INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

in the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9 black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA
800-521-0600

®

UMI

Netofeisfeisle el e el el el Sl el Jlofel el Sl el Jo lofel el el Sl ofe el el e

MEASURING CLASS COHESION IN
OBJECT-ORIENTED SYSTEMS

BY

MUHAMMAD WASIQ

A Thesis Presented to the
DEANSHIP OF GRADUATE STUDIES

KING FAHD UNIVERSITY OF PETROLEUM & MINERALS
DHAHRAN, SAUDI ARABIA

In Partial Fulfillment of the
Requirements for the Degree of

MASTER OF SCIENCE

COMPUTER SCIENCE

MAY 2001

{39l 393l Sl el Sl Sl sl el el

S S S S S S T S St S Sk Sk SRR PP

§

UMI Number: 1407218

®

UMI

UMI Microform 1407218

Copyright 2002 by ProQuest Information and Learning Company.

All rights reserved. This microform edition is protected against
unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company
300 North Zeeb Road
P.O. Box 1346
Ann Arbor, M1 48106-1346

KING FAHD UNIVERSITY OF PETROLEUM &

MINERALS
DHAHRAN 31261, SAUDI ARABIA

DEANSHIP OF GRADUATE STUDIES

This thesis, written by Muhammad Wasiq

Under the direction of his thesis advisor and approved by his thesis committee, has been
presented to and accepted by the Dean of Graduate Studies, in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE.

Thesis Committee

O =es

Dr. Jarallah S. AlGhamdi (Chairman)

C}f, Dr. Muhammadv Sarfraz (Member)
Department Chai
%y W ostiz Iy

Dean of Graduate Studies Dr. Moataz A. 9mz‘1d (Mrmber)

33 /100)

Date

To my parents

ACKNOWLEDGEMENTS

First of all, all the praise goes to Allah (SWT) who is the most merciful and beneficent.
Peace and blessing of Allah be upon the last Prophet Muhammad (PBUH). I am grateful to
Allah (SWT) for providing me the courage, intelligence, perseverance and support of

well-wishers to accomplish all the achievements that I have made so far in life.

The part of my parents has been very crucial in my life. They provided me with all the needs
and comforts of life besides their love and care, which is irreplaceable. I thank them for their

prayers and support.

I would like to extend my appreciation to my thesis committee chairman, Dr. Jarallah
Al-Ghamdi, for his continuous advice, guidance and cooperation. I also feel grateful to my
thesis committee members, Dr. Muhammad Sarfraz and Dr. Moataz Ahmed, for their useful

suggestions and cooperation.

I also extend thanks to all the teachers who taught me at KFUPM. All of them have been

very helpful and I gathered priceless knowledge from them. In fact, I would like to thank all

i

of my teachers since my childhood for parting the knowledge and wisdom I have received

from them.

Thanks go to all of my colleagues and friends at KFUPM as I had a pleasant, enjoyable and
fruitful company with them. Specially, I would like to thank Faisal Alvi for his suggestions

and moral support.

Last but not the least, is the part of King Fahd University of Petroleum and Minerals in
pursuing this work. I would like to acknowledge King Fahd University of Petroleum and
Minerals in general and Department of Information and Computer Science in particular for
providing the facilities and support to carry out this research. I feel proud to be a part of
KFUPM and I have learned a lot here. I hope that this prestigious institution will maintain its

excellence in research and academics in years to come.

CONTENTS

Acknowledgements i
List of Tables viii
List of Figures X
Abstract Xiv
Arabic Abstract XV
1 INTRODUCTION
1.1 Basic Concepts of Object-Oriented Systems.cooieiiinrinnneiiiiiiiiiiiinen 2
1.1.1 Object and Object Class.........cooiuiieiinmnmriiiniiiiiiiieiieiiieaiiriennenen 3
1.1.2 Inheritance and Inheritance Hierarchy................coiiiiiiiiiiinin 3
1.1.3 Message Passing........cocovinnniiiiiiiiiiiiiiiii e e 4
1.1.4 Overriding, Polymorphism and Dynamic Binding............................ 4
1.2 Cohesion in Object-Oriented SYStemS........ovvinneeiiiiiiiiiiiiieiieiieiaieetnen, 5
1.2.1 Method CohesSion........ccoveeiiiiiiiiiiiiiiiaiiiiiiieaieie e 6
1.2.2 Class COhESION.......ccimiiineiiiiiiitiiireieiiiiieee e eencaaeane 7
1.2.3 Inheritance Cohesion...........ooouieiiiiieiienieieiiiieieeieiae e, 10

iv

2 EXISTING COHESION METRICS

2.1

2.2

2.3

24

2.5

2.6

3.1

3.2

33

Approach by Chidamber and Kemerer [Chid91, Chid 94].......................... 11
Approach by Hitz and Montazeri [Hitz96]....................c.ooiiiiiiiia 14
Approach by Bieman and Kang [Biem95]................c..oiiiii 17
Approach by Henderson-Sellers [Hend96].................coooiiiiiiiiienania. 20
Approach by Briand et al. [Briand99]..........c.cccoiiiiiiiiiiiiiiiii i 21
Conclusions Drawn from the ReVieW...........cooooiiiiiiiiiiiiiiiiiiiiiiiie e 24

COHESION AS A QUALITY FACTOR

Goal-Driven SOftWAre IMEIiCS . .. oo v eieiieieitiereeeeaaneerssennssessssssesnasaseennn 27
Cohesion and the Quality of Inheritance Hierarchy................cocoeviiiaaie 29
3.2.1 Inheritance Cohesion v/s Inheritance Level.........ccooviivviveceaeanen.a. 31

3.2.2 Average Inheritance Cohesion of Children Versus Number of

Children of parent ClassSes.........c.coiviuiniiiiiiiiiiiiiiiiiiiiaeneeennnnnn 35
3.2.3 Class Cohesion of Parent Classes Versus Number of Children............ 37
3.2.4 Class Cohesion Versus Number of Implemented Methods................ 37
3.2.5 Inheritance Cohesion Versus Number of Overridden Methods............ 39
Capturing CoheSION.ttt it eeeas 40
33,1 CCMand CCCM.........ccouueiinuiiniiiiiiiiiieieneiiiieiiciasnenesannnsnnes 40
3.3.2 Inheritance Cohesion and Method Overriding............cooeeeeeeniiiians 44
3.3.3 Cohesion and Degree of Inter-Method Connections.............cccceeeeeee. 48

4 AUTOMATED METRICS CALCULATION

4.1

42

4.3

Modeling the Object-Oriented Systems...........ccociviiiiiiiiiiiiriieeineannnnn. 54
4.1.1 System Definition MatriX........ccccoiiiiiiiiiiiiiiiiiiiiiiiiiiiieeaeeaneenns 54
4.1.2 Class Definition MatriX.........oooiiiiiiiiiiiiiniieiiiiiiieeeeeeeanennn 56
4.1.3 Class Connection MatrixX........c.cooiiiiiiiiiiiiiiiiiiiiiiiiiiniieieeeeeaeeeee 58
The Tool’s ATChIteCtUre.co.viiiiiiiiiiiii it re v e receeanaes 60
42.1 ParsingEngines........cccoeuuniiiniiiiiiiiiiiiii it 62
4.2.2 Central Metrics RepoSitory...........ocoviiiiiiiiiiiiiiiiiiiiiiiiiieeeens 64
423 ComputingModule........cccceeiiiiiiiiiiiiiiii e 64
The Graphical User Interface..........cceveiiiiiiiiiiiiiiiiiiiiiiiiii i reenaeen 68
4.3.1 Cohesion StatiStiCS.c.overeiineeniiiiitiiiieiieiireirreerenaneeenannene 68
4.3.2 Graphical Analysis.......coooviiniiiiiiiiiiiiiiiiiiiiii i 70

5 ANALYZING LARGE OBJECT-ORIENTED SYSTEMS

5.1

Analysis of Java 1.3 APL.coonnneiiiiiiiiiii ittt e ree e naeees 72
5.1.1 Observation NO. L......covieniiinniniiiiiiiiiiiiii e eeeeeennnees 75
5.1.2 Observation NO. 2......coiinniiiiiiiiiiiiiiiii it eeac e e eianeeeaes 79
5.1.3 Observation NO. 3.ttt eeree e venaeeas 82
5.1.4 Observation NO. 4......ccoieneeiiiiiiiiiiiiiiiiiiiiiiie e erenneenaas 83
5.1.5 Observation NO. 5.....ccicieniiiiiiiiiiiiiiiiiiiiiiciirieirereaeeterneeenaas 86
5.1.6 Observation NO. 6........ccccuuetiinniiiiiiiiiiiiiiiiiiie i ieeeneenaas 89

vi

5.1.7 Observation No. 7
5.1.8 Observation No. 8
5.1.9 Observation No. 9
5.1.10 Observation No.
5.1.11 Observation No.
5.1.12 Observation No.
5.1.13 Observation No. 13
5.2 Comparison of Cohesion Metrics

5.2.1 Observation No. 1

522

523

5.2.4

5.2.5

5.2.6

527

5.2.8

529

5.3 Conclusions Drawn From the Analysis of Java 1.3 API

Observation No.
Observation No.
Observation No.
Observation No.
Observation No.
Observation No.
Observation No.

Observation No.

6 CONCLUSION

6.1 Major Contributions

6.2 Future Directions

.........................

.........................

...

..

vii

........................

........................

.........................

......................................

......................................

...

LIST OF TABLES

5.1 List of the Number of Classes and Average DIT values for the twelve

sub-hierarchies of the java partof Java 1.3 API................c.ooiiiiiiiiiiiii 74
5.2 List of methods of the class ObjID............ccccoviieiiiiiiiiiiiiiiiiiiiieiieeeannnan, 79
5.3 Number of classes with disconnected connection graphs for various

inheritance and conStruCtor OPHIONS.ccviiuiiiiiiiiiiiiiiiiiiiiiii e, 81
5.4 Inheritance Cohesion values for all the levels of the Java 1.3 API’s hierarchy.........83
5.5 List of top ten classes with the highest inheritance cohesion calculated by CCM......86
5.6 MCCM values and Penalty Factor for the classes listed in table 5.5..................... 88
5.7 [Inheritance and Class Cohesion values of classes with 9 or more children............ 91
5.8 List of classes with more than 50 implemented methods.....................coiinn. 96
5.9 Numbers and Average Cohesion values of Leaf and Non-Leaf Classes at

all the levels of the inheritance hierarchy of Javal.3 APIL.......................oolll 103
5.10 Comparison of the number of zero cohesion classes between CCM and RCI......... 117

5.11 Percentage of agreement on finding the bets and worst classes between

COMANA TCC. ...ttt ettt eee e e eee s asranaaneaes 119

viii

5.12 Percentage of agreement on finding the bets and worst classes between

60077 f:111s N (& S PP 120

5.13 Percentage of agreement on finding the bets and worst classes between

CCMANA MCCM.............oeneeeee ettt i ee e eeeeeeeennseanannnnns
5.14 Percentage of agreement on finding the bets and worst classes between

MCCM AN TCC..........ceiieeeeee et ettt ettt e eeeeanaseeansannaaaans
5.15 Percentage of agreement on finding the bets and worst classes between

TCCANA RCL. ...ttt et et et et ee et ee e aees

ix

LIST OF FIGURES

2.1

2.2

2.3

2.4

2.5

3.1

3.2

33

34

Two different classes with equal values for LCOM..........ccocoeiiiiiiiiiniinn. 13
Two different classes with equal values for the LCOM version of

Hitz and Montazeri [HitZ96].......cc.otiiiiiiiiiiiia e 16
Two different classes with equal values for TCC..........ccooiiiiiiiiiiiiiiiiiii., 19

Two different classes with equal values for LCOM verson of

Henderso-Sellers [HENd96].oouinuinuinuiiiiiiiiieieiii e 21
Different classes with same valu€ Of RCI..........c.ooiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinenes 24
A good conceptual inheritance hierarchy that satisfies is a relationship................ 31

Plot of Cohesion of classes sorted in increasing order of inheritance level

for a system of four ClasSes.ooooiiiiiiiiiiii 33
Plot of Average Inheritance Cohesion Versus Inheritance level for a system

with four inheritance levels....... ..o 34
Plot of Average Inheritance Cohesion of Children versus Number of Children

for a system with four non-leaf classes.............c.coeeiiiiiiiiiii 36

3.5 Plot of Cohesion of Parent Classes versus Number of Children for a system

With fOUr NON-1eaf ClaSSES. ... ove e eee e eeeeeernernnsenraneeecresaaonesceassasssaseensnn

3.6 Plot of Class Cohesion versus Number of Implemented Methods for a system

OF FOUE ClASSES . . o eeeereee e eeeeesssaseasscssessssessessasssenssosnssacesssssssssssssnanns

3.7 Plot of Inheritance Cohesion versus Number of Overridden Methods for a

system Of fOUr ClasSes.cvimiiiiiiiiieiiii e

3.8 Average Sharing Factor against No. of Attributes graph for java.awt

4.1 An example of the System Definition MatriX.........cccoooiiiiiiiiiiiiiiinn..
4.2 An example of the Class Definition MatriX..........ocoiiiiiiiiiiiiiiiiniiie..
4.3 An example of the Class Connection MatriX...........ccooiiiiiiiiiiniiiiiinn..
4.4 Architecture of the tool.........ooiiiniiiiiiiii e e
4.5 ER Diagram of the Central Metrics Repository...........ccoeoeviiiiiiiiiiiiinnn..
4.6 Process flow diagram of the Computing module...................oiiiian.

5.1 Inheritance hierarchy of java.math..............ccoovieriiniiiiiiiiiiiiiiiiiiiiiiiens

5.2 Graph showing the comparison between the Class and Inheritance Cohesion

of the classes of java.io hierarchy..........ccooeiiiiieiiiiiiiiiiiiieees

5.3 (a) Connection graph of the class ObjID without considering the inherited

methods. (b) Connection graph of the class ObjID including the inherited

INEHNOAS AlS0. e iiiiiie i iieiietnnessesanesoasesnsessassnssosnnnsasesnsasstssesasasasases

5.4 The graph showing the inheritance cohesion values of the classes of java.io

hierarchy for the two cases: with constructor and without constructor.............

xi

5.5 The connection graph of the class ObjID excluding the constructor method.......... 81
5.6 Average Inheritance Cohesion versus Inheritance Level graph of Java 1.3 API

forboth CCMand MCCM...........cc.ooniiniii ittt tetee e e e 85
5.7 Root to leaf traversal for ArrayIndexOutOfBoundException.java....................... 85
5.8 Average Inheritance Cohesion versus Breadth of Level graph for Java 1.3 APIL...... 88
5.9 Parent Inheritance Cohesion Versus Number of Children graph for Java 1.3 API....91
5.10 Comparison of the Inheritance Cohesion of Parents and the Average Inheritance

Cohesion of their Children............. ..o 95
5.11 Graph of Average Class Cohesion Versus Number of Implemented Methods for

A7 U K . N O 95
5.12 Graph of Average Class Cohesion Versus Number of Implemented Methods

forJava 1.3 APL. ... ettt e ee et 97
5.13 The graph of average inheritance cohesion of hierarchies against their number

L0 02 P T P 99
5.14 The graph of average inheritance cohesion of hierarchies against their number

OfMeEthOodS.coiiiiiiiii ittt 100
5.15 Root to leaf path traversal for (a) GZIPInputStream and (b) KeyEvent............... 101
5.16 Graph of Number of Leaf and Non-Classes at each level of the inheritance

hierarchy of Javal.3 APL........ ..o e 102
5.17 Bar chart showing the LCOM values for the classes of java.io hierarchy............. 104
5.18 (a) Average Inheritance Cohesion Versus Inheritance Level and (b) Average

Inheritance Cohesion Versus Number of Methods graph of java.awt for both

xii

CCMANA TCCc.neoneeeeeeeeeeeeecteeeieeaaaseesttratneteeaeracrasenarennnn 107
5.19 (a) Average Inheritance Cohesion Versus Inheritance Level and (b) Average

Inheritance Cohesion Versus Number of Methods graph of java.awt for both

[600/.7 &1 1 1.7 (66,7 U PR TR 108
5.20 (a) Average Inheritance Cohesion Versus Inheritance Level and (b) Average

Inheritance Cohesion Versus Number of Methods graph of java.awt for both

TCCANAMOCCM.......nonneieeeeeeeeeee ettt e rteteaeeaaesennaesaaeeianne 109
5.21 (a) Average Inheritance Cohesion Versus Inheritance Level and (b) Average

Inheritance Cohesion Versus Number of Methods graph of java.awt for both

(000,74 17 U L6/ UL T 112
'5.22 Average Inheritance Cohesion Versus Number of Overridden Methods graph

of java.awt hierarchy (a) for RCI and (b) for both CCM and 7CC................. 114

5.23 Average Inheritance Cohesion Versus Number of Methods graph of

java.awt hierarchy for LCOM..........ccoovieiiiminiiiiiiiiiiiiie e 115
5.24 Average Inheritance Cohesion Versus Inheritance Level graph of java.awt
hierarchy for LCOM...........civeinmiiiniieiiieiii ittt aee s e 116

xXiil

Thesis Abstract

Name: Muhammad Wasiq
Thesis Title: Measuring Class Cohesion in Object-Oriented Systems
Major Field: Computer Science

Date of Degree: May 2001

Cohesion is an important quality factor of the object-oriented as well as imperative design.
A class in object-oriented software can have two types of cohesion: Class Cohesion and
Inheritance Cohesion. In object-orientation it is a basic design requirement that a class
should represent a single real world entity. To measure the extent to which a class meets
this requirement, class cohesion is used as a tool. In this work, for the first time, we have
proposed ways of using inheritance and class cohesion for measuring the quality of the
inheritance hierarchy. We propose five graphicaltvisual cohesion-related metrics that
provide designers of the object-oriented systems with the guidelines to enhance the quality
of inheritance hierarchy to improve its maintainability, understandability and reusability.
We also propose three new metrics to measure the cohesion of a class, i.e., CCM, CCCM
and MCCM. We believe that CCM captures the connections among the methods of a class
quite well and gives a good measure of class’ cohesion. In the form of MCCM, we have
proposed a metric that also takes into account the effect of overridden methods on

inheritance cohesion of a class.

We have augmented our theoretical work by implementing the automated tool using which

a designer can readily analyze his software against our proposed metrics. Finally as a test
case study, we have analyzed the Java 1.3 API. Our analysis has revealed some very

interesting quality features of the Java API.

King Fahd University of Petroleum and Minerals
Dhahran, Saudi Arabia

May 2001

Xiv

A y) Lada

Lisd dga gall abaill) CilinaY) ac uld 1 Al Gl gie
] shuale 1 Agalall 49,30

Q-‘Y‘ &,\u\d\ejls ! (Ot}

?Ych\ ol HL‘J\

ca‘_).\“@ ?g.nn ?.uma“ Ll.l.\uda_,a.“ M‘wdﬂ&hﬂ“—l*o.\»&b ?-4.“
Gllly Bl aainy Chieall g aall o Gle s ciiall 098 o OSar Gl dgasal
—aiall ?"‘?M a_)_,)d‘.\‘.\a‘_,t.mb”yunan (_;Aau‘ Lﬂu.&da,a“ ?.IA-AJ‘
dSa bl Baae Wk 5 Gagll 1 Lalkidl 13 il G)L.g.uwhdohis
4.!1:.\..4.;).-4:/4.:“,.») ul.‘_,h.uumc‘).ﬂ‘ . auall paa 9 M\J}!\ (,L:;.u.u\.l a4l
Abuall (o JSI LgaaliS Cuandy A1l 335 u----ml pllaas Ll Z..LM pasae 39 53 audally
¢« MCC & ciiall aua bl 333> Qh,lauc..b\.nc| 38 3 LS aladiul solel g agdlly
duia ya 5 geay aiall 3ok G dad g) e S 5 CCM g it .MCCM 4, CCCM
oAb Llaewt A 3l daskie L 5l MCCM ASLE e .inall audal fas Lubia 238y
ciiall i e 53 gesall (3 k)

Jlad e aasadl (Sa il el il alasduay Gaakaly (ki Jaall ases o3 a5
A.u‘_).ﬁ\g_:_x.k\ (Javal3AP)dyha‘_l‘Ja.n‘u‘_)a‘ Aa ikl 5 gheae Jille Al
. Java APl auaill Lila 304 il g2 52c

Odaad g Jg sl 348 LD dadp
Ol oead
p¥ oo oila

Xv

Chapter 1

INTRODUCTION

Object-Orientation aims to model the real world as closely to a user’s perspective as
possible. Classes play an essential role in the object-oriented development. Entities in an
application domain are captured as classes, and applications are built with the objects that
are instantiated from them. Classes serve as a unit of encapsulation; that is, instances of a
class can be manipulated only through the interface defined in the class. Therefore, internal
representation of the classes can be changed without affecting any client as long as the new
representation conforms to the interface. In other words, compatible changes can be made

safely on classes, which facilitate program evolution and maintenance.

In order to take the full advantage of the desirable features provided by the classes, such as

data abstraction and encapsulation, classes should be designed to have a good quality.

Otherwise, classes of bad quality can be a serious obstacle to the development of systems

because object-oriented systems are often developed by reusing existing classes.

Cohesion that originated from structured design refers to the degree of relatedness among
the elements of a class [Eder94], i.e., to what extent the elements of a class are
concentrated to a single task. Before diving into the details of cohesion, we would like to

review some of the basic object-oriented systems concepts that will be used through out

this report.

1.1 Basic Concepts of Object-Oriented Systems

To be able to talk about cohesion of object-oriented systems we have to identify the basic
building blocks of such systems and their possible relationship in advance. An object-

oriented language should support the basic concepts of an object, a class, and inheritance

[Wegner87].

The first appearance of object-oriented programming was in late 1960s in SIMULA 67
[Sebe93]. The popularity of object-oriented paradigm has increased in recent years due to
its promises of portability, reusability, maintainability, etc. [Bucc98]. In the following

subsections, the basic concepts of this paradigm will be described.

1.1.1 Object and Object Class

An object consists of a set of instance variables representing the internal state of the object
and a set of methods representing the external behavior of the object. To put it in other

words, an object is an encapsulation of state and behavior.

An object class can be seen as a kind of template specifying state and behavior of a set of
similar objects, which are created as instances of the object class by some create method
during run-time of a program. Object classes are the basic means of object-oriented design
and development. The definition of the object class is based on the concept of
encapsulation following the abstract data type approach and on the principle of information
hiding distinguishing between visible and hidden parts of an object class’ definition. The
\}isible part is called the specification or an interface of an object class and in general
consists of a set of method specifications. The hidden part is called the implementation of

an object class and consists of the implementation of methods and the definition of the

instance variables.

1.1.2 Inheritance and Inheritance Hierarchy
An object class may be related to other classes by an inheritance relationship, in which
case it inherits instance variables and methods from them. An object class C related to

object class C’by an inheritance relationship is called direct subclass of C’. An object class

C is an indirect subclass of C’ if there exists some class C such that C is a direct subclass of
C and C is a direct or indirect subclass of C”. An object class C is called subclass of object
class C’, if C is a direct or indirect subclass of C’. Conversely, an object class C’ is called
superclass of object class C, if C is a subclass of C’. The inheritance relationship is
transitive, reflexive, and anti-symmetric [Nier89]. The directed acyclic graph built up by

the inheritance relationship is called the inheritance hierarchy.

1.1.3 Message Passing

An object O communicates with an object O’ by sending a message to O’. Adhering to the
principle of information hiding message passing is the only means to access and alter an
object’s state [Nier89]. Message passing implies a second kind of relationship, the
interaction relationship. The interaction relationship is defined for methods in the first

place, and deduced for object classes for which the methods are specified in turn.

1.1.4 Overriding, Polymorphism and Dynamic Binding

Overriding refers to the redefinition of inherited instance variables and methods in
subclasses. Polymorphism means that the same method may be invoked on objects of
different classes. Dynamic Binding means that the binding between method invocation and
code to be executed takes place during run-time and depends on the actual class of the

object on which the method is invoked. The static class of a variable is the domain of this

variable defined at the compile time. In contrast, the dynamic class of a variable is the
actual class of the object referenced by the variable during run-time. Due to polymorphism

a variable with the static class being object class C may reference members of C during

runtime.

We say that a method m is implemented at object class C, if it is initially defined at C, or its
signature and/or implementation have been overridden at C. We further say that a method

m is declared at object class C, if it is inherited by C but not overridden.

1.2 Cohesion in Object-Oriented Systems

Cohesion has been defined in the realm of procedure-oriented systems as “the degree of
connectivity among the elements of a single module” [Stevens74). Cohesion has been
recognized as one of the most important software quality criteria. Modules with strong
cohesion are easier to maintain, and furthermore, they greatly improve the possibility for
reuse [Embley88]. A module has strong cohesion if it represents exactly one task of the
problem domain, and all its elements contribute to this single task. Elements of a module
are statements, sub-functions and possibly other modules. We recall that object-oriented
counterparts of a module are methods and classes. The elements of a method are
statements, local variables and also instance variables since they are accessed either
directly or via access functions in the methods. Next to methods also object classes have

to be analyzed. The elements of an object class are methods and instance variables. Thus

we have to distinguish the cohesion of a method from the cohesion of an object class.

Thus the following kinds of cohesion may be defined for object-oriented systems

[Eder94]:

e Method cohesion
e Class cohesion

¢ Inheritance cohesion

In the following sections, we will discuss the degrees of cohesion for all the above-

mentioned cohesion classes as described in [Eder94].

1.2.1 Method Cohesion

Eder et al [Eder94] applied Myers’ classical definition of module cohesion [Myers78] to
methods. They defined seven degrees of method cohesion, based on the definition provided
by Myers [Myers78] for modules. From weakest to strongest, the degrees of method

cohesion are:

Coincidental: The elements of method have nothing in common besides being within the

same method.

Logical: Elements with similar functionality such as input/output handling are collected in

one method.

Temporal: The elements of a method have logical cohesion and are performed at the same
time.

Procedural: The elements of a method are connected by some control flow.
Communicational: The elements of a method are connected by some control flow and
operate on the same set of data.

Sequential: The elements of a method have communicational cohesion and are connected
by a sequential control flow.

Functional: The clements of a method have sequential cohesion, and all elements
contribute to a single task in the problem domain. Functional cohesion fully supports the

principle of locality and thus minimizes the maintenance efforts.

1.2.2 Class Cohesion

Class cohesion addresses the relationship between the elements of a class. The elements of
a class are its non-inherited methods and non-inherited attributes. Eder et al [Eder94]
define five degrees of class cohesion. From weakest to strongest these are:

Separable: The objects of a class represent multiple unrelated data abstractions. For
instance, the cohesion of a class is separable, if the methods and attributes can be grouped
into two sets such that any method of one set invokes no methods and references no

attributes of the other set, and vice versa.

Multifaceted: The objects of a class represent multiple related data abstractions. The
relation is caused by at least one method of the class that uses all these data abstractions.
The cohesion of a class is rated multifaceted if the set of instance variables of the class
interpreted as relation schema is not in second normal form. For example, consider the
following class
Class Reorder({

Item reorderedItem;

Company reorderedFrom;

int discount;

int quantity;

.........

The method expectedRevenue computes the revenue expected by determining the
difference between the price of an item and the discount given by the company and by

multiplying this difference with the quantity of the reordered item.

If we interpret the set of instance variables as attributes of a relational schema, attributes
reorderedltem and reorderedFrom form the key of this relation schema. Assume, the
discount given depends only on the company, i.e., it is the same for all items. Thus, the

second normal form is violated as the attribute discount is only partially related to the key,

i.e., it is only related to the reorderedFrom attribute of the key. Therefore, the class
Reorder has multifaceted cohesion.

Non-Delegated: There exist attributes that do not describe the whole data abstraction
represented by a class, but only a component of it. Hence, we may again use data
normalization theory to detect non-delegated cohesion like we did for the analysis of
multifaceted cohesion. We can say that the cohesion of a class is rated non-delegated if the

set of instance variables interpreted as relation schema is not in a third normal form. For

example, consider the following class

Class Employee {
String name;
Date birthDate;
Project involvedInProject;
Employee managerOfProject;

public float computeSalary () {

.........

.........

If we interpret the set of instance variables as attributes of a relation schema, the attribute
name is the key of this relation schema. The attributes birthDate and involvedInProject
depend directly on attribute name. However, the attribute managerOfProject depends
directly on the project referenced by involvedInProject and transitively on name, thus the

third normal form is violated. This definition of class Employee has non-delegated

cohesion.

Concealed: There exists some useful data abstraction concealed in the data abstraction
represented by the class. Consequently, the class includes some attributes and methods that
might make another class. For instance, consider a class Employee having, amongst others,
attributes DayOfBirth, MonthOfBirth, YearOfBirth, DayOfHire, MonthOfHire, and
YearOfHire. These attributes describe a concealed data abstraction “date”. In this case, we
can define a new class Date with attributes Day, Month and Year, and replace the date

attributes in class Employee by two attributes BirthDate and HireDate of type Date.

1.2.3 Inheritance Cohesion

Like class cohesion inheritance cohesion addresses the relationships between the elements
of a class. However, inheritance cohesion takes all the methods and attributes of a class
into account, i.e., inherited and non-inherited. Inheritance cohesion is strong if inheritance
has been used for the purpose of defining specialized children classes. Inheritance cohesion
is weak, if it has been used merely for the purpose of sharing code among otherwise

unrelated classes. The degrees of inheritance cohesion are the same as those for class

cohesion.

10

Chapter 2

EXISTING COHESION METRICS

In this chapter we present some of the important measures that have been proposed by
researchers for measuring cohesion in object-oriented paradigm. During the last decade,
quite a few number of class cohesion metrics have been proposed. Chidamber and Kemerer
[Chid91, Chid94], Hitz and Montazeri [Hitz96], Bieman and Kang [Biem95], Henderson-
Sellers [Hend96] and Briand et al. [Briand99] each have proposed different approaches to
measure cohesion in object-oriented systems and defined various cohesion measures

accordingly. We will discuss these measures in the following sections.

2.1 Approach by Chidamber and Kemerer [Chid91, Chid94]

Chidamber and Kemerer have proposed a cohesion measure LCOM (Low Cohesion

Measure) defined as follows in [Chid91]:

11

Consider a class C with methods M,, M.,....., M,. Let {I;} = set of attributes used by
method M;. There are n such sets, i.e., {1;}, {L2},....., {In}.

LCOM(C) = The number of disjoint sets formed by the intersection of n sets.

LCOM is an inverse cohesion measure. A high value of LCOM indicates low cohesion and

vice versa.

In [Chid94], Chidamber and Kemerer have given the following new definition of LCOM.

Consider a class C with methods M;, M,,....., M,. Let {I;} = set of attributes
used by method M; There are n such sets, ie., {I;}, {I2},..... {I,}. Let
P={Up)| n =B}and Q={;, ;) | "] # B} If all nsets {1;}, {L},....., {I,}
are J then let P = O.

Pl -1l if IP] > |Q|

LCOM(C) =
0, otherwise

By above definition, LCOM is the number of pairs of methods in a class having no
common attribute references, |P|, minus the number of pairs of methods having common

attribute references, |Q|. However, if |P| < |Q|, LCOM is set to zero.

12

O Legend ___

O O [_O method
O O \ T interaction

(@) Class C (b) Class D

Figure 2.1: Two different classes with equal values for LCOM

One of the drawbacks of LCOM is that it is not normalized. There is no upper limit of
values that this measure can take. Normalization is intended to allow for comparison of the
cohesion of classes and systems of different size. Without normalization, this is not
possible. Furthermore, LCOM is known to have little discriminating power. This is partly
due to the fact that LCOM is set to zero whenever there are more pairs of methods that use
an attribute in common than pairs of methods that do not. As a result, LCOM is zero for a
large number of classes [Basi96]. But also for classes where LCOM is greater than zero, the
measure is not discriminating. Consider the example classes C and D in figure 2.1,
proposed by Henderson-Sellers [Hen96]. For class C, we have |P| = 9, |Q] = I, and thus
LCOM(C) = 8. For class D, |P| = 18, |Q] = 10, and so LCOM(D) = 8. Both classes have

the same LCOM value, but we would intuitively say that class D is more cohesive than

class C.

13

2.2 Approach by Hitz and Montazeri [Hitz95_2, Hitz96]

Hitz and Montazeri based their approach to measure cohesion on the work of Chidamber

and Kemerer. They interpreted the definition of LCOM as follows [Hitz96]:

Let X denote a class, I, the set of its attributes, and M, the set of its
methods. Consider a simple undirected graph G«(V, E) with V = M, and
E = {(m,n)eVxV|3Ie I: (maccesses i) A (n accesses i)}.

LCOM(C) = Number of connected components of G, .

Hitz and Montazeri identified a problem with the access methods for LCOM. An access
method provides read or write access to an attribute of the class. Access methods typically
reference only one attribute, namely the one they provide access to. If other methods of the
class use the access methods, they may no longer need to directly reference any attributes
at all. These methods are then isolated vertices in graph G,. Thus, the presence of access
methods artificially decreases the class cohesion as measured by LCOM. To remedy this
problem, Hitz and Montazeri propose a second version of their LCOM measure. In this
version, the definition of G, is changed as follows: there is also an edge between vertices
representing methods m; and m;, if m; invokes m or vice versa. The new definition of

LCOM can be given as follows:

14

Let X denote a class, I, the set of its attributes, and M, the set of its
methods. Consider a simple undirected graph G«(V, E) with V = M, and
E = {(m,n)eVxV|(3Ie I: (m accesses i) A (n accesses i)) v (m invokes n) v (n

invokes m)}.

LCOM(C) = Number of connected components of G, .

In the case where G, consists of only one connected component, i.e., LCOM = I, the
number of edges |E| ranges between |V | — I (minimum cohesion) and |V |.(|[V | — 1)/2
(maximum cohesion). Hitz and Montazeri defined a measure C (“connectivity’’) [Hitz96]
which further discriminates classes having LCOM = 1 by taking into account the number of

edges of the connected component.

Hitz and Montazeri defined C as follows:

Cle)=2. IECI“'(|VC|_I)

(Vel-D. (Ve|-2)

Where E. and V. are the edges and vertices of the connection graph of the class c.

15

We always have C(c) = [0,I]. Values O and I are obtained for |[E| = |V, | — 1 and

IE] = |V |-(V:| — 1)/2, respectively.

(a) Class A (b)Class B

Figure 2.2: Two different classes with equal values for the LCOM version
of Hitz and Montazeri [Hitz96).

As pointed out by Hitz and Montazeri [Hitz96] themselves, their version of LCOM also
exhibits a little discriminating power. For example, figure 2.2 shows two classes, A and B,
both of which have value of LCOM equal to I. Although intuitively class B should be more
cohesive than class A because class B has tighter interactions than class A. To overcome
this problem Hitz and Montazeri [Hitz96] proposed C (connectivity) metric, but it can only
be applied to classes whose connection graphs have only one connected component. But if
the connection graph has more than one connected components, C metric can give negative

values [Briand98]. Therefore, C metric can only be used in conjunction with LCOM, which

is a great limitation for its use.

16

2.3 Approach by Bieman and Kang [Biem95]

The approach by Bieman and Kang to measure cohesion too is based on that of Chidamber
and Kemerer’s. They also consider pairs of methods that use common attributes. They have
defined two different cohesion measures based on the direct and indirect connectivity
between pairs of methods. Two methods that use one or more common attributes are said to
be directly connected. Whereas, two methods that are connected through other directly
connected methods are called indirectly connected. The indirect connection relation is the
transitive closure of the direct connection relation. Thus, a method M; is indirectly

connected with a method M, if there is a sequence of methods M>, M;, M,_; such

that

Where M; d Mj represents a direct connection.

Let NDC(C) be the number of pairs of directly connected methods of a class C, NIC(C) be
the number of pairs of indirectly connected methods of C and NP(C) be the maximum

possible number of connections in C. It is clear that for a class with N methods,

NP(CO)=N.(N-D/2.

Tight Class Cohesion (TCC) is defined to be a ratio of the number of pairs of directly

connected methods in a class, NDC(C), to the maximum possible number of connections in

a class, NP(C).

17

NDC(C)
NP(C)

TcCc(o) =

Loose Class Cohesion (LCC) is defined to be a ratio of the sum of the number of pairs of
directly connected methods, NDC(C), and number of pairs of indirectly connected

methods, NIC(C), in a class C to the maximum possible number of connections in C,

NP(C).

NDC(C) + NIC(C)
LCC(O)=

NP(C)

With respect to inheritance, Bieman and Kang have stated three options for the analysis of

cohesion of a class:

(a) Exclude inherited methods and inherited attributes from the analysis, or
(b) Include inherited methods and inherited attributes in the analysis, or

(c) Exclude inherited methods but include inherited attributes.

Bieman and Kang identified a problem with constructor methods for 7CC and LCC. A

class constructor is an initialization function. It generally accesses all attributes in the class,

18

and thus, shares attributes with virtually all other methods. Constructors create connections
between methods even if the methods do not have any other relationships. Therefore, the
presence of a constructor method artificially increases cohesion as measured by 7CC and

LCC. Bieman and Kang have therefore recommended to exclude constructors (and also

destructors) from the analysis of cohesion [Biem95].

o—O o OO 0O

(a)Class A (b) Class B

Figure 2.3: Two different classes with equal values for TCC

Although TCC has better discriminatory power as compared to LCOM measures, but still it
doesn’t recognize the interaction patterns completely. For example, Consider two classes, A
and B, as shown in figure 2.3 (a) and (b), respectively. The TCC values for A and B can be

calculated as follows:

TCCA)= 2. —3% = 04
5).4)

TCCB)= 2.—3 = 04
5).4)

19

Although the values of TCC(A) and TCC(B) are equal, intuitively class B is more cohesive
as its connection graph represents a single connected component, whereas, the connection

graph of A is divided into two connected components.

2.4 Approach by Henderson-Sellers [Hend96]

Henderson-Sellers set out to define a cohesion measure having the following properties:
e The measure yields 0, if each method of the class references every attribute of the
class (this situation is called “perfect cohesion” by Henderson-Sellers™).
e The measure yields 1, if each method of the class references only a single attribute.

e Values between O and 1 are to be interpreted as percentages of the perfect value.

Henderson-Sellers propose the following measure satisfying the above properties:

Consider a set of methods {M;} (i = I......, m) of a class C accessing a set of attributes {A;}
(¢ = 1.,....., m). Let the number of methods which access an attribute A; be u(A;) and total

number of attributes in {A;} is a. LCOM is defined as follows:

a
1
- X Ha)-m

LCOM*(C) =

20

(a) Class A (b) Class B
Figure 2.4: Two different classes with equal values for LCOM
verson of Henderso-Sellers [Hend96].
Like other LCOM measures (by [chid94] and [Hitz96]), LCOM version of Henderson-
Sellers [Hend96] is also weak in distinguishing between different interaction patterns. For
example, consider classes A and B as shown in figure 2.4 (a) and (b), respectively.
Although both A and B have similar value of LCOM (i.e., 2/3), intuitively class B is more

cohesive than class A as it is connected, whereas, B is disjoint.

2.5 Approach by Briand et al. [Briand99]

Briand et al. proposed a cohesion measure in [Briand99] that is based on the visualization
of a class as a collection of data declarations and methods. Data declarations are (i) local
type declarations, (ii) the class itself (as an implicit public type), and (iii) public/private
attributes (including constants). Briand et al. defined two types of interactions, DD-
interactions (declaration-declaration interactions) and DM-Interactions (declaration-

method interactions).

21

DD-interaction: A data declaration a DD-interacts with another data declaration b, if a
change in a’s declaration or use may cause the need for a change in b’s declaration or use.
We say that there is a DD-interaction between a and b. Following are the examples of DD-
interactions:
e If the definition of a type ¢ uses another public type ¢’, there is a DD-interaction
between ¢’and ¢.
e If the definition of a public attribute a uses a public type ¢, there is a DD-
interaction between ¢ and a.
e If a public attribute a is an array and its definition uses public constant a’, there is a

DD-interaction between a’and a.
DD-interactions need not be confined to one class. There can be DD-interactions between
attributes and types of different classes. The DD-interaction relationship is transitive. If a

DD-interacts with b and b DD-interacts with ¢, then a DD-interacts with c.

DM-interaction: Data declarations can also interact with methods. There is a DM-

interaction between a data declaration a and method m either
e if a DD-interacts with at least one data declaration of m (Data declarations of
methods include their parameters, return type and local variables), or

e if ais an attribute and m uses/accesses it.

Following are the examples of DM-interactions:

22

e If a method m of class C takes a parameter of type class C, there is a DM-
interaction between m and the implicit type declaration of class C.

e If a method m uses an attribute g, there is DM-interaction between a and m.
Briand et al. defined CI(C) (CI for cohesive interactions) to be the set of all DD- and DM-
interactions present in the class C and Max(C) to be the set of all possible DD- and DM-

interactions that can be established in class C.

RCI can be defined as follows:

|CI(c)|

RCIl(c)= —
Max(c)|

RCI ranges between O and 1, where values 0 and 1 indicate minimum and maximum

cohesion, respectively.

RCI metric is not good in distinguishing among different patterns of interactions [Chae98].
For example figure 2.5 (a) and (b) show the interactions among the members of classes A
and B, respectively. Both of them have the same number of possible interactions (i.e. 12)
and actual interactions (i.e., 6). According to the definition of RCI, they have the same

cohesion value (i.e., 6/12). However, these classes show the distinct patterns of

23

interactions; the interaction graph of class A is connected, but that of class B is disjoint.
From the definition of cohesion, relatedness among the members of a class, class A should
be considered more cohesive than class B. This discrepancy originates from the fact that

RCI depends only on the r.umber of interactions and does not consider their pattern.

(a)Class A (b)Class B

Figure 2.5: Different classes with same value of RCL.

2.6 Conclusions Drawn from the Review

Although quite a few cohesion metrics have been proposed for measuring class cohesion in
object-oriented systems, we feel that these metrics are not enough to measure the effects of
cohesion on the quality of object-oriented software design due to the following reasons:

e Firstly, none of these measures addresses the effects of inheritance on class
cohesion. Although Bieman and Kang [Biem96] have presented three options
regarding inheritance (discussed in section 2.3), they haven’t discussed about the
implications of inheritance on class cohesion as measured by their metrics (LCC
and TCC) and they haven’t also provided any guidelines for using those options

based on the requirements of the software being measured.

24

Secondly, the authors of these metrics do not discuss that what quality attribute of
object-oriented software is targeted by their measures, i.e., they haven’t mentioned
whether the values given by their metrics show the reusability potential of the class
or its ease of maintainability, etc.

Thirdly, these metrics do not have enough discriminatory power to distinguish
between different patterns of interactions. They only count the number of

interactions among the modules of a class.

25

Chapter 3

COHESION AS A QUALITY FACTOR

A good inheritance hierarchy is one in which a super-class is used as a generalization of its
subclasses and subclasses are used as the specialized cases of the super-class [Eder94]. On
the other hand, one can misuse the inheritance hierarchy just for sharing code among
unrelated classes, in such a way that the super-class is not at all conceptually related to its
subclasses and also, there exits no semantic association among the subclasses [Hitz95_1].
This type of misuse leads to a poor overall understandability of the system, which in turn
makes the system difficult to maintain and reuse. Therefore, it is imperative to have metrics
that can measure the quality of inheritance hierarchy. In this chapter, we discuss that how
we can use inheritance and class cohesion to measure or assess the quality of inheritance
hierarchy. We propose five cohesion related graphical metrics for this purpose. Since we
think that a metric should have some goal that determines its purpose, we will start our
discussion by emphasizing on the importance of goal-driven software metrics. Then we
will proceed on to discuss the implications of inheritance and class cohesion on software

quality. Finally, we will propose a metric to measure the inheritance/class cohesion of a

class.

26

3.1 Goal-Driven Software Metrics

In order to control the software quality related attributes, such as, reliability,
maintainability, reusability and so forth, it is necessary to measure to what extent and
degree these attributes are achieved by a certain product [Hitz95_1]. For this purpose,
many software metrics have been established in the past, mainly in the area of traditional
structured software design. Moreover, in the recent years several metrics for object-
oriented software have also been proposed. However, it is imperative to mention here that
the exercise of collecting a metric is useless without specifying the motivation to do so

[Basi88].

A metric should be backed up by a good reasoning, that is, why it is important for the
quality of the software and what is its interpretation. However, many metrics have been
proposed that do not have any direct implication on the quality of software, such as, DIT
(Depth of Inheritance Tree) and NOM (Number of Methods). Talking about DIT, Li and
Henry [Li93] say: “It seems logical that the lower a class in inheritance tree, the more
super-class properties this class may access due to inheritance. If the subclass accesses the
inherited properties from the super-class without using the methods defined in the super-
class, the encapsulation of the super-class is violated. One may intuit that the larger the
DIT metric, the harder it is to maintain the class”. As mentioned in [Hitz95_1], the
analysis of the above statement shows that it is not a high DIT that makes the class hard to
maintain or hard to understand, but it is rather the coupling induced by accessing super-

class attributes (thus breaking the encapsulation principle) that deserves the blame.

27

Consequently, we should not measure DIT but rather “Access to Super-Class Attributes”.

In other words, DIT alone does not give a good measure of the software’s quality.

Moreover, the value of DIT doesn’t depict whether the inheritance has been used properly
or not. Misuse of inheritance (also called Inheritance Mutation by Hitz and Montazeri
[Hitz95_1]) means that the inheritance hierarchy is merely used for code sharing among
otherwise unrelated classes [Eder94]. One might say that DIT can be used as an estimate
for the “misuse of Inheritance Hierarchy”, but it doesn’t mean that a high value of DIT

always depicts the abuse of inheritance.

Similarly, it might be suggested to use NOM for estimating the cohesiveness of a class.
One might argue that the greater the number of methods in a class, the higher is the chance
that the class is less cohesive. However, there might be a class that represents a large entity
and thus must have a large number of methods. Therefore, we can say that the value of
NOM is not directly related to class cohesion and the attribute of interest is cohesion rather

than NOM.

The above discussion proposes the following pre-requisites for a metric:
e A metric should be directly related to the quality of software, i.e., a bad value of
metric should only depict the bad quality of the quality aspect that this metric

targets.

28

e It should be easy to interpret the value of metric in terms of the software quality.

Using the above guidelines, we have divided our task into two steps: defining the goal and
proposing the metrics. Before proceeding to propose the metrics, we have set our goal, that
is, what quality-attribute we want to target. On the basis of our goal, we have proposed a
set of graphical cohesion-related metrics. In the next section, we discuss about our goal and

the metrics proposed to meet that goal.

3.2 Cohesion and the Quality of Inheritance Hierarchy

While reviewing the existing cohesion metrics in chapter 2, we found out that none of these
measures considers the effects of inheritance on class cohesion. However, since inheritance
is the backbone of object-oriented design, one cannot neglect it while assessing the quality
of object-oriented software. In literature we do not find any work on using cohesion to
assess the quality of the inheritance hierarchy. Realizing the importance of inheritance and
inheritance hierarchy in object-oriented systems, we have directed our goal towards using

inheritance and class cohesion for assessing the design quality of the inheritance hierarchy.

As defined by Eder et al. [Eder94], Class Cohesion only inspects the binding of the newly
defined elements (i.e., only implemented methods and attributes) within a class. Whereas,
Inheritance Cohesion also takes the inheritance hierarchy into account. It describes the
binding of the newly defined elements together with the inherited elements. Since the latter

are transitively inherited from direct and indirect super-classes inheritance cohesion

29

evaluates not only the cohesion of an immediate class-superclass relationship but inspects
the whole inheritance hierarchy. Inheritance cohesion is strong if this hierarchy is a
generalization hierarchy in the sense of conceptual modeling, and it is weak if inheritance

hierarchy is merely used for code sharing among otherwise unrelated classes.

Talking in terms of measurement, by inheritance cohesion we mean: “Consider inherited
attributes and methods as well as implemented anributes and methods while measuring
cohesion of a class”. Let Myy be the set of public/protected inherited methods and My be
the set of implemented methods of a class C. Similarly, let Ay be the set of
public/protected inherited attributes and A;yp be the set of implemented attributes of C. We
consider M(C) = Mjny'U Miyp and A(C) = Ajxu'V Ammp as the complete sets of methods and
attributes, respectively, of class C while measuring its inheritance cohesion. Whereas,

while measuring class cohesion only implemented methods and attributes are considered.

In the following subsections, we propose the following three cohesion-related graphical
metrics that use inheritance cohesion to assess the design quality of the inheritance
hierarchy:
e Inheritance Cohesion Versus Inheritance Level.
e Average Inheritance Cohesion of Children Versus Number of Children of Parent
Classes.

e Inheritance Cohesion Versus Number of Overridden Methods.

30

In addition to the above three graphical metrics, we also propose two cohesion-related
graphical metric that use class cohesion:
e Class Cohesion of Parent Classes Versus Number of Children.

e Class Cohesion Versus Number of Implemented Methods.

Vehicle

‘ Four-Wheeler Two-Wheeler

Car Truck Motorcycle Bicycle

Figure 3.1: A good conceptual inheritance hierarchy that satisfies is a relationship

3.2.1 Inheritance Cohesion v/s Inheritance Level

If inheritance is used only to share code among unrelated classes, the cohesion will tend to
decrease as we go down the inheritance hierarchy, since subclasses will inherit more and
more unrelated methods and attributes. The graph of Inheritance Cohesion versus
Inheritance Level visually shows whether inheritance has been properly used or not. Ideally
this plot should be horizontal, i.e., cohesion doesn’t change as we move down the
inheritance hierarchy. This ideal situation implies that the inheritance hierarchy has not

been used just for code sharing, but as a generalization hierarchy that satisfies the “is a”

31

relationship. Consider the inheritance hierarchy of figure 3.1. It is a good conceptual
hierarchy, where each subclass satisfies the “is a” relationship. For example, a car is a

four-wheeler and is a vehicle. Similarly, a bicycle is a two-wheeler and is a vehicle.

On the other hand, if Inheritance Cohesion versus Inheritance Level graph drops down as

inheritance level increases, we can infer that inheritance may have been misused just for

code sharing.

In some cases, this plot might also rise up with inheritance level, i.e., the children classes
are more cohesive than their parent. The two possible reasons for this kind of behavior can
be as follows:

1. The parent class has mostly empty/abstract methods, but its children override
these empty/abstract methods to accomplish their tasks in such a way that these
methods become related to the rest of their methods. For example, in the
inheritance hierarchy of Java API, the root class is the class Object and most of its
methods are empty. The cohesion of the class Object can be considered to be zero,
since there are no connections among its methods. Therefore, the Average
Inheritance Cohesion Versus Inheritance Level plot of java API starts from zero at

level 1 (root) and then rises up to some value at level 2.

2. The parent class is used as a service class, i.e., it only contains unrelated methods

that are used by its children classes merely as service methods. In such a case, the

32

parent might have a very low cohesion value, but its children might be more

cohesive.

There can be the following two types of Inheritance Cohesion versus Inheritance Level

graphs:

1. Cohesion of Classes Sorted in Increasing Order of Inheritance Level: In this type
of plot, on horizontal axis, we have all the classes of the system sorted with respect
to their inheritance level in ascending order and vertical axis shows the inheritance

cohesion of these classes. An example of such a graph for a system of four classes

is shown in figure 3.2.
Inheritance
Cohesion
Inheritance Cohesion of Class 2
Inheritance Cohesion of Class 1 \

Inheritance Cohesion of Class 4 \/

Inheritance Cohesion of Class 3

> Classes

Class 1 Class 2 Class 3 Class 4
Level 1 Level 2 Level 2 Level 3

Figure 3.2: Plot of Cohesion of classes sorted in increasing order of inheritance
level for a system of four classes.

33

2. Average Inheritance Cohesion Versus Inheritance Level: In this case, the horizontal
axis represents the levels of inheritance tree from I to n, where 1 is the level of root
and n is the level of leaves. Whereas, the vertical axis shows the average inheritance
cohesion of each inheritance level. Average inheritance cohesion at a certain level
means the average of the inheritance cohesion values of all the classes at that level.

An example of such a plot is shown in figure 3.3.

Average
Inheritance

Colxion

Average Inheritance Cohesion at level 2

Average Inheritance Cohesion at level I

Average Inheritance Cohesion at level 3

Average Inheritance Cohesion at level 4

Inheritance

Level]l Level2 Level3 Levelda Vel

Figure 3.3: Plot of Average Inheritance Cohesion Versus Inheritance level for a
system with four inheritance levels.

34

3.2.2 Average Inheritance Cohesion of Children Versus Number of
Children of Parent Classes

This graph is intended to find out the effect of the number of direct children of a parent
class on the inheritance cohesion of its children classes. In object-orientation, a designer
might have a tendency to lump up the common methods of a group of unrelated classes into
a single super-class. In this way, the super-class is used only as a service class or rather as a
“Container of Service Methods” that are used by its subclasses. Furthermore, the designer
might include more and more classes as the direct children of this “Super-Cum-Service”
class to save the amount of coding. This will lead to a high number of direct children of
this “Super-Cum-Service” class and adversely affect the cohesion of its children, since they
inherit all the methods of the parent class but only few of those are related to their task. The
plot of Average Inheritance Cohesion of Children versus Number of Children of Parent
Classes gives a visual tool to detect this kind of discrepancy in an inheritance hierarchy. If
this graph shows low values for the parent classes with high number of children, then it can
be inferred that these parent classes may have been used merely as service classes and too
many classes have been lumped up as their immediate children to save the amount of
coding. Figure 3.4 shows an example of this type of plot for a fictitious hierarchy with four
non-leaf classes, where, the horizontal axis represents all the parent classes of the hierarchy
(i.e., the non-leaf classes of the inheritance tree) sorted in ascending order with respect to
their number of (direct) children and vertical axis represents the average inheritance

cohesion of the children of each parent class.

35

Average
Inheritance
Cohesion

Average Inheritance Cohesion of
Class 4’s children

Average Inheritance Cohesion of
Class 2’s children

Average Inheritance Cohesion of
Class 3’s children

Average Inheritance Cohesion of
Class 1’s children

> Parent

Class4 Class 3 Class 1 Classes
NOC=3 NOC=6 NOC=7

Figure 3.4: Plot of Average Inheritance Cohesion of Children versus Number of
Children for a system with four non-leaf classes.

Class
Cohesion
A

Class Cohesion of Class 4

Class Cohesion of Class 2

Class Cohesion of Class 1

Class Cohesion of Class 3

$> Parent

Class2 Class4 Class 3 Class 1 Classes
NOC=3 NOC=3 NOC=6 NOC=7

Figure 3.5: Plot of Cohesion of Parent Classes versus Number of Children for a
system with four non-leaf classes.

36

3.2.3 Class Cohesion of Parent Classes Versus Number of Children

As discussed in section 3.2.2, sometimes the super-class is used only as a service class or
rather as a “Container of Service Methods” that are used by its subclasses. In such a case,
the methods of the super-class are usually unrelated to each other, since they have been
implemented to fulfill the requirements of the subclasses rather than to accomplish the task
of the super-class itself. Due to this lack of coherence among the methods of the super-
class, its class cohesion drops down. The classes with a large number of children are more
likely to have this kind of characteristic. The graph of Class Cohesion of Parents Versus
Number of Children gives a tool to detect the existence of this type of parent classes in the
inheritance hierarchy. If the classes with high number of (direct) children exhibit low class
cohesion values, then it can be inferred that these parent classes might have been used
merely as the containers of service methods that are used by their children. Figure 3.5
illustrates an example of this type of graph, where, the horizontal axis represents all the
parent classes of the system (i.e., the non-leaf classes of the inheritance tree) sorted in
ascending order with respect to their number of (direct) children and vertical axis

represents the class cohesion of each parent class.

3.2.4 Class Cohesion Versus Number of Implemented Methods

From the perspective of cohesion, a badly designed class is one that abstracts more than
one entity and can be subdivided. Based on this, one can say that a class with a large
number of methods is more likely to be less cohesive, as a high value of NOM might be

due to the reason that the class abstracts more than one entity. However, a high NOM value

37

doesn’t always imply that the class is less cohesive. What is more logical to do is to
examine the behavior of cohesion with respect to the number of methods. If cohesion
deteriorates with increasing NOM, then it can be inferred that the bigger classes of the
system may not have been properly designed and may need to be reworked. Figure 3.6
shows a graph of Class Cohesion Versus Number of Implemented Methods for a system of
four classes. The horizontal axis shows the classes sorted with respect to their number of
methods in ascending order and vertical axis gives the values of inheritance cohesion of

these classes.

Inheritance
Cohesion

Inheritance Cohesion of Class 4
Inheritance Cohesion of Class 1 \

Inheritance Cohesion of Class 3

Inheritance Cohesion of Class 2

P Classes

Class |1 Class 4 Class 2 Class 3
NOM=3 NOM=5 NOM=5 NOM=6

Figure 3.6: Plot of Class Cohesion versus Number of Implemented Methods for a
system of four classes.

38

Inheritance
Cohesion
A

Inheritance Cohesion of Class 4

Inheritance Cohesion of Class |

Inheritance Cohesion of Class 3

Inheritance Cohesion of Class 2

- Classes
Class 1 Class 4 Class 2 Class 3
NOOM=0 NOOM=3 NOOM=3 NOOM=4

Figure 3.7: Plot of Inheritance Cohesion versus Number of Overridden Methods
for a system of four classes.

3.2.5 Inheritance Cohesion Versus Number of Overridden Methods

Let a class C’inherits from a class C and overrides some of the methods of C in such a way
that their implementation is completely changed in C’. Doing this, the cohesion of C’can
be adversely affected as the part that is implemented/overridden in C’ and the part that is
inherited from C may get completely unrelated to each other. Using Inheritance Cohesion
versus Number of Overridden Methods graph, one can visually detect the presence of such
a class in the system. If a class with a good number of overridden methods exhibits a low
cohesion value, it may imply that the methods of this class have not been properly
overridden or it may be misfit at its present position in the inheritance hierarchy. Figure 3.7
shows a graph of Inheritance Cohesion Versus Number of Overridden Methods for a

system of four classes. The horizontal axis shows the classes sorted with respect to their

39

number of overridden methods in ascending order and vertical axis gives the values of

inheritance cohesion of these classes.

3.3 Capturing Cohesion

For plotting the graphs that were presented in the previous section, we first need to
calculate Inheritance and Class Cohesion of all the classes in a system. For this purpose, we
can use any of the cohesion metrics presented in chapter 2. Since we are interested in
capturing the connections among the methods of a class as accurately as possible we have
preferred to present our own method for measuring cohesion that is similar to some of the
existing measures (like 7CC and LCC), but we have tailored it to our requirements. We

propose following three different cohesion measures:

e CCM (Class Connection Metric).
e CCCM (Connected Class Connection Metric).

e MCCM (Modified Class Connection Metric).

3.3.1 CCM and CCCM

These metrics are based on the connection graph G¢ of the class C. The connection graph
Gc has one vertex for each method of the class and there is an edge between two vertices if
and only if the corresponding methods are connected according to the connection criterion

defined by the metric. Let us first define our connection criterion. Two methods A and B

are connected in the connection graph Gc if they satisfy any or both of the following

conditions:

e Methods A and B access one or more attributes in common.

e Methods A and B invoke one or more methods in common.

A good estimate for cohesion could be the ratio of the number of Actual Connections (i.e.,
number of edges in the connection graph G¢) to the number of Maximum Possible
Connections (i.e., the maximum possible number of edges in the connection graph Gc)
among the methods of a class C. However, another important thing to be considered is the
Number of Connected Components, NCC(C), of the connection graph G¢. Let NMP(C) be
the number of maximum possible connections among the methods of the class C. If the
class C has N methods, NMP(C) = N.(N — 1)/2. Let NC(C) be the number of actual

connections among the methods of the class C.

On the basis of the Number of Connected Components of G¢ , i.e. NCC(C), we define

CCM and CCCM as follows:

NC(O) 3.1)
NMP(C) . NCC(C)

CCM () =

41

- _Ne©o if NCC(C) = 1
NMP(C)

CCCM(C) = < (3.2)

_ 0 if NCC(C) > 1

It can be noticed from equation 3.2 that CCCM gives nonzero values only for classes with

connected connection graphs (i.e., NCC(C) = 1). Otherwise, it gives zero cohesion value.

From equation 3.1, it can be observed that CCM has some similarities with TCC. Both
CCM and TCC capture the density of connections among the methods of a class, or in other
words, they capture the connectivity of the class’ connection graph. However, following
are the two major differences between CCM and TCC:
1. Connection Criterion of CCM is different from that of TCC: TCC considers two
methods A and B connected if they either access one or more attributes in common
or any of A or B invokes the other. Whereas, CCM considers two methods A and B
connected if they either access one or more attributes in common or invoke one or
more methods in common.
2. CCM also takes into account the Number of Connected Components of the class’
Connection Graph: Unlike TCC, CCM also penalizes a class for having more than

one connected components in its connection graph. This has been done by including

42

the number of connecting components of the connection graph (i.e., NCC(C)) in the

denominator of equation 3.1. Due to this, we can say that CCM is more sensitive

than TCC.

As far as the LCOM measures are considered, CCM is quite different from these measures.
First of all and most importantly, unlike the LCOM measures, CCM is normalized.
Secondly, it is much more sensitive than the LCOM measures. For example, if we consider
the LCOM version Hitz and Montazeri [Hitz96], we observe that it only counts the number
of connected components of the class’ connection graph and doesn’t consider the
connectivity of these connected components. On the other hand, CCM does not only take
into account the number of connected components, but also considers the density of

connections in the connected components of the class’ connection graph.

CCM is quite different from RCI in nature. Unlike CCM, RCI doesn’t measure the density
of inter-method connections among the methods of a class, or in other words, it is not based
on the connection graph of a class. Instead, RCI is based on counting the Declaration-
Method interactions (DM-interactions) and Declaration-Declaration interactions

(DD-interactions) as discussed in section 2.5.

43

3.3.2 Imnheritance Cohesion and Method Overriding

There can be following two types of method overriding, based on the extent to which the

implementation of the inherited method is changed through overriding:

1.

Overriding for Extension: In this case, the subclass only extends the
implementation of the inherited method, i.e., it doesn’t rewrite it completely. For
example consider a class called Employee, which is a generic class for all types
of employees (such as Manager, Executive, Secretary, etc.). It has a method
called printEmployeeData that prints the data of an employee. Since all types of
employees have certain attributes in common (such as ID, Name, Birth Date,
etc), the Employee class prints these common attributes in its own

printEmployeeData method as shown below:

Public class Employee {
private String name;
private int ID;
private Date bDate;

public void printEmployeeData () {

System.out.println(“*Name:” + name);
System.out.println(“ID:” + ID);
System.out.println(“*Birth Date:” + bDate):

Now consider the subclass Manager of the class Employee. Since every manager

has a secretary, the manager class overrides the printEmployeeData method to

include a statement for printing the secretary’s name as shown below:

Public class Manager extends Employee{
Private Secretary secretary;

public void printEmployeeData () {
super .printEmployeeData () ;

System.out.println(“SecretaryName: " +
secretary.name) ;

The printEmployeeData method of the class Manager is an example of
Overriding for Extension. Overriding for Extension is not against the good
design principles, as in this case the overridden method also uses the code of the
original inherited method and doesn’t discard it.

Overriding for Re-implementation: in this case the overridden method
completely re-implements the inherited method. In other words, it completely
discards the code of the original inherited method. When a subclass re-
implements a method, then it means that the subclass doesn’t need the original
implementation of the inherited method, so it provides its own implementation of

that method. In a way, it violates the “is a” relationship.

45

Since we think that a good inheritance hierarchy should satisfy the “is a” relationship, it is
justified to penalize a subclass for having the overridden methods that exhibit the
Overriding for Re-implementation characteristic. For this purpose, we introduce a Penalty
Factor. Before defining the Penalty Factor, we want to describe the formulation needed to
define it as follows:

e Number of Overridden Methods, NOOM(C): It is the number of methods
overridden by the class C.

e Number of Extended Methods, NOEM(C): It is the number of those overridden
methods of the class C that only extend the implementation of the original
inherited method.

e Number of Re-Implemented Methods, NORM(C): It is the number of those

overridden methods of the class C that re-implement the original inherited method.

e Number of Unchanged Inherited Methods, NOUM(C): 1t is the number of those
inherited methods of the class C that are not overridden.
o Number of Inherited Methods, NOIM(C): It is the total number of methods

inherited by the class C, i.e., NOIM(C) = NOUM(C) + NOOM(C).

We define the Penalty Factor as follows:

NORM(C)

—_— 3.3)
NOIM(C)

Penalty Factor(C) =

46

Since NORM(C) = NOIM(C) — NOUM(C) — NOEM(C), we can redefine the Penalty Factor

as follows:

NOIM(C) - NOUM(C) — NOEM(C) (3.4)
NOIM(C)

Penalty Factor(C) =

Equation 3.3 shows that the Penalty Factor is higher for the classes having higher number

of re-implemented overridden methods.

We present a modified version of CCM that also penalizes the class for having the
overridden methods that completely change the implementation of their corresponding
original inherited methods. We name this new version of CCM as MCCM (Modified Class

Connection Metric). MCCM is defined as follows:

MCCM (C) = NC(©) x (1 — Penalty Factor(C)) (3.5)
= NMP(C).NCC(C) '

Or,

MCCM (C) = CCM(C) x (1 - Penalty Factor(C)) 3.6)

47

3.3.3 Cohesion and Degree of Inter-Method Connections

Degree of inter-method connections can be another factor to be considered while
measuring the cohesion. The degree of connection between two methods A and B is the
number of attributes/methods accessed by these methods in common. One can consider the
connection between a pair of methods with higher degree of connection stronger than the
connection between another pair with lower degree of connection. Based on this idea we
introduce a factor called Sharing Factor that measures the average (normalized) degree of
connections of a connection graph G¢. Let Connection(C) be the connection matrix for the

class C as shown below:

M, M, M;s My

M) |[cuu]cnz]ciz]cis

M c
Connection(C) = 2 [Cu | C2 |0 | 3.7

Ms |car|cs2|c3z|caa

Ms |ca1 | caz|cCas|Cas

Where, each c;; is the number of attributes and methods accessed by methods M; and M; in

common. The connection matrix Connection(C) actually represents the weighted
connection graph of the class C, where the weight of each edge e;; between the vertices V;
and Vj, corresponding to the methods M; and M;, is equal to the number of attributes and

methods accessed by M; and M; in common. We then calculate the sharing matrix,

Sharing(C), of the class C from its connection matrix, Connection(C).

48

Let A(C) be the set of attributes of the class C. We calculate each element s;; of the sharing

matrix, Sharing(C), as follows:

. ifc, <A
<

acy e <ol

55 = 4 (3.8)
. | if cj 2 |ACO)|
M M, M; M,
M[S
. M | sy |s

Sharing(C) = (3.9)

M3 | s3;1]s32]ss3

My | s41]sa2]sa3|s

We define the Sharing Factor as the average of the upper half values of the sharing matrix

(shown as the shaded area in the matrix of equation 3.9). Therefore, formally we can define

n n

2 E Sij
i=1 j=i+l (3.10)
NMP (C)

Sharing Factor =

49

Where NMP(C) is the number of maximum possible connections among the methods of

class C as defined previously.

0.06 -
0.05 -
0.04 -
0.03 -
0.02 -
0.01 -

Average Sharing Factor

o TrrrfyrryrrryryvyrrrrrrryrsyrvryvrrrvyrreorT
R I A A I I IR RN

No. of Attributes

Figure 3.8: Average Sharing Factor against No. of Attributes graph for
java.awt hierarchy.

To account for the degree of inter-method connections in cohesion value, we can simply
multiply the Sharing Factor by the CCM value calculated by equation 3.1. However, there
are the following problems associated with the Sharing Factor:

e The Sharing Factor unnecessarily penalizes the classes with higher number of
attributes. Each element s; of the sharing matrix Sharing(C) is calculated using the
formula c¢; / |JA(C)| in equation 3.7, where ¢; is the number of attributes/methods
accessed by methods M; and M; in common and |A(C)| is the total number of
attributes of the class C. Due to the denominator term, |A(C)), in equation 3.7, the

s;j values of the classes with a higher number of attributes (i.e., high |JA(C)|) tend to

50

be lower. Figure 3.8 illustrates the graph of Sharing Factor against the Number of
Anributes for java.awt hierarchy of Java 1.3 API, where, the horizontal axis
represents the classes sorted in ascending order with respect to their number of
attributes and vertical axis gives the values of Sharing Factor for these classes. It
can be seen from the graph of figure 3.8, that the Sharing Factor of classes with
higher number of attributes is too low.

e It is not necessarily a good design consideration that methods should share as
much attributes as possible [Briand98]. As long as the methods are connected, it is
alright, but their degree of connection may not be very important.

e It is almost impossible to get the maximum Sharing Factor (i.e., Sharing
Factor(C) = 1), since most of the methods share a small percentage of the total
number of attributes. In fact, the Sharing Factor even for the classes with quite
good connection graphs can be quite low, since the methods usually share only a

few attributes, but the dividing factor, |JA(C)|, in equation 3.7 may be very high.

In order to rectify the above-mentioned flaws in the Sharing Factor, we can change the
procedure for calculating it as follows: Instead of dividing c;; by JA(C)| in equation 3.8, we
can divide it by the total number of attributes and methods accessed by both the methods i
and j. Let,

NA; = Number of attributes accessed by the method i.

NM; = Number of methods accessed by the method i.

NA; = Number of attributes accessed by the method j.

51

NM; = Number of methods accessed by the method ;.

We redefine the formula for calculating the elements of the Sharing Matrix as follows:

Cij

G.11)
NA; + NM;+ NA; + NM;

By using equation 3.11 for calculating the elements of the Sharing Matrix, we can rectify
the major problem associated with the Sharing Factor, i.e., the Sharing Factor will not

penalize the classes having higher number of attributes any more.

52

Chapter 4

AUTOMATED METRICS CALCULATION

Since the manual calculation of metrics is almost impossible, it is important to have an
automated tool for calculating metrics directly from the code for the effective utilization of
these metrics. We have developed a tool for the measurement and analysis of cohesion
metrics for object-oriented systems. The user only has to supply the code of the system to

be analyzed to the tool and the rest of the tasks are done automatically.

The tool works as follows: First, it parses the code of the object-oriented system to collect
the cohesion metrics data. The collected data is then stored into the Central Metrics
Repository. Finally, the cohesion metrics are calculated from the data stored in the Central
Metrics Repository. Right now the tool only supports the Java software, but it is not limited
to a particular language. In order to add support for a new language, the only thing to be

done is to add the parser for that language.

53

In this chapter, we discuss the design and implementation details of the tool. Since the first
task was to design a suitable mathematical modeling for the object-oriented systems, we
start our discussion by presenting the way we have modeled the object-oriented systems for
cohesion measurement. Then we discuss about the parser that we have developed for the
Java language. Afterwards, we talk about the design of Central Metrics Repository. Finally,

we give the description of different facilities provided by the tool.

4.1 Modeling the Object-Oriented Systems
For calculating metrics, it is necessary to model the software system in the form of some
data-structures. We have used two-dimensional arrays for representing object-oriented
systems. Following three different types of two-dimensional arrays have been used to
model object-oriented systems for cohesion measurement:

e System Definition Matrix.

e Class Definition Matrix.

e Class Cohesion Matrix.

4.1.1 System Definition Matrix

System Definition Matrix gives the list of attributes and methods of all the classes of the
system. Its rows represent the classes and columns represent all the methods and attributes
of the system. Figure 4.1 illustrates the System Definition Matrix for a system with n

classes, p methods and g attributes.

54

Methods Attributes
Cl
ass '™, M, . M, |A Az Aq
Ci Dy D2 Dip | Dipet) | Digpeay | -.- Digq
Ca Dy Dy, .. Dy Doty | Dagszy | --- Dagq
GC; D D2 .- Dip Dip+1y | Digp+2y | --. Diq
Cm Dn[Dnz con DE.E Dn(&p]) DD(IH'Z) coe an

Figure 4.1: An example of the System Definition Matrix.

In the matrix of figure 4.1, each entry D; shows whether the jth element (method/attribute)

is present in class i or not. Therefore,

r 1 if the jth element (method/attribute) is present in class i.

D= < @.1)

(_ 0 if the jth element (method/attribute) is not present in class i.

As discussed in section 2.3, we can have the following three options with respect to

inheritance:
1. Exclude inherited methods and inherited attributes from the analysis, or

2. Include inherited methods and inherited attributes in the analysis, or

3. Exclude inherited methods but include inherited attributes.

We make three versions of the System Definition Matrix, one for each of the above three

inheritance options. For option 1, we have ones only in those columns of row i that

55

correspond to the implemented methods and attributes of class i, whereas for option 2, we
also have ones in those columns of row i that correspond to the inherited methods and
attributes of class i. Similarly, for option 3, we have ones in the columns of row i
corresponding to the inherited attributes of class i as well as the columns corresponding to

its implemented methods and attributes.

4.1.2 Class Definition Matrix

The Class Definition Matrix gives the description of the attributes and methods
accessed/used by the methods of the class. Its rows represent the methods and columns
represent the methods as well as the attributes of the class. Figure 4.2 shows the Class

Definition Matrix of a class with n methods and k attributes.

Methods Attributes
Methods -op M, [.. M, A A .. Ar
M, du diz dia di+) [dimsry | -.. dik
M, da (175) .o dan dow+ety | domse2) | ... dax
Mi di di2 ... din dineny | di@s) | ... dix
Mn dnl dn2 cor dnn dm+ 1) d&-{-z) ews dnk

Figure 4.2: An example of the Class Definition Matrix.

56

In the matrix of Figure 4.2, each entry d;; shows whether the jth element (attribute/method)

is used/accessed by method i or not. Therefore,

~ 1 if the jth element (method/attribute) is
accessed/used by method i.

dij= < 4.2)

if the jth element (method/attribute) is not
accessed/used by method i.

_ 0

The System Definition Matrix is used to calculate the number of rows and columns of the
Class Definition Matrix of each class. For example, consider the System Definition Matrix
of figure 4.1. To find the number of rows and columns of the Class Definition Matrix of

class i, we use the following equation:

ROWS, = f, Dy 4.3)
j=1
+q

COLS; = pz D,
R 4.4)

Where, ROWS; and COLS; are the number of rows and columns, respectively, of class i’s

Class Definition Matrix, p and g are the number of methods and attributes, respectively, in

57

the System Definition Matrix of figure 4.1 and Dj; is the element of the System Definition

Matrix corresponding to the ith row and jth column.

The elements of the Class Definition Matrix are filled with zeros and ones using the data
stored in the Central Metrics Repository. For each method m of the class C, the list L of
attributes and methods accessed/used by m is obtained from the Central Metrics
Repository. The elements of the mth row (i.e., the row corresponding to the method m) of
C’s Class Definition Matrix that are present in the list L are filled with ones, whereas, the
remaining elements are filled with zeros. Like the System Definition Matrix, we also keep

three versions of the Class Definition Matrix — one for each inheritance option.

4.1.3 Class Connection Matrix

The Class Connection Matrix is used to store the information about the connections
between the methods of the class C. The Class Connection Matrix for the class C is derived
from its Class Definition Matrix. Its rows and columns represent the methods of the class
C. For example, consider the Class Definition Matrix of figure 4.2. Its corresponding Class
Connection Matrix is shown in figure 4.3, where each element C; gives the number of
attributes and methods accessed/used by the method i and j in common. Using the Class

Definition Matrix, the elements of the Class Connection of the class C Matrix can be

obtained as follows:

n+k

Ci= 2 (di A di) 4.9
j=1

58

Where di, d; are the elements of the Class Definition Matrix (Figure 4.2), n is the number

of methods of the Class Definition Matrix (Figure 4.2), k is the number of attributes of the

Class Definition Matrix (Figure 4.2) and A is the logical AND operator.

Methods
Methods M, M, — M, M,
M, Cu Ci2 Cii Cin
M, Cau Cx . Cii Can
M; Cii Ciz .- Ci Cin
Mn Cnl Cn2 see Cni Cnn

Figure 4.3: An example of the Class Connection Matrix.

Like the System Definition and Class Definition Matrices, we also have three different
versions of each Class Connection Matrix, i.e., one for each inheritance option. It can be
noticed that the Class Connection Matrix actually represents the weighted connection graph
of the class C, where the weight of each edge e; between the vertices V; and Vj,
corresponding to the methods M; and M;, is equal to the number of attributes/methods
accessed by M; and M;in common. Using the Class Connection Matrix illustrated in figure
4.3, we can easily calculate the values of the CCM, CCCM, MCCM and Sharing Factor as

described in section 3.3.

59

4.2 The Tool’s Architecture

The tool is composed of three main components: Parsing Engines, Central Metrics
Repository and Computing Module. Figure 4.4 illustrates the structure of the tool. The
architecture that we have used is similar to the one described in [Elish99] for the

Inheritance Coupling Measurement Tool.

60

OO Design UML

or

Software Source O 0O Design

Text File

Parsing
Engine

Cohesion
Metrics

D Proposed work D Future work

Figure 4.4: Architecture of the tool.

61

4.2.1 Parsing Engines

Data collection is the first step in calculating any software metric. Parsing Engines aim to
extract the information needed to compute cohesion metrics from the code of the object-
oriented system. The parsers are language dependent, i.e., a separate parser need to be
implemented for each object-oriented language like Java, C++, Smalltalk, etc. The data
collected by these parsers is abstracted into a language independent format according to the

conceptual model shown in figure 4.5.

In this work we have developed a Java parser. It will be able to parse any Java source code
to collect cohesion metrics data into the Central Metrics Repository. We have used
SableCC' for implementing the Java 1.2/1.3 parser. SableCC is a compiler-compiler kit
written in Java. To generate the parser for a language using SableCC, we need to write an
LALR(1) grammar for that language in the syntax accepted by SableCC. We used official

Java 1.2/1.3 specifications? for writing the grammar for Java 1.2/1.3.

Once the grammar is submitted to SableCC, it generates the Abstract Syntax Tree (AST)
for the grammar in the form of a java class called DepthFirstAdapter.java. This class has
one method for each non-leaf node of the AST. In order to define the functionality at any
node of the AST, we can override the method corresponding to that node in
DepthFirstAdapter.java. For example, the grammar for the package declaration in Java can

be given as follows:

! Information about SableCC is available from the website: http//:www.sablecc.org/
2 Official Java 1.2/1.3 specifications are available from the websites: http://java.sun.com/docs/books/vmspec/

62

Package_declaration =
Package name semicolon;

Where package is a Java reserved word, name is a variable to hold the package name and

semicolon is a helper word for *“;” symbol. The method for the package-declaration node of

the AST in DepthFirstAdapter.java is as follows:

Public void
caseAPackageDeclaration (APackageDeclaration node) {

inAPackageDeclaration (node) ;

if (node.getPackage() != null) {
node.getPackage () .apply (this);

}

if (node.getName() != null) {
node.getName () .apply(this) ;

}

if (node.getSemicolon() != null({
node.getSemicolon() .apply(this) ;

}

outAPackageDeclaration (node) ;

If we want to print the name of the package to the standard output, we can override the

above method as follows (the added line is written in the bold face letters):

Public void
caseAPackageDeclaration (APackageDeclaration node) {

inAPackageDeclaration (node) ;
if (node.getPackage() != null) {
node.getPackage () .apply(this) ;
}
if (node.getName() != null) {
System.ocut.println(node.getName());
node.getName () .apply(this);

}
if (node.getSemicolon() != null({

63

node.getSemicolon() .apply(this) ;

}
outAPackageDeclaration (node) ;

Using the similar strategy, we have extended the class DepthFirstAdapter.java generated
by SableCC for Java 1.2/1.3 grammar in the form of a class called interpreter java. We
have overridden the methods of DepthFirstAdapter.java in interpreter.java to provide the
functionality for storing the class data into the Central Metrics Repository. The details of

writing parsers and interpreters using SableCC can be found in [Gagnon98].

4.2.2 Central Metrics Repository

The data collected by the Parsing Engines is stored into the Central Metrics Repository.
The repository has been designed based on the ER model presented in Figure 4.6. This
model is language independent, i.e., it represents an abstract format of the object-oriented
system. Although we have adopted this ER model for representing the object-oriented
systems from [Elish99], but we have tailored it to the requirements of cohesion

measurement.

4.2.3 Computing Module

The Computing Module processes the data stored in the Central Metrics Repository for
calculating the cohesion metrics. A simplified process flow diagram for the calculations
done by the Computing Module is illustrated in figure 4.6. Basically, the Computing

Module has the following four types of functions:

makeSystemDefinitionMatrix: This function makes the System Definition Matrix
using the metrics data stored in the Central Metrics Repository as described in
section 4.1.1.

. makeClassDefinitionMatrix: This function makes the Class Definition Matrix, for
each class of the system, using the System Definition Matrix and data stored in the
Central Metrics Repository as described in section 4.1.2.

. makeClassConnectionMatrix: This function makes the Class Connection Matrix,
for each class of the System, using the Class Definition Matrix of that class as
described in section 4.1.3.

. calculateCohesion: This function calculates the cohesion metrics for all the classes
of the system using their Class Connection Matrices as described in section 4.1.4. In
case of MCCM, the calculateCohesion function also uses the Central Metrics
Repository to get the number of overridden methods (NVOOM(C)), number of
extended methods (NOEM(C)), number of re-implemented methods (NORM(C))

and number of unchanged inherited methods (NOUM(C)).

65

‘K1onsoday soapA [enua)) sy jo wesdeiq Yo :s'p dandiy

YHLHAVEVd

N SVH | HdAL VLVd
N mmeu

=

N z ES,

wé
é

>
6 : SSVI0 < WALSAS 00

Cormave (G

——»] CalculateCohesionMetrics()

Figure 4.6: Process flow diagram of the Computing module.

67

4.3 The Graphical User Interface

The tool provides a comprehensive graphical user interface for calculating and analyzing
the cohesion metrics. We have divided the GUI features into the following two different
parts:

e Cohesion Statistics.

e Graphical Analysis.

4.3.1 Cohesion Statistics

This part deals with cohesion-related numerical statistics of the software system being
analyzed. User submits the code of the system to be analyzed to the tool. The tool
automatically parses the code, generates the System Definition Matrix, Class Definition
Matrices and Class Cohesion Matrices and calculates various Cohesion Metrics. User can
then view the results in the form of various tables and with different options. All the results
can be viewed for the following three inheritance options (presented in section 2.3):

1. Without Inheritance: Selecting this option, the user can view results for
inheritance option 1, i.e., Exclude inherited methods and inherited attributes from
the analysis.

2. Including Both Inherited Attributes and Methods: Choosing this option, the user
can view results for inheritance option 2, i.e., Include inherited methods and
inherited attributes in the analysis.

3. Including Only Inherited Antributes: Using this option, the user can view results

for inheritance option 3, i.e., Exclude inherited methods but include inherited

attributes.

68

We have also provided support for the following two different options with respect to the

constructor methods:
1. Without Constructor: With this option, the results are shown for the metrics
calculations done without including the class constructors.
2. With Constructor: With this option, the results are shown for the metrics

calculations in which the class constructors are also included with the other

methods.

Some of the important results that can be viewed are as follows:
1. System Definition Matrix: The System Definition Matrix can be viewed for any of
the above-mentioned three inheritance options as well as two constructor options.
2. Class Definition and Class Connection Matrices: The Class Definition Matrix as
well as Class Connection Matrix can be viewed for any class of the system. User
also has the flexibility of selecting any of the above-mentioned inheritance options

and constructor options.

3. Cohesion Metrics: The tool displays the values of the following cohesion metrics:
e Low Cohesion Metric (LCOM).
e Loose Class Cohesion (LCC).
e Tight Class Cohesion (TCC).
e Connectivity Metric (C).
e Ratio of Cohesive Interactions (RCI).

o (Class Connection Metric (CCM).

69

e Moadified Class Connection Metric (MCCM).

e Connected Class Connection Metric (CCCM).

The user can select any of the above mentioned inheritance options and constructor

options while viewing the results of these metrics.

4.3.2 Graphical Analysis

Graphical analysis is an effective tool for analyzing the results. It presents the overall

picture of the results. The list of the different types of graphs supported by the tool is given

below. All of these graphs can be viewed for any of the cohesion metrics listed in section

4.3.1.

1

System Bar Charts: This plot shows the cohesion values of all the classes of a
system in the form of a bar chart. It can be viewed for any of the three inheritance
options and two constructor options.

Inheritance Effect: This plot provides the comparison among the three inheritance
options. It displays three curves — one for each inheritance option. User can select
any of the two constructor options while viewing this plot.

Constructor Effect: This plot provides the comparison between the two constructor
options. It displays two curves — one for each constructor option. User can select
any of the three inheritance options while viewing this plot.

Inheritance Cohesion Versus Inheritance Level: This plot corresponds to the
graphical metric proposed in section 3.2.1. As mentioned in section 3.2.1, there are

two subtypes of this plot, i.e., Cohesion of Classes Sorted in Increasing Order of

70

Inheritance Level and Average Inheritance Cohesion Versus Inheritance Level.
While viewing these graphs, the user can choose any of the two constructor options.
. Average Inheritance Cohesion of Number of Children of Parent Classes: This plot
corresponds to the graphical metric proposed in section 3.2.2. The user can select
any of the two constructor options while viewing this plot.

Class Cohesion of Parents Versus Number of Children: This plot corresponds to the
graphical metric proposed in section 3.2.3. The user can select any of the two
constructor options while viewing this plot.

Class Cohesion Versus Number of Methods: This plot corresponds to the graphical
metric proposed in section 3.2.4. The user can select any of the two constructor
options while viewing this plot.

. Inheritance Cohesion Versus Number of Overridden Methods: This plot
corresponds to the graphical metric proposed in section 3.2.5. Any of the two
constructor options can be chosen while viewing this plot.

Comparison of Systems: This plot displays the comparison between the results of

two different software systems.

71

Chapter 5

ANALYZING LARGE OBJECT-ORIENTED
SYSTEMS

Using the tool described in chapter 4, it is possible to test and analyze considerably large
Java systems with an effort of just a few man-hours. We have analyzed the inheritance
hierarchy of Java 1.3 API using our tool. In this chapter, we discuss the observations and

results that we obtained from the analysis.

We have divided the results into two parts: the first part talks about the various
observations that we obtained for the Java 1.3 API and second part discusses the

differences that we noticed among different cohesion metrics presented in chapter 2 and 3.

5.1 Analysis of Java 1.3 API

The API of Java 1.3 is divided into the following seven parts:
1. com
2. java

3. javax

72

4. launcher
S. org
6. sun

7. sunw

The core API of Java 1.3 (or any other version of Java) is contained in the java part and it
is the largest part of the API. We have analyzed the java part of the APL The java part has
861 classes in total and it is further sub-divided into the following twelve parts:

1. java.applet

2. java.awt
Jjava.beans
java.io

Jjava.lang

S I

Jjava.math
7. Jjava.net

8. java.rmi

9. java.security
10. java.sql

11. java.text

12. java.util

73

All these parts can be considered as separate inheritance hierarchies with the class Object
as their root class and rest of their classes as the direct or indirect descendents of the class
Object. As an example, figure 5.1 illustrates the inheritance hierarchy of java.math. The

number of classes and average DIT values of these twelve hierarchies are illustrated in

table 5.1.
Standard Deviation in
Hierarchy No. Of Classes | Average DIT DIT

Java.applet 16 2.9375 1.436140662
Jjava.awt 308 2.87012987 1.09307145
Java.beans 44 2.636363636 0.809562302
Java.io 82 3.341463415 1.239469343
Jjava.lang 102 3.558823529 1.411224659
java.math 7 2.285714286 0.755928946
java.net 53 3 1.270977819
java.rmi 62 3.919354839 1.711086196
Java.security 115 3.139130435 1.330393403
Jjava.sql 20 3.05 1.316894273
java.text 62 2.451612903 0.739459691
Jjava.util 132 3.045454545 1.097280722

Table 5.1: List of the Number of Classes and Average DIT values for the
twelve sub-hierarchies of the java part of Java 1.3 APL

Although we will present the observations based on the aggregate analysis of the java part
as a whole, we will also present the graphs for some of the above-mentioned twelve sub-

hierarchies to keep things simple and brief to explain. The Following sub-sections discuss

74

various observations that we have obtained as a result of our analysis. All the observations
mentioned in these subsections are based on the cohesion values calculated using CCM
(Class Connection Metric) and MCCM (Modified Class Connection Metric). Wherever
needed, we will explicitly identify the graphs of CCM and MCCM to clarify the differences

in their results.

MutableBigInteger Number

< signedMutableBiglnteger

Figure 5.1: Inheritance hierarchy of java.math.

§.1.1 Observation No. 1

There is a considerable difference between the cohesion values obtained for the following

two inheritance options:

75

1. Without Inheritance: Including only implemented methods and attributes in the
analysis.
2. With Inheritance: Including also inherited attributes and methods in the analysis as

well as the implemented attributes and methods.

1.2 -

L]

0.6 -

Cohesion

04 -

0.2 -

—Class Cohesion
- - - - Inheritance Cohesion

Figure 5.2: Graph showing the comparison between the Class and
Inheritance Cohesion of the classes of java.io hierarchy.

Cohesion values for option 1 are quite higher than those for option 2. In other words, we
can say that the Class Cohesion of the majority of the classes is higher than their
Inheritance Cohesion. Figure 5.2 illustrates the graph for the java.io hierarchy that shows

the comparison between the inheritance cohesion and class cohesion of its classes

76

calculated using CCM. This graph has two separate curves: one for the class cohesion and
the other for the inheritance cohesion. It can be seen that the class cohesion is much higher

than the inheritance cohesion for most of the classes.

This considerable difference between the class and inheritance cohesion is due to the
reason that all the classes inherit from few top-level classes, which mostly have
empty/abstract methods. For example, the root class is always the class Object. It has 10
methods, out of which 7 are empty. Since there are no connections among the methods of
the class Object, its cohesion is zero. Every other class has to inherit from the class Object,
but it may not override all of its methods. Therefore, its inheritance cohesion drops down
drastically as the methods that it has inherited (but not overridden) from the class Object
are unconnected to the rest of its methods and also to one another in its connection graph.
For example, consider the class ObjID, which is a direct descendent of the class Object.
Table 5.2 gives the complete list of the methods of the class ObjID. Its class cohesion is
0.933 and inheritance cohesion is 0.179. Therefore, its class cohesion is 5.6 times higher
than its inheritance cohesion. Figure 5.3 (a) shows the connection graph of ObjID including
only those methods that have been implemented/overridden in ObjID, which is quite
strongly connected. Whereas, figure 5.3 (b) shows its connection graph including also its
non-overridden inherited methods. It can be seen that the methods that it has inherited (but
not overridden) from the class Object drastically reduce the overall connectivity of its
connection graph. Due to this, its inheritance cohesion drops down quite below its class

cohesion. Same is the case with nearly all the classes of the Java API.

77

ObjID

Figure 5.3: (a) Connection graph of the class ObjID without considering the inherited
methods. (b) Connection graph of the class ObjID including the inherited methods
also.

78

S. Ne. Method Name Original Class Comments

1 Equals Object Inherited, overridden

2 hashcode Object Inherited, overridden

3 ObjID ObjID Constructor
4 Read Ob;ID Implemented

5 toString Object Inherited, overridden
6 Write ObjID Implemented

7 Clone Object Inherited, not overridden
8 Finalize Object Inherited, not overridden
9 getClass Object Inherited, not overridden
10 Notify Object Inherited, not overridden
11 notifyAll Object Inherited, not overridden
12 registerNatives Object Inherited, not overridden
13 Wait Object Inherited, not overridden

Table 5.2: List of methods of the class ObjID.

5.1.2 Observation No. 2

Slightly higher inheritance and class cohesion values are obtained when constructor
methods are included in the analysis as compared to the case when constructor methods are
excluded. Figure 5.4 illustrates a graph for java.io with two different curves — one for the
inheritance cohesion values obtained from the calculations done by including the
constructor methods and the other for the values obtained from the calculations done by
excluding the constructor methods. It can be noticed that the curve for ilic opticn “With

Constructor” is slightly higher than the curve for the option “without Constructor”. This is

due to the fact that the constructor method usually accesses most of the attributes of the

79

class and thus, shares attributes with most of the other methods of the class. Therefore, the
inclusion of constructor method improves the over all connectivity of the class’ connection
graph and in turn improves its cohesion. For example, figure 5.3 (a) illustrates the
connection graph of the class ObjID including its constructor method ObjID. Whereas,
figure 5.5 shows the connection graph of ObjID excluding its constructor method. It is
clear that the graph of figure 5.3 (a) is more tightly connected than the graph of figure 5.5.
Due to this reason, the class cohesion of the class ObjID slightly reduces from 0.933

(including constructor) to 0.90 when the constructor method is excluded.

Inheritance Cohesion

o o
&2 3

(=]

——— With Constructor
- - - - - Without Constructor

Figure 5.4: The graph showing the inheritance cohesion values of the classes of
java.io hierarchy for the two cases: with constructor and without constructor.

80

hashcode

Figure 5.5: The connection graph of the class ObjID excluding the constructor

method.

Inheritance Option

Constructor Option

Without Constructor With Constructor

Including only
Implemented Methods &
Attributes

484

472

Including also Inherited
Methods & Attributes

Including also Inherited
Attributes but not
Inherited Methods

511

492

Table 5.3: Number of classes with disconnected connection graphs for various

inheritance and constructor options.

81

5.1.3 Observation No. 3

Table 5.3 shows the number of classes with disconnected connection graphs for various

inheritance and constructor options. The analysis of the effects of inheritance on the

connectivity of the connection graphs of the classes reveals the following:

Connection graphs of Nearly fifty percent of the classes are connected when we do
not include the inherited methods.

Connection graphs of none of the classes are connected when we include inherited
methods. This is due to the reason that every class directly or indirectly inherits
from the class Object whose methods are completely disconnected to each other.
Although, the inherited methods that are overridden by the subclass may get
connected to the rest of its methods, the methods that are not overridden still remain
disconnected to the other methods. For example, in case of the class ObjID, among
the methods that it inherits from the class Object, only hashcode, toString and
equals are overridden and thus, they are connected to the rest of its methods.
Whereas, the remaining of the methods inherited from the class Object are
completely disconnected as shown in figure 5.3 (b).

The number of classes with disconnected connection graphs is lower for the case in
which the constructor methods are included in the connection graphs as compared
to the case in which the constructor methods are excluded. This is because the
constructor method sometimes acts as a connecting method between the two or
more connected components. In such a case, if the constructor method is excluded,

the connection graph is divided into two or more connected components.

82

Level Inheritance Cohesion
CCM MCCM
1 0 0
2 0.073397 0.061813
3 0.085673 0.065858
4 0.079211 0.065459
5 0.025807 0.023349
6 0.020965 0.020598
7 0.033333 0.033333

Table 5.4: Inheritance Cohesion values for all the levels of the Java 1.3
API’s hierarchy.

5.1.4 Observation No. 4

Inheritance cohesion is quite low at certain levels of the inheritance hierarchy — especially
at the lower levels. Table 5.4 gives the average inheritance cohesion for each of the seven
inheritance levels of the Java 1.3 API calculated using CCM and MCCM. It can be seen
that if we exclude level 1, level 6 has the least and level 5 has the second least average
inheritance cohesion among the rest of the levels. We have excluded level 1 from the
discussion because it has only one class, i.e., Object, whose inheritance/class cohesion is
zero. Figure 5.6 visually shows the average inheritance cohesion of all the levels of the
hierarchy in the form of a graph for both CCM and MCCM. To find out the reason of this
drop in the average inheritance cohesion at level 5 and 6, we examined some of the classes
at these levels. Most of the classes at level 5 and 6 are either exception handling or error

handling classes, all of which have a common ancestor class Throwable. The class

83

Throwable is a direct subclass of the class Object and has very poor class as well as
inheritance cohesion. Its inheritance and class cohesion as calculated by CCM are 0.00794
and 0.00055, respectively. Since most of the classes at levels 5 and 6 indirectly inherit from
the class Throwable, there inheritance cohesion is also low. For example, consider the class
ArrayIndexOwtOfBoundException (level 6). It is a leaf class in the inheritance tree and has
only one method, i.., the constructor method. The root to leaf path for
ArrayIndexOwtOfBoundException is shown in figure 5.7. It can be seen that it indirectly
inherits from Throwable and there are three classes in between, i.e., Exception,
RuntimeException and IndexOutOfBoundException. Due to the bad inheritance cohesion of
the class Throwable and due to the fact that the classes from the class Exception to
ArrayIndexOwOfBoundException in the traversal of figure 5.7, only have constructor
methods (i.e., they don’t override any of the methods that they inherit from Throwable), the
inheritance cohesion of the class ArrayIndexOutOfBoundException is also quite low. We
observed the similar pattern in almost all of the exception and error handling classes, which
comprise the majority of the classes at level 5 and 6. Due to this reason, the average

inheritance cohesion at level 5 and 6 is very low.

84

=)
3

=)
8

0.07 -

o o
8 8

o o
8 8

0.01 -

Average Inheritance Cohesion
[=]
g

o

Figure 5.6: Average Inheritance Cohesion versus Inheritance Level graph of Java 1.3
API for both CCM and MCCM.

Object.java . * Inheritance Cohesion =0

@D——» Inheritance Cohesion = 0.00055
@D——* Inheritance Cohesion = 0.00055

. . . x
< cExeepRonyTA > Inheritance Cohesion = 0.00055

@ijm — Inheritance Cohesion = 0.00055

[

@ mm » Inheritance Cohesion = 0.00055

Figure 5.7: Root to leaf traversal for ArraylndexOutOfBoundException.java

85

5.1.5 Observation No. §

Although the overall average inheritance cohesion of the classes of Java 1.3 API is very
low (0.0654), but there are still some classes with quite good inheritance cohesion. Table
5.5 lists the names and inheritance cohesion values of the ten top most classes. It can be

seen that the inheritance cohesion of all these classes is well above the average.

S. No. Inheritance Cohesion
Class Name (CCM)

1 SynchronizedSortedMap 0.5689655
2 SynchronizedSortedSet 0.53968257
3 MutableBiglnteger 0.5090498
4 SynchronizedList 0.505291
5 SignedMutableBigInteger 0.4996506
6 RenderingHints 0.49275362
7 BitSet 0.45666668
8 SynchronizedSet 0.45454547
9 SynchronizedMap 0.45454547
10 String 0.43361345

Table 5.5: List of top ten classes with the highest inheritance cohesion
calculated by CCM.

To find out the reason behind the good inheritance cohesion of these classes, we examined
some of them. We found the following two important reasons for their good inheritance

cohesion:

86

1. All of these classes have very good class cohesion values. In fact, most of them
have class cohesion equal to 1 (i.e., maximum cohesion).

2. All of these classes override most of the empty methods that they inherit from the
class Object and their other ancestors. Due to this, these inherited-overridden
methods often get connected to the other methods and do not remain as
disconnected vertices in the connection graph as they would have been if they

haven’t been overridden.

However, when we also penalize these classes for having re-implemented overridden
methods (as described in section 3.3.2), the inheritance cohesion of many of these classes
drops down by up to 30 % as shown in the table 5.6. Table 5.6 shows the MCCM values
and Penalty Factors for the classes of table 5.5. The Penalty Factor is the penalty incurred
on the class for having re-implemented overridden methods. It can be seen that some of the
classes have Penalty Factors as high as 0.3. It means that these classes re-implement nearly

30 % of their inherited methods.

87

S. Inkeritance
No. Cohesion
Class Name Penalty Factor MCCM)
1 SynchronizedSortedMap 0 0.5689655
2 | SynchronizedSortedSet 0 0.53968257
3 MutableBiglnteger 0.1 0.45814478
4 SynchronizedList 0.22727275 | 0.39045212
5 SignedMutableBiginteger 0.01960784 0.48985353
6 RenderingHints 0.3 0.34492752
7 BitSet 0.3 0.31966668
8 SynchronizedSet 0.09090906 | 0.41322318
9 SynchronizedMap 0.3 0.3181818
10 String 0.3 0.3035294

Table 5.6: MCCM values and Penalty Factor for the classes listed in table 5.5.

= Average Inheritance Cohesion (CCM)

---- + Variance

© o
1

0.07 -

- -
SEEAE

0.01 -

Average Inheritance Coheslon

Level2
(373)

Level3
(197)

Levell (1) Levei7 (1) Levels (57) Levels (93) Leveld
(143)

Level (Breadth)

Figure 5.8: Average Inheritance Cohesion versus Breadth of Level graph for
Java 1.3 APL

88

5.1.6 Observation No. 6

The levels of the inheritance hierarchy with greater breadths have higher average

inheritance cohesion as shown by the graph of figure 5.8. By breadth of level, we mean the

number of classes at that level of the inheritance tree. Analyzing the graph of figure 5.8, we

notice the following observations:

1.

Level 1 has zero average inheritance cohesion. This is because it has only one class,
i.e., Object (root class), whose inheritance cohesion is zero.

Level 5 and 6 have very low average inheritance cohesion and their breadths are
also less than the other levels. Low average inheritance cohesion values of level 5
and 6 are not related to their breadths, but actually these low values are due to the
reason described in section 5.1.4.

Although the average inheritance cohesion at level 4, 3 and 2 is better than that of
level 5 and 6, the difference between the class and inheritance cohesion at these
levels is quite high. For example, the average class cohesion at level 2 is 0.44,
whereas, the average inheritance cohesion is 0.073. Therefore, the average class
cohesion at level 2 is 6.1 times higher than the average inheritance cohesion. In
section 3.2.2, we discussed that sometimes the super-class is merely used as the
container of service methods that are used by its subclasses and the designer
includes more and more classes as the direct children of this “Super-Cum-Service”
class to save the amount of coding. This leads to a high breadth of level just below
this “Super-Cum-Service” class and adversely affects the inheritance cohesion of its

subclasses, since they inherit all the methods of the super-class but use (or override)

89

only few of them. We notice the similar kind of problem at level 2 of the Java APL
The super-class of the classes at this level is Object. Although the classes at level 2
inherit 9 methods from the class Object, they override only 2 out of these 9 methods
on average. Due to this, their inheritance cohesion is drastically lower than their
class cohesion.

Variance from the average in the values of inheritance cohesion is not very
significant. The two lighter curves below and above the Average Inheritance
Cohesion Versus Breadth of Level curve of figure 5.8 show the variance from the
average values. It can be seen that the variance at levels 5 and 6 is very low. It
means that most of the classes at these levels have inheritance cohesion close to the
average inheritance cohesion. Whereas, the variance is higher at levels 2, 3, and 4,
but it is still not very significant. For example, level 2 has the maximum variance,

i.e., 0.01015, which is nearly 15 % of its average value.

o o o o
N w 'S 1
iy i

Parent Inheritance Cohesion
o

Y,

o

s agaiegiatariading

T T E T DY T ET I T IT e LT Tr T

S L N N N N N T T W N T A N T T L - WL PN

No. Of Chliidren

L22ai22: 2028

Figure 5.9: Parent Inheritance Cohesion Versus Number of Children graph for

Java 1.3 APL
Inheritance
Class Name No. of Children| Class Cohesion Cohesion

InputStream 9 0 0
Component 9 0.14497484 0.07124616
AWTEvent 9 0.003496504 0.001443001
AccessibleAWT Component 10 0.007692308 0.011475409
AttributeValue 10 1 0.006060606
GeneralSecurityException 12 1 0.000555556
IOException 15 1 0.000555556
RemoteException 16 1 0.033333335
RuntimeException 22 1 0.000555556
Exception 31 1 0.000555556

Object 373 0 0

Table 5.7: Inheritance and Class Cohesion values of classes with 9 or more children.

91

5.1.7 Observation No. 7

As we discussed in section 3.2.3, when a super-class is used as a container of service
methods that are used by its subclasses, its methods are usually unrelated to each other,
since they have been implemented to fulfill the requirements of the subclasses rather than
to accomplish the task of the super-class itself. Due to this lack of coherence among the
methods of the super-class, its cohesion drops down. The classes with a large number of

children are more likely to have this kind of characteristic.

To find out whether the cohesion of parent classes is related to the number of their children
in Java 1.3 API, we plotted a graph of Parent Inheritance Cohesion Versus the Number of
Children as shown in figure 5.9. It can be observed that the classes with a considerably
higher number of children (i.e., more than 8 children) have poor inheritance cohesion. For
example, consider the class AWTEvent. It is the super-class of all the event-handling
classes of java.awt hierarchy. It has the following 9 direct descendents:

1. ActionEvent

2. AdjustmentEvent

3. ComponentEvent

4. EmptyEvent

5. HierarchyEvent

6. InputMethodEvent

7. InvocationEvent

8. ItemEvent

92

9. TextEvent

Since AWTEvent is the generic event class that covers all the above-mentioned specialized
event classes, its methods are tailored according to the needs of its children. Due to this
diversity in the methods of AWTEvent, its methods are not tightly related to one another.
Therefore, its class as well as inheritance cohesion is quite low (class cohesion = 0.003496,

inheritance cohesion = 0.061443).

Table 5.7 gives the list of classes with 9 or more children. Although all of these classes
have quite low inheritance cohesion, but the class cohesion of some of these classes is as
high as 1. This high class cohesion is due to the fact that these classes only have
constructor methods (i.e., they have only one implemented method). It can be noticed that
all but one of these classes are exception-handling classes. As we saw earlier, all the
exception-handling classes are descendents of the class Throwable. Therefore, the bad
inheritance cohesion of these classes actually reflects the bad class cohesion of the class
Throwable. Since Throwable is the ancestor of a wide variety of error and exception-
handling classes, its methods are very generic, as they have to cater for the requirements of
all types of errors and exceptions. Due to this, its methods are not tightly connected to each

other and thus it has low class cohesion.

93

5.1.8 Observation No. 8

To find out whether the inheritance cohesion of children is affected by their parent’s
cohesion, we plotted the graph of figure 5.10, which has two different curves. The darker
curve shows the inheritance cohesion of the parent classes sorted in ascending order with
respeci to their number of children on the horizontal axis and lighter curve gives the
average inheritance cohesion of the children of these parent classes. It is clear that both of
these curves show similar pattern, i.e., the children of parents with good inheritance
cohesion tend to have good inheritance cohesion and those of parents with poor inheritance
cohesion tend to have poor inheritance cohesion. This is due to fact that besides inheriting
the public/protected methods and attributes of the parent, the child also inherits the part of
the parent’s connection graph. Although the child’s own connection graph (i.e., the
connection graph made of the child’s implemented methods only) may be strongly
connected, but if the connection graph that it has inherited from its parent is poor, its
overall connection graph (i.e., the connection graph made of the implemented plus
inherited methods) will tend to be poor also. Due to this, the child will have poor
inheritance cohesion. On the other hand, if the parent’s connection graph is strongly

connected, the child is also likely to have a strongly connected overall connection graph.

94

NNARANAANANNNN T Y Y Y YYD D A
No. Of Children

—— Awerage Inheritance Cohesion of Children
----- Inheritance Cohesion of Parent

Figure 5.10: Comparison of the Inheritance Cohesion of Parents and the Average
Inheritance Cohesion of their Children.

1.2 -

bt
®

°
>

Average Class Cohesion
o
o

o
o

T T T T T T T T T T T T T

© % 6 2 8 & @ P P P D P D S A
No. of Implemented Methods

Figure 5.11: Graph of Average Class Cohesion Versus Number of Implemented
Methods for Java 1.3 APL

95

No. of Implemented

Class Name Methods Class Cohesion
TreeMap 51 0.16705883
Class 53 0.09361393
TextLayout 54 0.1955276
BeanContextSupport 57 0.18107769
ObjectInputStream 57 0.18421052
Biglnteger 76 0.27684212
Container 76 0.11387388
Component 172 0.14497484

Table 5.8: List of classes with more than 50 implemented methods.

5.1.9 Observation No. 9

We plotted the graph of average class cohesion versus the number of implemented methods
as illustrated in figure 5.11 to find out the effect of the number of implemented methods on
class cohesion of the classes. The horizontal axis represents the number of implemented
methods sorted in increasing order and the vertical axis gives the values of average class
cohesion of the classes having these numbers of implemented methods. Although we do
not notice any particular pattern in this graph, but it can be seen most of the classes with 50
or more implemented methods have quite low class cohesion. To illustrate this, table 5.8
presents a list of classes with more than 50 methods. It can be noticed that the class

cohesion of these classes is quite below the average. The average class cohesion of the

96

classes having more than 50 implemented methods is 0.17, whereas, the overall average

class cohesion is 0.5567.

0.35 -

0.3 -

0.25 -

0.2 1

0.15 -

0.1

0.05

L R A S R e e o e e e A e
01t 2 3 45 6 7 81011 12 14 15 16 17 18 27 33 42

Figure 5.12: The graph of Average Inheritance Cohesion Versus the Number of
Overridden Methods of java.awt for both CCM and MCCM.

5.1.10 Observation No. 10

Inheritance cohesion (as calculated by CCM) of classes having greater number of
overridden methods is higher. Figure 5.12 shows the graph of average inheritance cohesion
against the number of overridden methods of java.awt hierarchy for both CCM and

MCCM. 1t can be seen that the classes with more than 14 overridden methods have better

inheritance cohesion as measured by CCM (darker curve).

97

As we said earlier, all the classes of Java 1.3 API have to inherit from few top-level classes
including the class Object. Since these top-level classes mostly have empty/abstract
methods, their connection graphs are very poorly connected. For example, the connection
graph of the clasé Object is completely disconnected. The subclasses inherit these
connection graphs, if they do not override the empty methods inherited from their
ancestors. On the other hand, if a subclass overrides the empty inherited methods, these
methods often get connected to the other methods and do not remain as disconnected
vertices in the connection graph as they would have been if they haven’t been overridden.
Therefore, this overriding of inherited methods often improves the inheritance cohesion of
the subclasses. However, when we also penalize the classes for having re-implemented
overridden methods, as done by MCCM, the inheritance cohesion doesn’t show
improvement as the number of overridden methods increases as shown by the lighter curve

of figure 5.12.

5.1.11 Observation No. 11
To find out whether the size of the hierarchy affects its average inheritance cohesion or not,

we plotted the following two types of graphs:

1. The graph of average inheritance cohesion of hierarchies against their number of
classes (figure 5.13). In this graph the horizontal axis represents the hierarchies
sorted in ascending order with respect to their number of classes and vertical axis

gives the average inheritance cohesion of these hierarchies.

98

2. The graph of average inheritance cohesion of hierarchies against their number of
methods (figure 5.14). In this graph the horizontal axis represents the hierarchies
sorted in ascending order with respect to their number of methods and vertical axis

shows the average inheritance cohesion of these hierarchies.

It can be seen that the average inheritance cohesion of hierarchies does not depend on their
size either with respect to their number of classes or with respect to their number of

methods.

Awerage Class Cohesion
....... Awerage Inheritance Cohesion

Average Cohesion
[= NN
b OO

..
........
..........................

K>
%
‘2
(/,,.
97/
%,

Q
\é‘
(ol

No. of Ciasses

Figure 5.13: The graph of average inheritance cohesion of hierarchies
against their number of classes.

99

Average Class Cohesion

....... Average hheritance
Cohesion

Average Cohesion
[oJoXo]
LM

- - -
........
ft e rimessemonne e T =TT TS e et T T T

\
& &£ & S & & &
3 2’ & &P (o N 3 e,
2 @f & o € & F ¢ e
‘@ '{b {8‘ N . 6‘0’ N .Q
3
No. of Methods

Figure 5.14: The graph of average inheritance cohesion of hierarchies
against their number of methods.

5.1.12 Observation No. 12

While tracing the path from the root class to different leaf classes with above average
inheritance cohesion, it is observed that the inheritance cohesion (as measured by CCM)
rises as we move down from the root to the leaf. For example, figure 5.15 (a) shows the
root to leaf traversal graph for the class GZIPInputStream. The horizontal axis lists the
classes along the root to leaf path, starting from the root class (Object) and ending at the
leaf class (GZIPInputStream), whereas, the vertical axis gives the inheritance cohesion of
the corresponding classes as measured by CCM. A similar graph for the class KeyEvent is
shown in figure 5.15 (b). In both of these example graphs, it can be seen that the
inheritance cohesion rises steadily as we move from the root class to the leaf class. This

steady rise in the inheritance cohesion is due to the fact that the top-level classes usually

100

have empty/abstract methods and thus, their connection graphs are weak, but as we go
down, the subclasses override more and more of these empty methods. Due to this
overriding of inherited methods, the inheritance cohesion of the subclasses improves over

their super-classes.

0.3 -
$ 025 |
% 0.2
O 0.15 -
g 0.1
S 0.05
g 0 T -1 T v g
S < <
d°\°& & @o& & &
o 2 o o
& & & &
\Q N 0‘\° \Q\o
Classes
(@)
0.12 -
& 01
8 008
g 0.06 -
8 004/
£ ooz
=
£ 0 T 3
S S & & & &
@ @) 2) C)
o o & & & &
S < & O .4
ol v & A
&
00
Classes
(b)

Figure 5.15: Root to leaf path traversal for (&) GZIPInputStream and (b) KeyEvent.

101

5.1.13 Observation No. 13

To find out the number of leaf classes (or terminal classes) at each level of the hierarchy,
we plotted the graph of number of leaf and non-leaf classes against the levels of inheritance
hierarchy as illustrated in figure 5.16. Examining the graph of figure 5.16, we can notice

following observations:

e The number of leaf classes is much higher than the number of non-leaf classes.
e Level 2 has the highest number of leaf classes, i.e., 292. This means 292 terminal
classes of the API are direct descendents of the class Object.

e Nearly 64 % of the leaf classes are at level 2 and 3.

350 -
300 - Leaf Classes
g 01 /\ |- Non-Leaf Classes
& 200
o
6 150 -
o]
£ 100
50 -
0
1 2 3 4 5 6 7
Level

Figure 5.16: Graph of Number of Leaf and Non-Classes at each level of the
inheritance hierarchy of Javal.3 API

102

level Leaf Classes Non-Leaf Classes
Average | Average Average | Average

No. of |Inheritance] Class No. of |Inheritance| Class
Classes | Cohesion | Cohesion | Classes | Cohesion | Cohesion

1 0 0 0 1 0 0

2 292 0.07889 | 0.472944 81 0.04992 | 0.305755

3 152 0.08623 | 0.484619 45 0.07445 }0.3889801

4 119 0.07783 | 0.579064 24 0.06689 |0.4619222

5 73 0.02567 | 0.833981 20 0.02629 |0.7376797

6 56 0.02030 | 0.871837 1 0.03333 1

7 1 0.03333 1 0 0

Table 5.9: Numbers and Average Cohesion values of Leaf and Non-Leaf Classes
at all the levels of the inheritance hierarchy of Javal.3 APL

Table 5.9 shows the number of leaf classes, number of non-leaf classes and average
inheritance and class cohesions of leaf and non-classes for each level of the hierarchy. It
can be seen that the average inheritance cohesion of leaf classes is higher than that of non-
leaf classes at all levels except level 5 and 6. However, the average inheritance cohesion is

quite lower than the average class cohesion for both leaf and non-leaf classes at all levels.

5.2 Comparison of Cohesion Metrics

Since the cohesion metrics discussed in chapter 2 and 3 differ to some extent from each
other with respect to their method of measuring cohesion, the types of interactions they
consider and their way of visualizing cohesion, we can expect varying results from these

metrics. To find out the differences among these cohesion metrics, we have compared the

103

results, which were obtained from these metrics from the analysis of Java 1.3 APIL. The

observations that we noticed in this regard are presented in the following subsections.

LCOM (Class Cohesion)

Classes

Figure 5.17: Bar chart showing the LCOM values for the classes of java.io
hierarchy.

5.2.1 Observation No. 1

Class cohesion values obtained by LCOM for more than 50% classes are zero. Figure 5.17
shows the bar chart of the class cohesion values obtained by LCOM for java.io hierarchy. It
can be seen that most of the classes have zero class cohesion. As we saw in section 2.1, if
the number of pairs of methods that share one or more attributes is greater than the number
of pairs of methods that do not share any attribute, LCOM is set to 0. Due to this, most of
the classes get 0 LCOM value, which corresponds to the perfect LCOM cohesion. However,
even if a class has LCOM value of O (i.e., perfect LCOM cohesion), it is not necessary that

this class is perfectly cohesive. This is due to the reason that the LCOM measures are not

104

very sensitive. For example, if we consider the LCOM version of Hitz and Montazeri
[Hitz96], we observe that it only counts the number of connected components of the class’
connection graph, but doesn’t consider the density of connections in these connected

components.

5.2.2 Observation No. 2
CCM and TCC give quite similar patterns on different result graphs. Figure 5.18 (a) and (b)
show the Average Inheritance Cohesion Versus Inheritance Level and Average Inheritance
Cohesion Versus Number of Methods graphs, respectively, of java.awt hierarchy for both
CCM and TCC. It can be seen that the curves for CCM and TCC show quite similar
patterns on the graphs of both figure 5.18 (a) and (b). This similarity is due to the fact that
both TCC and CCM concentrate on the number or density of the number of connections
among the methods in the class’ connection graph. TCC is the ratio of actual inter-method
connections to the maximum possible number of inter-method connections. Whereas, CCM
also divides the ratio of actual inter-method connections to the maximum possible number
of inter-method connections by the number of connected components of the class’
connection graph. Still there is some difference between the results of CCM and TCC due
to the following reasons:
1. The methods of finding out whether the two methods A and B are connected to each
other or not are different in case of 7CC and CCM. TCC considers two methods A
and B connected if they either access one or more attribute in common or any of A

or B invokes the other. Whereas, CCM considers two methods A and B connected if

105

they either access one or more attribute in common or invoke one or more methods
in common.

CCM also penalizes the class for the number of connected components of its
connection graph, i.e., it also divides the ratio of actual inter-method connections to
the maximum possible number of inter-method connections by the number of
connected components of the class’ connection graph. Due to this, it can be noticed
that the curve for CCM is always lower than the curve for TCC in the graphs of

both figure 5.18 (a) and (b).

106

-
& 2 8 8 =2

g

&

Average Inheritance Cohesion
[=]
8

o
w

o
&

o
v

o
-
(3,

o
-t

o
&

Average Inheritance Cohesion

Ioo

No. Of Methods

(b)

Figure 5.18: (a) Average Inheritance Cohesion Versus Inheritance Level and (b)
Average Inheritance Cohesion Versus Number of Methods graph of java.awt for
both CCM and TCC.

107

0.09 -
0.08 -
0.07 -
o 0.06 1

ohesion

0.01 -

Average inheritance
o O O o
8 88 8

031 ——CCM

0.25 -

0.2 -

0.15 4

0.1 1

0.05 1 v

Average Inheritance Cohesion

CLIPI PR F ROV ST P I
No. Of Methods

(b)

Figure 5.19: (a) Average Inheritance Cohesion Versus Inheritance Level and (b)
Average Inheritance Cohesion Versus Number of Methods graph of java.awt for
both CCM and MCCM.

108

0.1 ,

0.09 -

0.08 -

0.07
0.06 -
0.05 -
0.04 -

0.03 -

Average Inheritance Cohesion
o
S

0.01 -

Level

(a)

o
-k
o

o
-

o
&

Average Inheritance Cohesion

0
ORGP RPRR PSS VPP
No. Of Methods

(b)

Figure 5.20: (a) Average Inheritance Cohesion Versus Inheritance Level and (b)
Average Inheritance Cohesion Versus Number of Methods graph of java.awt for
both 7CC and MCCM.

109

5.2.3 Observation No. 3

Figure 5.19 (a) and (b) show the Average Inheritance Cohesion Versus Inheritance Level
and Average Inheritance Cohesion Versus Number of Methods graphs, respectively, of
Jjava.awt hierarchy for both MCCM and CCM. It can be observed that although the graphs
of MCCM show similar patterns to those of CCM, there is a noticeable difference between
the values obtained by MCCM and CCM, i.e., the cohesion values of MCCM are mostly
lower than those of CCM. This is due to the reason that MCCM is obtained by multiplying
CCM by the factor I - Penalty Factor(C), which cannot be more than 1. Therefore, MCCM
value can never be more than that of CCM. In case of Java 1.3 API, MCCM values
obtained for most of the classes are noticeably lower than the CCM values of these classes.
This shows that there is a significant presence of re-implemented overridden methods in
the classes of Java 1.3 API. However, in the graph of figure 5.19 (a), we notice that the
average inheritance cohesion values obtained by MCCM and CCM are nearly same at level
5 and 6. This is due to the fact that nearly all the classes at level 5 and 6 do not have re-

implemented overridden methods, since they only have constructor methods.

It can be noticed from the graphs of figure 5.20 (c) and (d) that the similarity between the
patterns of the graphs of MCCM and TCC is not as much as the similarity between the
patterns of the graphs of CCM and T'CC. This shows that the inclusion of Penalty Factor in

the definition of MCCM has made it quite different from TCC.

110

5.2.4 Observation No. 4

RCI gives different patterns on various result graphs as compared to CCM and TCC. Figure
5.21 (a) and (b) show the Average Inheritance Cohesion Versus Inheritance Level and
Average Inheritance Cohesion Versus Number of Methods graphs, respectively, of java.awt
hierarchy for both RCI and CCM. It can be noticed that the curves for RCI show quite
different patterns than those for CCM on the graphs of both figure 5.21 (a) and (b). This
difference is due to the reason that RCI concentrates on counting the number of attribute-
method interactions (referred as DM-interactions in section 2.5) rather than counting the

method-method connections as done by CCM and TCC.

111

© 0 00
8

© Q0 00 9 0 O
RB2R28RQ 8.

[=}
-

Average Inheritance Coheslon
o

o

o
w

o
Py
[$}

o
-t

o
@

-
.

Average Inheritance Cohesilon

I S N S BRI N
No. Of Methods

(b)

Figure 5.21: (a) Average Inheritance Cohesion Versus Inheritance Level and (b)
Average Inheritance Cohesion Versus Number of Methods graph of java.awt for
hoth CCM and RCI.

112

5.2.5 Observation No. S

RCI shows no improvement as the number of overridden methods increases as illustrated in
the Average Inheritance Cohesion Versus Number of Overridden Methods graph of figure
5.22 (a). Whereas, the inheritance cohesion values measured by CCM and TCC improve as
the number of overridden methods rises as shown in the graph of figure 5.22 (b). We saw
in section 5.1.10 that a class with a large number of overridden methods is likely to have a
strongly connected connection graph, but since RCI doesn’t depend on the connection
graph (or on the inter-method connections) its value doesn’t improve with the rise in the

number of overridden methods.

113

lon

08!
FBsieis

Coh
o
8

0.015 -
0.01 -

Average inheritance

. &

0o 1 2 3 4 5 6 7 8 10 11 12 15 16 17 18 27 33 42
No. of Overridden Methods

(a)

0.35 4

0.3 -

0.25

0.2 4

0.15 -

0.1 4

0.05

0 123 456 7 810111214 1516 17 18 27 33 42

(b)

Figure 5.22: Average Inheritance Cohesion Versus Number of Overridden Methods
graph of java.awt hierarchy (a) for RCI and (b) for both CCM and TCC.

114

NI

8

o

rrr

No. of Methods

Figure 5.23: Average Inheritance Cohesion Versus Number of Methods graph of
java.awt hierarchy for LCOM.

5.2.6 Observation No. 6

The inheritance cohesion as measured by LCOM rises steadily with the number of methods
of a class (inherited plus implemented) as illustrated in the Average Inheritance Cohesion
Versus Number of Methods graph of figure 5.23. The rise in the LCOM value as the number
of methods increases means that the inheritance cohesion actually falls, since LCOM is an
inverse cohesion measure. This behavior of LCOM is quite different from that of CCM and
TCC, for which the inheritance cohesion values neither rise nor fall steadily with the
number of methods, instead they show quite a random pattern as illustrated in the graph of

figure 5.18 (b). As we saw in section 2.5, LCOM is equal to the difference p - ¢q, if p > q,

115

where q is the number of pairs of methods accessing one or more attributes in common and
p is the number of pairs of methods not accessing any attribute in common. Since the
difference p — g tends to rise as the number of methods increases (at least in case of Java

1.3 API), LCOM values also increase steadily with the number of methods.

Average inheritance Cohesion

Level

Figure 5.24: Average Inheritance Cohesion Versus Inheritance Level graph of
java.awt hierarchy for LCOM.

5.2.7 Observation No. 7

The inheritance cohesion as measured by LCOM rises steadily as we move down the
inheritance hierarchy as illustrated in the Average Inheritance Cohesion Versus Inheritance
Level graph of figure 5.24. This steady rise in the LCOM value as the inheritance level
increases is quite different from the behavior of CCM and TCC against the inheritance

level, for which the Average Inheritance Cohesion Versus Inheritance Level graph shows a

116

random pattern as illustrated in the graph of figure 5.18 (a). Actually when we move down
the inheritance tree the average number of methods of classes keeps increasing as the
subclasses keep inheriting more and more methods from the classes of the higher levels.
Since LCOM rises as the number of methods increases as we saw in section 5.2.5, LCOM

also rises steadily as the inheritance level increases.

Metric Class Cohesion Inheritance
Cohesion
CCM 98 124
RCI 209 0

Table 5.10: Comparison of the number of zero cohesion classes between CCM
and RCL

5.2.8 Observation No. 8

The number of classes with zero class cohesion is higher than the number of classes with
zero inheritance cohesion for RCI (Table 5.10). In fact, RCI has no class with zero
inheritance cohesion, whereas, for CCM the number of classes with zero class cohesion is
lower than the number of those with zero inheritance cohesion (Table 5.10). Since RCI
depends on the number of method-attribute interactions, it gives zero cohesion only if none
of the methods interacts with any of the attributes. As we know that every class of Java has

to inherit from the class Object, which already has some method-attribute interactions, the

117

inheritance cohesion (as measured by RCI) of these classes can never be zero as they all

inherit the method-attribute interactions of the class Object.

On the other hand, in case of CCM the number of classes with zero inheritance cohesion is
greater than the number of those with zero class cohesion due to the following reason: The
classes that have only the constructor method have class cohesion (as measured by CCM)
equal to one, since their connection graphs are completely connected. But when we also
consider their inherited methods, the connection graphs of some of these classes get
completely disconnected, since their constructor methods are not connected to any of their
inherited methods, which too do not have any connections among themselves. Due to this
reason, the inheritance cohesion of these classes becomes zero. Therefore, because of
construction classes, the number of classes with zero inheritance cohesion is higher than

those with zero class cohesion in case of CCM.

5.2.9 Observation No. 9

We found out the agreement among different cohesion metrics in finding the best and worst
classes according to the inheritance cohesion. For this purpose, we found the best 5%, 10%
and 15% of classes with respect to inheritance cohesion using different metrics and also the
worst 5%, 10% and 15% classes according to inheritance cohesion using these metrics. We

then found the percentage of agreement between these metrics on finding those classes.

The results are as follows:

118

CCM and TCC

As we saw previously that the results of CCM and TCC are quite similar, we also found out
that there is quite good agreement between these two metrics on finding the best and worst
classes according to the inheritance cohesion. For example, 91% of the best 15% classes
found by CCM and TCC are similar. Similarly, the percentage of agreement between these

two metrics in finding the worst 10% classes is 95%. The details of comparison between

CCM and TCC are given in table 5.11.

Percentage of
Best/Worst Classes Percentage of Agreement
Best 15% Classes 91.03%
Best 10% Classes 90%
Best 5% Classes 90%
Worst 15% Classes 85%
Worst 10% Classes 95%
Table 5.11: Percentage of agreement on finding the bets and worst
classes between CCM and TCC.
CCM and RCI

Owing to the differences between the nature of CCM and RCI, as discussed previously, we
don’t find to much agreement between these two metrics in finding the best and worst
classes according to the inheritance cohesion. For example, only 58% of the best 15%

classes found by CCM and RCI are similar. Similarly, the percentage of agreement between

119

these two metrics in finding the worst 15% classes is 51%. The details of comparison

between CCM and RCI are given in table 5.12.

Percentage of
Best/Worst Classes Percentage of Agreement
Best 15% Classes 58%
Best 10% Classes 50%
Best 5% Classes 30%
Worst 15% Classes 51%
Worst 10% Classes 40%

Table 5.12: Percentage of agreement on finding the bets and worst
classes between CCM and RCL.

CCM and MCCM

Although MCCM is merely a modified version of CCM, but the inclusion of Penalty
Factor in the definition of MCCM makes its results noticeably different from that of CCM.
Due to this reason, we don’t find extremely high percentage of agreement between these
two metrics in finding the best and worst classes with respect to the inheritance cohesion.
For example, 85% of the best 15% classes found by CCM and MCCM are similar and the
percentage of agreement between these two metrics in finding the worst 15% classes is
80.7%. The details of comparison between CCM and MCCM are given in table 5.13.
However, it can be noticed that the agreement between CCM and MCCM in finding the
worst 10% classes is 99%, which is too high. This high percentage of agreement is due to

the fact that nearly all of the worst 10% classes found by CCM and MCCM have 0

120

inheritance cohesion. If the CCM value for a class is 0, its MCCM value will also be 0, as
MCCM is merely a product of CCM and the factor I — Penalty Factor. Due to this, nearly
all of the worst 10% classes found by CCM and MCCM are similar, as they all have 0 CCM

value and thus, also have 0 MCCM value.

Percentage of
Best/Worst Classes Percentage of Agreement
Best 15% Classes 85%
Best 10% Classes 77%
Best 5% Classes 74%
Worst 15% Classes 80.7%
Worst 10% Classes 99%

Table 5.13: Percentage of agreement on finding the bets and worst
classes between CCM and MCCM.

MCCM and TCC

Due to the differences between the definition of MCCM and TCC, especially the inclusion
of Penalty Factor in the definition of MCCM, the percentage of agreement between these
two metrics in finding the best and worst classes is not very high. For example, 80% of the
best 15% classes found by MCCM and TCC are similar. Similarly, the percentage of
agreement between these two metrics in finding the worst 15% classes is 71%. However,
the agreement between MCCM and TCC in finding the worst 10% classes is 94%, which is

quite high. The reason for this high percentage of agreement is similar to the reason of the

121

99% agreement between CCM and MCCM in finding the worst 10% classes, as explained

above. The details of comparison between MCCM and TCC are given in table 5.14.

Percentage of
Best/Worst Classes Percentage of Agreement
Best 15% Classes 80%
Best 10% Classes 2%
Best 5% Classes 72%
Worst 15% Classes 71%
Worst 10% Classes 94%

Table 5.14: Percentage of agreement on finding the bets and worst
classes between MCCM and TCC.

Percentage of
Best/Worst Classes Percentage of Agreement
Best 15% Classes 57.3%
Best 10% Classes 47%
Best 5% Classes 30%
Worst 15% Classes 58%
Worst 10% Classes 40%

Table 5.15: Percentage of agreement on finding the bets and worst
classes between TCC and RCI.

122

TCC and RCI

Owing to the different nature of TCC and RCI, we don’t find too much agreement between
these two metrics in finding the best and worst classes according to the inheritance
cohesion. For example, only 57.3% of the best 15% classes found by TCC and RCI are
similar. Similarly, the percentage of agreement between these two metrics in finding the
worst 15% classes is 58%. The details of comparison between TCC and RCI are given in

table S5.15.

5.3 Conclusions Drawn from the Analysis of Java 1.3 API

We have drawn the following conclusions regarding the design quality of Java 1.3 API
based on its analysis that we have done:

e As illustrated in table 5.1, the average DIT of all the 12 sub-hierarchies of the Java
1.3 APl is around 3 with a small standard deviation. Therefore, it can be mentioned
that as far as DIT is concerned, the quality of API is quite good. Nearly 67 % of all
classes (i.e., 570 out of 861 classes) have DIT value of either 2 or 3. Small DIT
value of most of the classes depicts good reusability of the API's classes, since
classes with lower DIT are easier to reuse.

e Most of the leaf classes are concentrated at level 2 and 3 as illustrated in table 5.9.
Nearly 64 % of all the leaf classes are at either level 2 or 3 of the hierarchy and thus
have DIT value of 2 or 3. This small DIT is good from the point of view of
reusability of these leaf classes. However, the inheritance cohesion of these classes

is very low. This is due to the reason that many of the methods that they inherit

123

from the class Object or their direct parent (if they are at level 3) are unrelated to
their core task. For example, consider the class Arrays, which is a direct descendent
of the class Object. It inherits the method roString from Object, but the toString
method doesn’t make much sense for Arrays. Therefore, we can say that the objects
of these leaf classes of the Java API are like inflated bodies with some methods
useful to their task, but they also have some unrelated methods.

We saw above that many of the leaf classes of the API have unrelated inherited
methods. When user classes extend these API classes, the unrelated methods are
also inherited into these user classes and most of the time the implementer of these
classes is not aware of these unrelated inherited methods. The presence of unrelated
inherited methods in user classes might make their maintenance and use difficult.
There is too much abstraction and generalization in the non-leaf classes at the
higher levels of the hierarchy. These classes usually have a large number of direct
and indirect descendents. If a change is made in these classes, it propagates to all of
their descendents. Therefore, to make any change in these classes, one has to keep
in view all of their direct and indirect descendents. Due to this, their maintenance
must be quite difficult. We found quite low inheritance cohesion values for these
classes. These low inheritance cohesion values reflect the difficulty of maintenance
of these classes.

The leaf classes at level 4, 5 and 6 may also be difficult to maintain due to the

following reasons:

124

1. There is quite big difference between their total number of methods (i.e.,
implemented plus inherited methods) and the number of methods implemented
in them. Therefore, to get a complete picture of these classes, one has to
consider all of their ancestor classes from the root class to their direct parent.

2. These classes inherit too many unnecessary and unrelated methods from their
parents.

This conclusion is superimposed by the low inheritance cohesion values that we

obtained for the classes at level 5 and 6.

There is considerable proportion of abstract methods in the top-level classes of the

hierarchy. Due to this considerable presence of abstract methods, these top-level

classes have low cohesion. In addition to that, these abstract methods also make it
difficult to reuse (through inheritance) these classes, since every abstract method
has to be implemented in the subclass.

As a bottom line, we would like to mention that although the Java API is good at

providing a large variety of facilities for software development, but it may be

difficult to maintain and modify.

125

Chapter 6

CONCLUSION

As mentioned in the literature, cohesion is an important quality factor of the object-oriented
as well as imperative design [Biem95, Briand98, Chid94, Eder94]. In object-orientation it
is a basic design requirement that a class should represent a single real world entity
[Eder94]. Class cohesion is used as a tool to measure the extent to which a class meets this
requirement. In this work, for the first time, we have proposed ways of using inheritance
and class cohesion for measuring the quality of the inheritance hierarchy. The metrics that
we have proposed provide designers of the object-oriented systems with the guidelines to
enhance the quality of inheritance hierarchy to improve its maintainability,
understandability and reusability. We have augmented our theoretical work by
implementing the automated tool using which a designer can readily analyze his software

against our proposed metrics.

126

6.1

Major Contributions

The major contributions made by this work can be summarized as follows:

Cohesion related graphical metrics were proposed that assess the quality of the
inheritance hierarchy of a system based on the class and inheritance cohesion of its
classes. These metrics provide guidelines to the designer to make the design of
inheritance hierarchy coherent to the object-oriented design principles. Using these
metrics, the designer can assess to what extent the design of inheritance hierarchy
satisfies the “is a” relationship.

Three new cohesion metrics were proposed, i.e., CCM, CCCM and MCCM. We
believe that CCM captures the connections among the methods of the class quite
well and gives a good measure of class’ cohesion. In the form of MCCM, we have
proposed a metric that also takes into account the effect of overridden methods on
inheritance cohesion of the class. Since overridden methods might result in the
violation of the “is a” relationship as explained in section 3.3.2, we think that
MCCM gives a finer measure of the class’ inheritance cohesion. There isn’t any
other cohesion metric in literature that considers the effect of overridden metihods.
An automated tool was developed that automatically calculates our proposed
metrics as well as the existing cohesion metrics discussed in chapter 2. The user
only has to submit the root directory of the object-oriented system to be analyzed to
the tool. The tool then parses the code of the system and generates the results for

the supported metrics. The tool shows the results in the form of different tables.

127

6.2

Various graphs including the proposed graphical metrics can be generated. The tool
has a simple GUI and is easy to use. Presently the tool only supports the Java
language.

Java 1.3 API was analyzed using the developed tool. Some very interesting quality
features of the Java API were revealed as a result of the analysis.

Results of different cohesion metrics presented in chapter 2 and 3 were compared

and some major differences were identified among these metrics.

Future Directions

Following are the future directions that this work opens for the future research in this area:

Empirical validation of the proposed graphical metrics and cohesion metrics can be
done using the developed tool.

Similar type of graphical metrics can be proposed to measure the quality of
inheritance hierarchy based on inheritance coupling.

Support for other object-oriented languages, such as, Small Talk and C++ can be
added to the tool.

Analysis of some of the good systems can be done based on the proposed metrics
using the tool to identify the similar design patterns for providing the set of

guidelines to design good inheritance hierarchies.

128

e A study of relationship between the inheritance coupling and inheritance cohesion
can be done and some optimal range of inheritance coupling and cohesion values

can be proposed.

129

BIBLIOGRAPHY

[Bala96] N. V. Balasubramanian. Object-oriented Matrics. Proceedings of

International Conference on Software Quality, Maribor, Slovenia, 1995.

[Biem95] J. M. Bieman, B. K. Kang. Cohesion and Reuse in an Object Oriented
System. Proceedings of ACM Symposium on Software Reusability

(SSR’94), pp. 259-262, 1995.

[Basi96] V. R. Basili, L. C. Briand, W. L. Melo. 4 Validation of Object-Oriented
Design Metrics as Quality Indicators. IEEE Transactions on Software

Engineering, Vol. 22, No. 10, pp. 751-761, Oct. 1996.
[Basi88] V. R. Basili, H. D. Rombach. The TAME Project: Towards Improvement-

Oriented Software Environments. IEEE Transactions on Software

Engineering, Vol. 14, No. 6, pp. 758-773, June 1998.

130

[Briand96]

[Briand99]

[Briand98]

[Bucc98]

[Chae98]

[Chid91]

L. C. Briand, S. Morasca, V. Basili. Property-Based Software
Engineering Measurement. IEEE Transactions on Software Engineering,

Vol. 22, No. 1, pp. 68-86, 1996.

L. C. Briand, S. Morasca, V. Basili. Defining and Validating Measures for
Object-Based High-Level Design. IEEE Transactions on Software

Engineering, Vol. 25, No. 5, pp. 722-743, Oct. 1999.

L. C. Briand, J. Daly, J. Wuest. 4 Unified Framework for Cohesion
Measurement in Object-Oriented Systems. Empirical Software

Engineering; An International Journal, Vol. 3, No. 1, pp. 65-117, 1998.

G. Bucci, F. Fioravanti, P. Nesi and S. Perlini, “Metrics and Tool for
System Assessment”, Proceedings of 4™ IEEE International Conference on

Engineering of Complex Systems (ICECCS 98), pp. 36-46, 1998.

H. S. Chae, Y. R. Kwon. 4 Cohesion Measure for Classes in Object-

Oriented Systems. IEEE, pp. 158-166, 1998.

Shyam Chidamber and Chris Kemerer. Towards a Metrics Suite for Object
Oriented Design. A. Paepcke, ed., Proc. Conf. on Object-Oriented
Programming: Systems, Languages and Applications, OOPSLA 91, Oct.

1991.

131

[Chid94]

[Eder94]

[Elish99]

[Embley88]

[Gagnon98]

[Hitz95_1]

Shyam Chidamber and Chris Kemerer, “4 Metrics Suite for Object
Oriented Design”, IEEE Transactions on Software Engineering, vol. 20,

no. 6, pp. 476-493, June 1994.

Johann Eder, Gerti Kappel and Michel Schrefl, “Coupling and Cohesion
in Object-Oriented Systems”, Technical Report, Univ. of Klagenfurt,

Austria, 1994.

M. Elish. Measuring Inheritance Coupling in Object-Oriented Systems.
M.S. Thesis, Department of Information and Computer Science, King

Fahd University of Petroleum and Minerals, KSA, Dec. 1999.

D. W. Embley and S. N. Woodfield. Cohesion and Coupling for Abstract
Data Types. International Conference on Software Engineering, pp. 144-

153, IEEE Computer Society Press, 1988.

Etienne Gagnon. Sablecc, an Object-Oriented Compiler Framework. M.S.

Thesis, School of Computer Science, McGill University, Montreal, March

1998.

M. Hitz, B. Montazeri. Measuring Product Attributes of Object-Oriented

Systems. Proceedings of 5th European Software Engineering Conference

(ESEC 95), 1995.

132

[Hitz95_2]

[Hitz96]

[Hend96]

[Kang96]

[Li93]

[Mose97]

M. Hitz, B. Montazeri. Measuring Coupling and Cohesion in Object-
Oriented Systems. Proceedings of International Symposium on Applied

Corporate Computing, Montarrey, Mexico, October 1995.

M. Hitz, B. Montazeri. Chidamber and Kemerer’'s Metrics Suite: A
Measurement Theory Perspective. IEEE Transactions on Software

Engineering, Vol. 22, No. 4,pp. 276-270, 1996.

Brain Henderson-Sellers, Object-Oriented Metrics: Measures of

Complexity, Prentice Hall PTR, 1996.

B. K. Kang, J. Bieman. Design-level Cohesion Measures: Derivation,
Comparison, and Applications. Computer Science Technical Report CS-

96-104. Colorado State University, 1996.

W. Li and S. Henry, “Object-Oriented Metrics that Predict
Maintainability”, Journal of Systems and Software, vol. 23, no. 2, pp.

111-122, 1993.
Simon Moser and Vojislav Misic. Measuring Class Coupling and

Cohesion: A Formal Metamodel Approach. Proceedings of International

Computer Science Conference (ICSC 97), pp. 31-40, 1997.

133

[Myers78]

[Nier89]

[Ott95]

[Sebe93]

[Stevens74]

[Wegner87]

G. Myers. Composite/Structured Design. Van Nostrand Reinhold, 1978.

O. M. Nierstrasz. A Survey of Object-Oriented Concepts. Object-Oriented
Concepts, Databases and Applications, pp. 3-21, ACM Press and Addison-

Wesley, 1989.

L. Ott, J. M. Bieman, B. K. Kang, B. Mehra. Developing Measures of
Class Cohesion for Object-Oriented Software. In Proc. Annual Workshop

on Software Metrics (AOWSM’95), June 1995.

Robert Sebesta. Concepts of Programming Languages.

Benjamin/Cummings, Second Edition, 1993.

W. Stevens, G. Myers and L. Constantine. Structured Design. IBM

Systems Journal, Vol. 13, pp. 115-139, 1974.
P. Wegner. Dimensions of Object-Based Language Design. In Object-

Oriented Programming Systems Languages an Applications (OOPSLA),

Special Issue of SIGPLAN Notices, Vol. 22, pp. 168-182, Dec. 1987.

134

