autots.templates package¶
Submodules¶
autots.templates.general module¶
Starting templates for models.
-
autots.templates.general.
general_template
= Model ... Ensemble 0 ARIMA ... 0 1 ARIMA ... 0 2 ARIMA ... 0 3 AverageValueNaive ... 0 4 AverageValueNaive ... 0 .. ... ... ... 62 UnivariateRegression ... 0 63 MotifSimulation ... 0 64 DynamicFactor ... 0 65 RollingRegression ... 0 66 UnivariateRegression ... 0 [67 rows x 4 columns]¶ # Basic Template Construction Code # transformer_max_depth = 6 and transformer_list = “fast” from autots.evaluator.auto_model import unpack_ensemble_models max_per_model_class = 1 export_template = model.validation_results.model_results export_template = export_template[
export_template[‘Runs’] >= (model.num_validations + 1)
] export_template = (
export_template.sort_values(‘Score’, ascending=True) .groupby(‘Model’) .head(max_per_model_class) .reset_index()
) import json export2 = unpack_ensemble_models(model.best_model, keep_ensemble=False, recursive=True) export_final = pd.concat([export_template, export2]) export_final = export_final[export_final[‘Ensemble’] < 1] export_final[[“Model”, “ModelParameters”, “TransformationParameters”, “Ensemble”]].reset_index(drop=True).to_json(orient=’index’)
import pprint import json
imported = pd.read_csv(“autots_forecast_template_gen.csv”) export = unpack_ensemble_models(imported, keep_ensemble=False, recursive=True) export[export[‘Ensemble’] < 1].to_json(“template.json”, orient=”records”) with open(“template.json”, “r”) as jsn:
json_temp = json.loads(jsn.read())
print(json_temp) with open(“template.txt”, “w”) as txt:
txt.write(json.dumps(json_temp, indent=4, sort_keys=False))
autots.templates.general_old module¶
Starting templates for models.
-
autots.templates.general_old.
general_template
= Model ... Ensemble 0 ARIMA ... 0 1 ARIMA ... 0 2 ARIMA ... 0 3 ARIMA ... 0 4 ARIMA ... 0 5 AverageValueNaive ... 0 6 AverageValueNaive ... 0 7 AverageValueNaive ... 0 8 DatepartRegression ... 0 9 DatepartRegression ... 0 10 DatepartRegression ... 0 11 DatepartRegression ... 0 12 ETS ... 0 13 ETS ... 0 14 GLM ... 0 15 GLM ... 0 16 GLS ... 0 17 GLS ... 0 18 GluonTS ... 0 19 GluonTS ... 0 20 GluonTS ... 0 21 GluonTS ... 0 22 GluonTS ... 0 23 GluonTS ... 0 24 LastValueNaive ... 0 25 LastValueNaive ... 0 26 LastValueNaive ... 0 27 LastValueNaive ... 0 28 SeasonalNaive ... 0 29 SeasonalNaive ... 0 30 SeasonalNaive ... 0 31 SeasonalNaive ... 0 32 UnobservedComponents ... 0 33 UnobservedComponents ... 0 34 UnobservedComponents ... 0 35 VAR ... 0 36 VAR ... 0 37 VAR ... 0 38 VECM ... 0 39 VECM ... 0 40 VECM ... 0 41 VECM ... 0 42 WindowRegression ... 0 43 ZeroesNaive ... 0 [44 rows x 4 columns]¶ # Basic Template Construction Code # transformer_max_depth = 6 and transformer_list = “fast” from autots.evaluator.auto_model import unpack_ensemble_models max_per_model_class = 1 export_template = model.validation_results.model_results export_template = export_template[
export_template[‘Runs’] >= (model.num_validations + 1)
] export_template = (
export_template.sort_values(‘Score’, ascending=True) .groupby(‘Model’) .head(max_per_model_class) .reset_index()
) import json export2 = unpack_ensemble_models(model.best_model, keep_ensemble=False, recursive=True) export_final = pd.concat([export_template, export2]) export_final = export_final[export_final[‘Ensemble’] < 1] export_final[[“Model”, “ModelParameters”, “TransformationParameters”, “Ensemble”]].reset_index(drop=True).to_json(orient=’index’)
Module contents¶
Model Templates