Proj. 3
Uncertainty Quantification

Team members:
Zhengwei Wei, Chong Ou,
Yunqing Yang, Haozhi Qu

Project Description

Salmon is a tool for measuring gene expression, and
gives estimates of transcript abundances. Using
'bootstrapping' technique, we can measure the
confidence in these estimates. However, this
approach tends to underestimate the uncertainty
with more transcripts falling out of the interval than

expected.

Our goal is to filter out these failed transcripts, find
common properties between them, and come up
with a quality score based on those properties which
measures our confidence in the estimates.

Our Approaches

1. Parse the data files (poly_truth.tsy,
quant_bootstrap.tsv, quant.sf);

2. Find range of confidence interval;
3. Filter out the failed transcripts;

4. Group data by true/failed transcripts, analyze
common properties.

Implementation Details

Parse quant_bootstraps.tsv

This file gives us the bootstrap data (200 rounds of
sample taking).

Note: we are using from the

package to easier do data analysis.

quant_bootstraps = tsv.TsvReader(open(root_path +

quant_boot = [line line quant_bootstraps]

df _quant_boot = pd.DataFrame.from_records(quant_boot[:],
columns=quant_boot[])

Parse poly_truth.tsv
This file gives us the true count of each transcript.

Poly_truth.tsv: true counts for each transcript
poly_truth = open(root_path +)
lines = poly_truth.readlines()

poly_truth.close()

poly_truth = [] ; 1]
poly_truth.extend(line[: '].split() line lines)

df_poly_truth = pd.DataFrame.from_records(poly_truth[:],
columns=poly_truth[])

df _poly_truth]| =
df _poly_truth| | .astype(str)
df_poly_truth]| |=df_poly_truth]] .astype(int)

Parse quant.sf

This file gives us some attributes of the transcripts.

quant_file = open(root_path +

lines = quant_file.readlines()

quant_file.close()

quant = [line[: '].split() line lines]

df_quant = pd.DataFrame.from_records(quant[:],
columns=quant[‘])

df _quant.Name = df_quant.Name.astype(str)

df_quant.Length = df_quant.Length.astype(int)

df _quant.EffectivelLength = df_quant.EffectivelLength.astype

(float)
df _quant.TPM = df_quant.TPM.astype(float)
df_quant.NumReads = df_quant.NumReads.astype(float)

We find and retrieve the intersecting transcript ids
of poly_truth and quant_bootstraps, and sort each
id's data by ascending order. There are transcripts in
quant_bootstraps that don't show up in poly_truth,
we'll deal with them later.

set_gb_id = set(df_quant_boot.columns)
set_pt_id = set(df_poly_truth.transcript_id)
intersect_ids = set_qgb_id & set_pt_id

sort_gb = []
use_id = []

id intersect_ids:
listed = list(df_quant_boot[id])
listed.sort()
use_id.append(id)
sort_qgb.append(listed)

sort_gb = list(map(list,zip(*sort_gb)))

Find confidence interval

Since we have already sorted each transcript id's
data, we can find an empirical confidence interval of
95% by locating the numbers at index

(total_length) * 2.5%[EIlsl (total_length) * 97.5%}

which would be the lower and upper bound.

df _poly_truth = df_poly_truth.set_index(|

sum = len(sort_qgb)
percent2dot5 = df_gb_sorted.loc[int(sum*
percent97dot5 = df_gb_sorted.loc[int(sum*

Find the failed transcripts

Compare the counts given by poly_truth with the
lower and upper bound we found earlier. If not in
range we treat it as a failed transcript, else true.

true_id = []
false_id = []
id use_id:
down = float(percent2dot5[id])
up = float(percent97dot5[id])
true_count = float(df_poly_truth.loc[id])
down < true_count < up:
true_id.append(id)

false_id.append(id)

We go back to deal with the 'diff' transcript ids we
ignored earlier. The counts of these diff transcript
ids are zero, and we assume that these are true
transcripts.

true_id.extend(list(set_gb_id.difference(set_pt_id)))
all_id = true_id[:]

all_id.extend(false_id)

We add a label of 1 representing true transcripts and
O representing failed transcripts for easy grouping
later on.

label = | i < len(true_id) i
range(len(true_id) + len(false_id))]

labeled_id = [all_id, label]
labeled = list(map(list,zip(*labeled_id)))

Common Properties of Failed
Transcripts

We group the data by true and failed transcripts, and
first observe the mean, std, max and min.

Observing the mean, the average TPM and
NumReads of failed transcripts is a lot bigger than
the true ones.

label Length | EffectiveLength TPM NumReads
0 2445.007350 | 2245.894343 52.556885 | 1784.370671
1 1905.694197 | 1706.993431 0.841197 20.235059

label Length | EffectiveLength TPM NumReads
0 2320.422083 | 2121.332135 41.485945 | 1378.079501
1 1901.681056 | 1703.008206 0.154861 6.681882

With the std, we find that failed transcripts tend to
have a significantly larger variance of TPM and

NumReads.
label Length | EffectiveLength TPM NumReads
0 2380.728560 | 2380.669848 448.368497 | 15740.352178
1 2055.905694 | 2055.526264 45.873037 235.234059
label Length | EffectiveLength TPM NumReads
0 2302.710811 2302.636007 396.200319 | 13629.239858
1 2059.808430 | 2059.407366 9.489371 152.179457

Min values don't seem to have much to offer other
than maybe a slightly bigger length.

label Name | Length | EffectiveLength | TPM | NumReads
0 ENST00000000233 | 158 10.987 0.0 0.0
1 ENST0O0000000412 | 21 9.784 0.0 0.0

label Name | Length | EffectiveLength | TPM | NumReads
0 ENST00000000233 | 82 10.861 0.0 0.0
1 ENST00000000412 | 21 9.784 0.0 0.0

With max values, the TPM and NumReads attributes
seem interesting, which given the info from std, tells
us that failed transcripts have a significantly wider

range and variance of TPM and NumReads.

label Name | Length | EffectiveLength TPM NumReads
0 ENST00000610278 | 101518 | 101318.991 23356.420222 | 1.109005e+06
1 ENST00000610279 | 109224 | 109024.991 10710.459004 @ 3.769085e+04

label Name | Length | EffectiveLength TPM NumReads
0 ENST00000610279 | 101518 | 101318.991 23356.420222 | 1.109005e+06
1 ENST00000610276 @ 109224 | 109024.991 2435.717783 3.110509e+04

This looks more clear when we plot the distribution:

20000
false
17500 - e ftrue
15000 -
w 12500 -
L")
m
[)
4
=
z [
L]
&
[
400 600 800 1000

Classification Models

We used package for this.

First we gave linear regression a shot, and we ended
up with:

mse= 0.24674520923824544
accuracy= 0.5450268817204301

The results were not ideal. Looks like it doesn't seem
to be linear, so we tried another classification model.

With support vector regression, we achieved:

mse=0.061629887352587/58
accuracy= 0.8892588614393125

88.9% was a pretty high accuracy level, but we also
managed to reach:

mse= 0.06162988735258758
accuracy=0.9667338709677419

96.7% accuracy after we dropped the '0O' count value
transcripts from the 'true' group.

