeakyReLU activation.
- forward(input_data: torch.Tensor)[source]
Forward method for the TransposeMultiDomainConvBlock class.
- training: bool