ChainSafe

Toronto, Canada
chainsafe.io

xx Network Substrate Chain

Code Review, Testing and Benchmarking

Prepared for:

xX Network

Prepared by:
Willem Olding | ChainSafe Systems

willem@chainsafe.io

mailto:willem@chainsafe.io

ChainSafe

Toronto, Canada
chainsafe.io

Warranty

This Code Review is provided on an “as is” basis, without warranty of any kind,
express or implied. It is not intended to provide legal advice, and any information,
assessments, summaries, or recommendations are provided only for convenience
(each, and collectively a “recommendation”). Recommendations are not intended to be
comprehensive or applicable in all situations. ChainSafe Systems does not guarantee
that the Code Review will identify all instances of security vulnerabilities or other
related issues.

ChainSafe

Toronto, Canada
chainsafe.io

Engagement Summary

Project Type Substrate Blockchain

Repository https://qitlab.com/xxnetwork/xx-substrate
Commit 849dfa3239fa456ee2541e5f03fd3f26aca546ed
Dates 16/8/2021 - 17/9/2021

Engagement Type | Code review and automated testing

Document History

Version Changes

xXx-review-16-9-2021 Initial report version

xXx-review-20-9-2021 Update CS-XX-05 given clarification
Xx-review-22-9-2021 Include review of code fixes for each issue
xx-review-22-9-2021-rev1l | Adds missing review for fix of CS-XX-01

https://gitlab.com/xxnetwork/xx-substrate

1. Goals
2. Executive Summary

3. Evaluation of Pallet Modifications

3.1. ChainBridge Pallet
Summary of Changes
Assessment

3.2. Swap pallet
Summary of Changes
Assessment

3.3. Staking Pallet
Summary of Changes
Issues

ChainSafe

Toronto, Canada
chainsafe.io

Updating the ValidatorMinBond does not affect existing bonded accounts 13

Existing validators cannot update validator prefs by calling validate 14
Assessment 15
4. xx Network Pallets Review 16
4.1. Team Custody Pallet 16
Overview 16
Issues 17
Transfering balance to custody account leads to underflow error 17
Recommendations 18

Any deduction to custody accounts other than through payout results in
invalid state 19
Recommendations 19
4.2. cMix Pallet 21
Overview 21
Issues 21
4.3. Economics Pallet 22
Overview 22

ChainSafe

Toronto, Canada
chainsafe.io

Issues 23
Evaluating ideal interest at block O results in a panic 23
Recommendations 24

Unordered interest points can result in panic 25
Recommendations 26

5. Dependency Audit 27
5.1. Recommendations 27

ChainSafe

Toronto, Canada
chainsafe.io

1. Goals

Validate the modifications made to the ChainBridge pallet and ensure it is
correctly integrated with the other pallets in the runtime

Validate the swap pallet that integrates with the ChainBridge pallet to allow
token swapping between Ethereum and the native chain.

Validate the modifications made to the Substrate FRAME staking pallet
Validate the functionality added by the new xxNetwork pallet

Ensure all existing tests are updated to reflect pallet changes and are passing.
Write full test suites for new functionality added by the xxNetwork pallet

Ensure all extrinsics have appropriate weights through automated benchmarking

ChainSafe

Toronto, Canada
chainsafe.io

2. Executive Summary

For the period of the 16 August to the 17 September ChainSafe Systems was engaged
by xx Network to conduct a code review of the xx Network blockchain built with the
Substrate framework. In addition to the code review ChainSafe was also enlisted to
write a comprehensive test suite for all added functionality and to derive appropriate
weights for all extrinsics.

The first week was spent getting an understanding of the expected operations of the xx
Network blockchain and conducting a review of the diff between the modified pallets
(chainBridge, Swap, Staking) and their original implementations. Part of this included
reviewing the existing tests and modifying them where appropriate. No major issues
were found during this phase.

The second week focused further on the staking pallet and concluded the migration of
the test suite. After discussion with the xx Network team it was decided that the
XXNetwork pallet should be split into three pallets - xx-cmix, xx-team-custody and
xx-economics. This refactor was done by ChainSafe as part of the code review. A test
suite for the xx-cmix and xx-economics pallets was completed based on the specification
provided by xx Network in the scope of work document.

The third through fifth weeks completed the bulk of the testing phase. 6 issues were
found including an exploitable bug in the xx-team-custody pallet (which was present in
the original xxNetwork pallet). Automated benchmarking code was added for the
pallets lacking existing weights (xx-cmix, xx-economics, xx-team-custody, swap).
Some difficulty was encountered in building the runtime for benchmarking due to
dependency issues. Fixing this required some changes across the runtime and CLI
crates which were submitted in the testing/benchmarking branch. Benchmarking was
conducted for all pallets and relevant extrinsics were updated to make use of the
derived weights.

ChainSafe

Toronto, Canada
chainsafe.io

Overall the changes to the chainbridge and swap pallets were minor and no issues
were found. Changes to the staking pallet were well thought out and implemented. The
provided test specification made writing the automated tests a quick process. All
changes made as part of this review are available in branches submitted to the repo to
be merged into the codebase at the owners discretion.

ChainSafe

Toronto, Canada
chainsafe.io

3. Evaluation of Pallet Modifications

3.1. ChainBridge Pallet

Summary of Changes

Changes were derived by computing the diff of the review branch with the latest
release of the ChainBridge pallet: f2cce10

e All Substrate dependencies in the Cargo.toml have been replaced with those
from the xx-network fork of Substrate which is a fork of the 4.0.0-dev release

e Serde upgraded from 1.0.101 to 1.0.126
e Changes made for compatibility with Substrate 4.0.0

e Switch from opaque_blake2_256 t0 twox_64_concat as the hashing algorithm for the
keys of all storage maps

e Remove the const ModuleId and use a PalletId set in the config, exposed as a
pallet const

e Minor changes due to upstream changes in Substrate

o E.g.Pallet -> Module, system -> frame_system

Assessment

Migration to a later version has been done with only minor changes to styling and no
changes to logic.

The change of hashing algorithm for storage maps from the cryptographic but opaque
blake2 to the non-cryptographic but transparent twox-concat is deemed safe in this
context as it is impossible for non-privileged accounts to mutate the storage map.

https://github.com/ChainSafe/chainbridge-substrate/commit/f2cce10ed264ac1d4165f6a75cac90bc4a147019

ChainSafe

Toronto, Canada
chainsafe.io

3.2. Swap pallet

The swap pallet is a modified copy of the bridge pallet from Centrifuge, which is in turn
a modification of the ChainBridge example pallet.

The pallet can accept the transfer of the native token. This token will be held by the
bridge account and trigger a signal to the bridge relayers to initiate the corresponding
transfer on the remote chain. It also supports transfering from the bridge account when
called by the BridgeOrigin (e.g. the relayers have voted to execute a given transaction).
It is therefore an example of a token bridge using lock-and-mint/burn-and-release
strategy on the lock/release side only. This is to support a wrapped version of XX Coin
on Ethereum and/or Binance Smart Chain.

A test suite for the swap pallet was created as part of this review and is included in the
chainsafe/handover/tests-and-bench branch.

Summary of Changes

e Accepts a fee when executing a transfer native that is held by a fee custodian
account, set by the AdminOrigin

e Removes all functionality not related to transferring in/out of fungible tokens
e Adds extrinsics to manage the fee amount and fee destination account.

e Uses genesis config to set initial values for Chainbridge pallet (e.g. whitelisted
chains, resources and initial relayer set)

Assessment

Minor changes made to this pallet appear to have been made without issue and test
coverage shows the pallet working as expected when combined with the ChainBridge
pallet.

10

https://github.com/centrifuge/centrifuge-chain/blob/master/runtime/src/bridge.rs
https://gitlab.com/xxnetwork/xx-substrate/-/merge_requests/2

ChainSafe

Toronto, Canada
chainsafe.io

3.3. Staking Pallet

Summary of Changes

Changes were derived by computing the diff of the review branch with commit from
which the staking pallet was forked: ac277db

e \/alidators are associated with a cmix root hash

o This is stored in the validatorPref struct which is stored in a map from
validator stash key to prefs

o cmix hashes are stored in a map that can be used to check for
uniqueness and error if a validator tries to join with a duplicate cmix hash

e Config has an AdminOrigin

e Config has a XXNetworkHandler to allow calling functions on the xxnetwork pallet
(split into CMixHandler and CustodianHandler in refactor)

e Add end_era hook that calls back to xxnetwork pallet
e Adds a configurable minimum stake value
o stored in MinimumStake storage item
o Can be set by AdminOrigin set_validator_min_bond

o Checks in validate and unbond to ensure minimum bond continues to be
met

e Remove separate reward destination and all rewards to go stash account

o Simplifies make_payout since there is only one valid reward destination

11

https://github.com/xx-labs/substrate/tree/ac277db0f5467187a5f54a27c01851a59e791961/frame/staking

ChainSafe

Toronto, Canada
chainsafe.io

e Introduces another class of account, custody accounts, which can use their
funds to nominate validators but have zero exposure so cannot earn rewards or
be slashed.

e (Calls T::Reward: :on_unbalanced(imbalance) in do_payout_stakers to decrease the
value of the Rewards pool.

o This included in the base staking pallet but not used

e Change how points are assigned to block producers, instead of the default: -
20pts for block authorship, 2 pts for referencing a new uncle, 1 pt for authoring
an uncle, points are calculated as:

O T::XXNetworkHandler::get_block_points() for the block author
o None for authoring/referencing uncles

e Change reward_by_ids to initialize new validators with 1 point rather than with 0

As part of the review the existing test suite for the staking pallet was updated to reflect
the changes made. The majority of changes were around how reward points are
assigned and the payouts destination.

An additional test suite for added functionality was created as part of this review and is
included in the chainsafe/handover/tests-and-bench branch in staking/src/xx_tests.rs.

12

https://gitlab.com/xxnetwork/xx-substrate/-/merge_requests/2

ChainSafe

Toronto, Canada
chainsafe.io

Issues

Updating the ValidatorMinBond does not affect existing bonded accounts

Identifier CS-XX-01

Severity Informational

Tests N/A

Resolved | Yes (commit 6fa5dcd)

The minimum bond requirement is only checked on calls to validate and unbond. This
means that updating the value of the minimum bond will only affect new validators or
existing validators if they attempt to reduce their bond amount.

An alternative would be to iterate the full list of validators and chill those who do not
meet the minimum requirement on a call to set_validator_min_bond. This adds a risk
that calling this extrinsic may be prohibitively large to fit in one block for a very large
validator set.

Follow-up

Commit 6fa5dcd adds a chill_other extrinsic to the staking pallet which allows anyone
to force a validator to chill if their bond is less than the current minimum validator bond.
Also adds some new tests for this extrinsic.

This addresses the issue without requiring a potentially unbounded gas cost for calling
set_validator_min_bond as described above.

13

ChainSafe

Toronto, Canada
chainsafe.io

Existing validators cannot update validator prefs by calling validate

Identifier CS-XX-02

Severity Informational

Tests N/A

Resolved | Yes (commit 6fa5dcd)

Calling validate to update validator prefs will fail if the validator is already registered due
to how the uniqueness of cmix root hashes are checked. This requires them to
unregister and then register again. This is a regression from the original staking pallet
which does allow validators to update their preferences with a single call.

Follow-up

Commit 6fa5dcd adds a fix for this issue. This only applies the check for a unique cmix
root if a new validator is being added and ensures that the cmix root has not changed
in the case of existing validators.

Test case calling_validate_with_existing_cmix_root_fails shows successful updating
of validator prefs.

14

ChainSafe

Toronto, Canada
chainsafe.io

Assessment

The cmix root, minimum stake and enforced reward destinations have been added with
minimal impact on the operations of the pallet. Tests in file xx_tests. rs illustrate these
working as expected. Some minor changes could be made to allow validators to
update their preferences in a single call, as in the original staking pallet.

Tests show the imbalances created during payouts are successfully passed to the
Reward handler allowing the rewards pool to be updated. As designed, custody
accounts are unable to be slashed or receive rewards.

Some further investigation may be required into the impact of removing rewards for
uncle block production and uncle block referencing. It is outside the scope of this
review to undertake this research but caution should be exercised when altering
consensus related parameters.

15

ChainSafe

Toronto, Canada
chainsafe.io

4. xx Network Pallets Review

4.1. Team Custody Pallet

Overview

This pallet is responsible for managing the vesting of xx coins allocated to team
members at chain genesis. These coins are not immediately available and vest at a
fixed rate over a given period. The team members are not able to use the unvested
coins to participate in nominations until they are vested. The vested coins for each
team member are split between a custody and a reserve account.

This pallet adds the ability for a privileged set of custodians to bond and use the
unvested funds to participate in governance and staking (although they do not accrue
rewards due to modifications to the staking pallet).

Team members can receive their unvested balance by calling the payout extrinsic. This
will transfer the unvested amount into their account. It will prefer withdrawal from the
custody account if available but if funds are bonded will withdraw from the reserve
account. It is the responsibility of the custodian to ensure there are sufficient unbonded
funds to pay the team member at each payout interval.

At the conclusion of the vesting period, a call to payout will forcefully unbond all
balance and transfer the full amounts in both the custody and reserve accounts to the
team member.

A tests suite covering all extrinsics was created as part of the review and is included in
the chainsafe/handover/tests-and-bench branch.

16

https://gitlab.com/xxnetwork/xx-substrate/-/merge_requests/2

ChainSafe

Toronto, Canada
chainsafe.io

Issues

Transfering balance to custody account leads to underflow error

Identifier CS-XX-03

Severity High

Tests payout_pays_out_additional_contributions_to_custody_account
payout_pays_out_additional_contributions_to_reserve_account

Resolved | Yes (commit 6fa5dcd)

It is possible at any time to transfer funds to a team member's custody or reserve
accounts. This possibility was not accounted for in custody. rs when calculating the
amount to withdraw in a given payout when using this value to update the value of the
total amount under custody (TotalCustody). This logic can be seen at lines 309-328 in

custody.rs.

let withdraw_custody = amount.min(custody_balance);

let withdraw_reserve = amount - withdraw_custody;

let withdraw_reserve = withdraw_reserve.min(reserve _balance);
let withdraw = withdraw_custody + withdraw_reserve;

if !'withdraw_custody.is zero() {

<T as Config>::Currency::transfer(
&custody,

&who,

withdraw_custody.into(),
AllowDeath

)P

17

ChainSafe

Toronto, Canada
chainsafe.io

Self::deposit_event(RawEvent: :PayoutFromCustody(who.clone(),
withdraw_custody));

<TotalCustody<T>>::mutate(|n| *n -= withdraw_custody);

Prior to this code snippet the value of custody_balance is set by directly reading the
reducible balance of the team members custody account. On line 310, withdraw_custody
is set using the minimum value of the balance and the expected payout. The intention
here being that the payout be taken preferentially from the custody account and the
remainder from the reserve account.

In calls to payout after the custody period has ended, if balance has been added to the
custody account this can result in greater balance being withdrawn from the custody
account than was allocated to it. This leads to allocated funds being stuck in the
reserve account and, much more seriously, to incorrect deductions being made to the
TotalCustody (line 327). This can lead to an underflow panic and failure of all
subsequent calls to payout leaving the remainder of funds in custody or balance
accounts locked.

This attack can be conducted by any actor as there are no limitations on who can
transfer balance to custody accounts.

Recommendations

e Introduce additional fields to the CustodyInfo struct to keep track of the amounts
initially allocated to each account (custody and reserve) and the amounts
deducted so far from each account. This allows for an additional check that only
the allocated amount can be deducted from the custody account in each payout
and subtracted from the total custody.

e Use safe arithmetic operations that produce handleable errors rather than panic

18

ChainSafe

Toronto, Canada
chainsafe.io

e Add logic to payout the remaining balance of custody and reserve accounts at
the completion of the custody period to prevent stuck funds.

Follow-up

Commit 6fa5dcd adds a fix for this issue by calculating a value to subtract from the
TotalCustody that accounts for the cases when it is the final payout and:

1. More is vested than allocated (e.g. balance was added to the custody or reserve
accounts and is now being cleared out)

2. Less is vested than allocated (e.g. balance was subtracted from the custody
account through proxy actions and payouts end prematurely)

It also counts the balances in the reserve accounts when initially calculating the
TotalCustody and counts payouts from both accounts when updating.

This fixes the failing tests payout_pays_out_additional_contributions_to_custody_account

and payout_pays_out_additional_contributions_to_reserve_account.

It should be noted that the TotalCustody variable does not reflect the total combined
balances of the custody accounts if funds have been added to those accounts after
initialization. It will only be updated on deductions but will be correctly deducted to
zero when all accounts are empty. This is good for safety as it means the TotalCustody
variable can only decrease and cannot be manipulated by coin holders by transferring
into custody accounts.

19

ChainSafe

Toronto, Canada
chainsafe.io

Any deduction to custody accounts other than through payout results in invalid

state

Identifier | CS-XX-04

Severity Medium

Tests custody_set_proxy_can_call_function_to_mutate_custody_account_balance
can_payout_if_custody_account_deducted

Resolved | Yes (commit 6fa5dcd)

Team custody accounts can be used by custodians to make calls that are permitted by
the GovernenceProxy type set in the pallet config. As the authorized calls can be set
externally to the pallet, no guarantees can be made internally as to what side effects
may occur on the custody account. Such side effects may include balance deductions
that are not accounted for in the pallet logic.

If the balance of the team custody account is deducted below (allocation - vested)
then the following erroneous effects will follow:

e The team member will never fully vest according to the is_vested function which
keeps track of how much has been transferred out of the account by the payout
function only.

e The value of total_custody Will be incorrect and will never reach zero

e The given account is never properly cleared from the chain state

Recommendations

e To the reviewers knowledge there is no way to limit proxy access to an accounts
balance, only the ability to make certain calls. Therefore it should be made very
clear to developers using this pallet that they are responsible for ensuring that
these calls are unable to trigger changes in account balances.

20

ChainSafe

Toronto, Canada
chainsafe.io

e do_custody should update the total custody based on the value of the balance on
the account rather than by how much has been paid out. This should account
for the fact that the balance of a custody (or reserve account) can increase or
decrease through means other than allocation and vesting.

Follow-up

Commit 6fa5dcd adds a fix for this issue as described in the follow-up for CS-XX-03.

21

ChainSafe

Toronto, Canada
chainsafe.io

4.2. cMix Pallet

Overview

The cMix pallet serves as a public permissioned store for data relating to the cmix
protocol component of the xx network. This includes:

e The hashes of the current approved versions of the cmix software
e The account belonging to the cmix scheduling server

e The cmix address space byte

e The current and next-era cmix variables. This includes:

Points allocated or deducted for each success/failure in a mixing round
How countries map to geo bins

Points multipliers for each geo bin

team/batch sizes for each round

Number of registered users

o O O O O

It also exposes extrinsics to update cmix performance points and deductions accrued
by each mix node in an era as determined by the scheduler. This is passed directly to
the staking pallet and used in calculating era rewards.

A test suite covering all extrinsics was created as part of the review. It is included in the
chainsafe/handover/tests-and-bench branch.

Issues

No issues were found with the cmix pallet and its integration with the staking pallet.

22

https://gitlab.com/xxnetwork/xx-substrate/-/merge_requests/2

ChainSafe

Toronto, Canada
chainsafe.io

4.3. Economics Pallet

Overview

The economics pallet deals with:
e Managing the issuance and inflation of the xx coin
e Tracking the balance of the liquidity pool on Eth
e Managing the rewards pool account.

All extrinsics in this pallet are callable by admin origin only and are used to set system
economic constants in the store. The pallet primarily operates by interfacing with the
staking pallet and acting as the EraPayout, Reward and RewardRemainder handlers.

As Reward handler it is responsible for ensuring that the rewards pool is deducted
when validator and nominator rewards are paid out up until the pool is depleted after
which rewards will still be paid but will increase the total supply (inflation).

This pallet handles the RewardRemainder via its RewardRemainderAdapter. This handles the
funds that result from the difference between the desired inflation and the
validator/nominator rewards. Usually in this case the remainder would go directly to a
treasury but the adaptor intercepts this event and ensures this is also taken from the
rewards pool, if possible, and only minted once this is depleted. The imbalance is
finally passed to the pallet’s RewardRemainder handler.

The pallet also provides the inflation curve for the xx-substrate chain via its
implementation of the EraPayout trait.

A test suite covering all extrinsics, EraPayout and Reward/RewardRemainder handlers was
created as part of the review. It is included in the chainsafe/handover/tests-and-bench
branch.

23

https://gitlab.com/xxnetwork/xx-substrate/-/merge_requests/2

Issues

ChainSafe

Toronto, Canada
chainsafe.io

Evaluating ideal interest in first half of era results in panic

Identifier | CS-XX-05

Severity Low

Tests get_era_payout_at_block_smaller_than_half_session
get_era_payout_at_block_lower_than_first_point

Resolved | Yes (commit 6fa5dcd)

compute_ideal_interest assumes that it is called with both block > half_era_blocks
(which is defined on line 127 as half the length of an era) and that block is greater than
the block number in start. Violating either of these assumptions will result in an
attempted subtraction with overflow panic.

115 fn compute_ideal_interest(

116
117
118
119

120
121

122
123
124
125
126
127

block: T::BlockNumber,
start: IdealInterestPoint<T::BlockNumber>,
end: IdealInterestPoint<T::BlockNumber>) -> Perbill {

let diff = start.interest.clone().saturating sub(end.interest);

if diff.is_zero() {
return start.interest

}

let block diff = end.block - start.block;
let half _era_blocks = Perbill::from_rational(1lu32,2u32) *

T::EraDuration::get();

128

let ratio = Perbill::from_rational(block - half_era_blocks,

24

ChainSafe

Toronto, Canada
chainsafe.io

block diff);
129
130 start.interest.saturating_sub(ratio * diff)
131 }

Under normal circumstances the staking pallet should never call era_payout such that it
results in get_ideal_interest being called in the first half but this cannot be guaranteed.

Recommendations

e Add logic to explicitly handle the case where get_ideal_interest is called with
block < half_era_blocks or called with a block number less than the first point.

Follow-up

Following the recommendation commit 6fab5dcd adds an explicit check for the case
where the block number is less than the length of half an era and uses the block
number itself for interpolation rather than the midpoint in this case.

This resolves tests get_era_payout_at_block_smaller_than_half_session and
get_era_payout_at_block_lower_than_first_point.

25

ChainSafe

Toronto, Canada
chainsafe.io

Unordered interest points can result in panic

Identifier CS-XX-06

Severity Medium

Tests get_era_payout_with_unordered_points
get_era_payout_with_increasing_interest

Resolved | Yes (commit 6fa5dcd)

The points that define the ideal interest curve can be set at any time by the admin
origin. No checks are in place when setting the points and it is possible for the admin
origin to set points which lead to an underflow panic when the staking pallet calls
era_payout (line 126 in inflation.rs). This would result in a total failure of chain
CONSensus.

115 fn compute_ideal _interest(

116 block: T::BlockNumber,

117 start: IdealInterestPoint<T::BlockNumber>,

118 end: IdealInterestPoint<T::BlockNumber>) -> Perbill {

119

120 let diff = start.interest.clone().saturating sub(end.interest);

121

122 if diff.is_zero() {

123 return start.interest

124 }

125

126 let block diff = end.block - start.block;

127 let half_era_blocks = Perbill::from_rational(lu32,2u32) *
T::EraDuration::get();

128 let ratio = Perbill::from_rational(block - half_era_blocks,

block diff);

26

ChainSafe

Toronto, Canada
chainsafe.io

129
130 start.interest.saturating_sub(ratio * diff)
131 }

It is also possible to set points which define a curve that has an increase in interest rate
between points. This will not cause a panic but will not produce a value correctly
interpolated between the points due to the saturating_sub in line 120. This case should
also be prohibited.

The possible attacks are limited as the extrinsic to set the interest points can only be
called by the admin origin.

Recommendations

e Add checks of the validity of the interest points when setting them from genesis
config or via the extrinsic

e Use safe arithmetic operations (e.g. saturating_sub) where possible

e Use alog::error! in cases where requirements are not met rather than fail
silently (e.g. line 120 if start - end > 0)

Follow-up

Commit 6fa5dcd adds a fix by

e Modifying the compute_ideal _interest function to support increasing as well as
decreasing interest curves

e Adding a sort by increasing block number operation when setting the interest
points both from genesis and via the set_interest_points extrinsic

This resolves test cases get_era_payout_with_unordered_points and
get_era_payout_with_increasing_interest

27

5. Dependency Audit

ChainSafe

Toronto, Canada
chainsafe.io

The cargo-audit tool was used to detect known vulnerabilities in the dependencies of
xx-substrate. 4 known vulnerabilities were found. Vulnerabilities are listed along with
their RUSTSEC identifiers which can be used to find recommended fixes.

It is unknown if these vulnerabilities affect the security of xx-substrate.

Dependency

Vulnerability

Description

hyper=0.12.36 and 0.13.10

RUSTSEC-2021-0079

Integer overflow in parsing
of the Transfer-Encoding
header leads to data loss

RUSTSEC-2021-0078

Lenient header parsing of
Content-Length could
allow request smuggling

libsecp256k1

RUSTSEC-2021-0076

libsecp256k1 allows
overflowing signatures

prost-types

RUSTSEC-2021-0073

Conversion from
prost_types:: Timestamp to
SystemTime can cause an
overflow and panic

5.1. Recommendations

e RUSTSEC recommended fixes should be applied where possible.

e (Cargo-audit should be added to Cl so that the maintainers can be alerted if new
vulnerabilities are found or introduced.

28

https://crates.io/crates/cargo-audit
https://rustsec.org/advisories/

