Towards a Semantic Metrics Suite for Object-Oriented Design

Letha Etzkorn Harry Delugach
Computer Science Department Computer Science Department
Huntsville, AL 35899 USA Huntsville, AL 35899 USA
letzkorn@cs.uah.edu delugach@cs.uah.edu

Abstract

In recent years much work has been performed in developing suites of metrics that are
targeted for object-oriented software, rather than functionally-oriented software. This is
necessary since good object-oriented software has several characteristics, such as inheritance
and polymorphism, that are not usually present in functionally-oriented software. However,
all of these object-oriented metrics suites have been defined using only syntactic aspects of
object-oriented software; indeed, the earlier functionally-oriented metrics were also calculated
using only syntactic information. All syntactically-oriented metrics have the problem that the
mapping from the metric to the quality the metric purports to measure, such as the software
quality factor "cohesion,” is indirect, and often arguable. Thus, a substantial amount of
research effort goes into proving that these syntactically-oriented metrics actually do measure
their associated quality factors.

This paper introduces a new suite of semantically-derived object-oriented metrics, which
provide a more direct mapping from the metric to its associated quality factor than is possible
using syntactic metrics. These semantically-derived metrics are calculated using knowledge-
based, program understanding, and natural language processing techniques.

Keywords
object-oriented metrics, program understanding, natural]anguage processing, knowledge-
based systems, semantic networks, conceptual graphs

1. Introduction

In the last several years, various object-oriented metrics suites have been developed
[2,3,6,10,19,21,22,23,24]. Although many of these metrics have been successful in
varying degrees [4,17]; still, since all of these object-oriented metrics suites are derived from
syntactic aspects of object-oriented code, the mapping from each metric to the quality factor
that it purports to measure is arguable. Henderson-Sellers notices this aspect of the usual
syntactic cohesion measures, when he says [19]:

"It is, after all, possible to have a class with high internal, syntactic cohesion but little semantic
cohesion."”

Henderson-Sellers gives the example of a class that includes features of both a person and
the car that the person owns [19]. Assuming that there is a one-to-one correspondence
between each person and his/her car (each person may own one car, each car belongs to one
and only one person), then a class named CAR_PERSON is possible. This class could be
syntactically and internally highly cohesive as measured by, for example, the Lack of Cohesion

0-7695-0774-3/00 $10.00 © 2000 IEEE

7

72

in Methods (LCOM) metric [6,17,19]. However, from a semantic standpoint, as a whole class
seen from outside the system, the combination of a car with a person in a single class is not a
sensible class definition [19]. Thus, in this case the aspect of cohesion measured by the
syntactic cohesion metrics such as LCOM is not a good measure of the high level cohesion of
the class. This occurs since there is not a direct mapping from the LCOM metric to the
software quality factor of “"cohesion".

Many of the software quality factors that syntactic software metrics attempt to indirectly
measure can be measured more directly by use of an equivalent semantic metric. The
definition and application of these semantic metrics is possible by the use of knowledge-based,
program understanding, and natural language processing techniques. This paper presents a
suite of object-oriented semantic metrics, and compares these metrics to earlier syntactic
metrics suites. The semantic metrics are evaluated using Weyucker’s properties [26] and
Briand et al.’s cohesion properties [5] as appropriate.

2. Syntactic metrics suites for OO design

The Chidamber and Kemerer (also referred to in this article as C&K) syntactic metrics suite

consists of six metrics [6]: .

1. Depth of Inheritance Tree (DIT)—This metric measures how many classes can affect the
current class through inheritance.

2. Number of Children (NOC)—This metric measures the scope of the influence of a class on
its subclasses due to inheritance.

3. Response For a Class (RFC)—This metric counts the set of methods that can potentially be
executed in response to a message received by an object of the current class.

4. Lack of Cohesion of Methods (LCOM)—The cohesion of a class is characterized by how
closely the local methods are related to the local attributes.

5. Weighted Methods per Class (WMC)—The complexity of a class is the sum of the
complexity of a class’ local methods.

6. Coupling Between Objects (CBO)}—This metric is a count of the number of other classes
to which the current class is coupled, via non-inheritance-related couples. Two classes are
coupled when the methods of one class use methods or attributes of another class.

Li developed another Object-Oriented syntactic metrics suite that addressed certain
shortcomings in Chidamber and Kemerer’s metrics suite[21,23]:

1. Number of Ancestor Classes (NAC)—This metric measures the total number of ancestor
classes from which a class inherits in the class inheritance hierarchy. It addresses a
problem with multiple inheritance in the C&K DIT metric.

2. Number of Descendant Classes (NDC)—This metric measures the number of classes that
may potentially be influenced by the class because of inheritance relations. It addresses a
problem with the C&K NOC metric, in which the C&K NOC metric counted only the
immediate children of a class, and not the grandchildren. A class influences all its
subclasses and not just the immediate children.

3. Number of Local Methods (NLM)—This metric counts the number of local methods
defined in a class which are accessible outside the class. Li felt that this metric better
defines one of two possible versions of the C&K WMC metric (the other version is better
defined by CMC).

4. Class Methods Complexity (CMC)—This metric is the sum of the internal structural
complexity of all local methods, regardless of whether they are visible outside the class or
not. Li felt that this metric better defines one of two possible versions of the C&K metric

.78

(the other version is better defined by NLM).

5. Coupling Through Abstract Data Types (CTA)}—This metric counts the total number of
classes that are used as abstract data types in the data attribute declaration of a class.

6. Coupling Through Message Passing (CTM)—This metric measures the number of
different messages sent out from a class to other classes, excluding the messages sent to
the objects created as local objects in the local methods of the class.

Note: Li used different names for his metrics in different papers, but his papers generally
employ the same set of metrics [21,22]. Li still employs a definition of the LCOM metric to
measure the cohesion of a class (this LCOM definition is consistent with that of Li and Henry
[23], and is different from the later definition of LCOM provided by C&K [6].

The C&K and Li metrics suites have been examined here since they are widely studied
syntactically-based Object-Oriented metrics suites, particularly the C&K metrics suites. Other
syntactically-based metrics suites have also been defined. [19,24].

3. Limitations of syntactic metrics suites

If the Chidamber and Kemerer metrics suite and the Li metrics suite are considered in terms
of quality analysis, it is clear that these metrics suites provide metrics that attempt to indicate
how a class rates in relation to the software quality factors Cohesion, Complexity, and
Coupling. Cohesion is measured with LCOM (both C&K and Li), Complexity is measured
with WMC (C&K) and NLM and CMC (Li), Coupling is measured with DIT and NOC
(C&K), and with CTA, CTM, NAC, and NDC (Li).)

The Li metric NLM can be used as a general class Complexity measure, but it also is
considered as a measure of the complexity of the interface to a class. In a sense, all of the
above metrics could be considered to be related to Complexity. The LCOM metric, for
example, could be considered a Complexity metric when determining whether a class provides
more functionality than.is desired. The less cohesive the class is, the more unwanted and
unneeded complexity is reused along with the needed functionality if the class is reused
elsewhere than in its original system. The various Coupling metrics could be considered
complexity metrics for similar reasons (adding functionality and therefore complexity to the
class). However, the main thrust of the above metrics is toward the quality factors specified
for each above.

In addition to Cohesion, Complexity, and Coupling, other qualities, or quality factors are
also important to an object-oriented design, and to object-oriented implementation. One such
quality is whether the current class is a key (core) class of the design or implementation. Key
classes are central to the implementation, or business domain in which the software is being
developed. They are typically discovered early in the analysis, and provide a start for
estimating the total amount of work remaining in a project—the number of key classes is an
indicator of the volume of work needed in order to develop an application[24]. They are also
the central points of reuse on future projects, since they are highly likely to be needed in
similar business or implementation domains [24]. The number of key classes is a count of
identified classes that are deemed to be of central importance to the business or implementation
domain in question. None of the current syntactic metrics suites provide a determination of
whether a class is a key class or not.

Another quality factor that is important to the design of a class is the amount of functional
overlap of one class with another class. If two classes are very heavily overlapped in
functionality, then the system has probably been poorly designed, and the selection and
breakdown of the system’s classes and the tasks assigned to classes should be reexamined. If

74

no classes overlap in functionality, then it is possible that the system’s chosen class structure
has resulted in a structure with a high communication overhead between classes. In this
situation also, the selection and breakdown of classes in the system should be reexamined.
None of the current syntactic metrics suites provides a determination of the functional overlap
of different classes. The LCOM metric measures the cohesion of a class by attempting in an
indirect manner to measure the functional overlap of the methods of a class (rather than the
overlap of the class with other classes). However, several problems with the LCOM metric
have been identified. Some of these problems are discussed by Basili et al. [4], Hitz and
Montazeri[20], and Etzkorn et al. [17]. Most of these problems are due to the indirect
measurement technique employed: how closely the local methods are related to the local
instance variables; two methods are considered related if they access the same variable. Also,
this method for calculating cohesion is not easily extendable to the calculation of class overlap.

Another aspect of a software system that can be difficult to measure is the quality of its
documentation in the form of comments and good identifier names. Current practice is to
simply count the number of comments in a class. However, this counting of comments does
not give any kind of indication as to the descriptive quality of the comment, and says nothing
about the descriptive quality of identifier names.

4. A proposed semantic metrics suite for object-oriented design

We here propose a suite of automatable semantic design metrics to measure the class
cohesion, class domain complexity, key class identity, class interface complexity, class
overlap, and the documentation quality of a class. Our metrics are proposed within the context
of knowledge-based systems for analyzing object-oriented software that contain knowledge-
bases consisting of semantic networks formed from conceptual graphs. This is a good choice
since an ANSI (American National Standards Institute) standard for conceptual graphs has
recently been approved. Various tools are being developed to meet this standard.

One example of a knowledge-based system containing such a semantic network is a natural
language-based program understanding system, called the Program Analysis Tool for Reuse
(the PATRicia system), which was originally intended for the identification and qualification
of reusable components in object-oriented legacy code {11,13,14,15,16]. In order to determine
whether a particular class or class hierarchy is useful, and therefore potentially reusable in a
given domain, the PATRicia system performs natural language understanding on comments
and identifiers drawn from object-oriented code. Output reports include a list of concepts
identified in a class or class hierarchy that are associated with the implementation-domain,
with definitions, and a description of the functionality of a class in natural language.

The PATRicia system employs a semantic phase, with a knowledge-base which is a
weighted, hierarchical semantic network. Concepts in the semantic net are stored as
conceptual graphs [25] or as part of a conceptual graph.

The semantic network has an interface layer of syntactically-tagged keywords [11,14]. A
keyword in the interface layer that is an adjective, for example, is a different keyword than a
keyword which is a noun. Parsed comment sentences, and syntactically tagged keywords are
compared by the CLIPS inferencing engine to the interface layer of the semantic net.

Both interior concepts and interface nodes allow for information regarding the location (the
name of the class or classes) where that concept was identified.

The conceptual graphs within the semantic network consist of concepts and conceptual
relations. After semantic analysis of an object-oriented system, each class or method analyzed
by the PATRicia system has associated with it a set of concepts and conceptual relations.

The semantic metrics proposed below are evaluated as follows:

1) the cohesion and overlap metrics are examined within the context of the cohesion metrics
properties specified by Briand et al [5]

2) All other metrics are examined in relation to the list of software metric evaluation criteria
provided by Weyucker [26].

4.1 Class cohesion

We propose a metric to measure the cohesion of a class that we call LOgical Relatedness of
Methods (LORM). According to Eder et al., [5, 9], the most desirable cohesion is Model
cohesion, in which the class represents a single, semantically meaningful concept. To
determine whether a class represents a single, semantically meaningful concept, the LORM
metric measures the conceptual relatedness of the methods of the class, as determined by the
understanding of the class methods represented by a semantic network of conceptual graphs.

To collect this metric, semantic analysis by a knowledge-based (expert) system is applied to
the class. Each method/member function is understood separately, and the results of the
understanding for each method is stored in the conceptual graphs and concept groups of the
semantic network which forms the knowledge-base of the expert system.

LORM is defined as follows:

LORM = total number of relations in the class / total number of possible relations in
the class

total number of relations in the class = number of pairs of methods in the class for which
one method contains conceptual relations forming external links out of the set of concepts that
belong to the method (conceptual relations to other concepts belonging to the function itself are
not counted) to or from the set of concepts belonging to another method in the class.
total number of possible relations = number of pairs of methods (member functions) = N
choose2=n!/2! (n-2)! =n(n-1)/2
n = total number of member functions (methods) in the class.

Any concept belonging to both f; and f; (overlapping concept) is not included in the calculation.

The above metric can be expressed graph-theoretically as:

Let X denote a class, My the set of methods of the class, and Cx the concepts and conceptual
relations of a class. We denote CRy as the set of conceptual relations of a class, and COyx as
the set of concepts of a class: CRx L COx = Cx. Let n denote the number of methods of the
class. For each function f; € My, 1< i < n, we denote C; € Cx as the set of concepts and
conceptual relations of f. We denote CR; € CRy, CR; € C; as the set of conceptual relations of
fi, and CO; € COy, CO; € C; as the set of concepts of fi. Consider a graph Gx (V,E) with
V=My, E={<f,ff>e VXV |EI p € CR; : p connects from ¢; € CO; to ¢;e COjv p
connects fromto ¢cje COjtoci e CO, }, E=ui"{ E; }, Emax = {<f;, fj>e VXV l V fie
My, fie Mx,1€i<n-1, 1<j <n, r connects from f; to f;, r € CR;}. We define IQ|l = { 0 if [Ejl =
0, 1if IEl > 1}. Then LORM = (Ti.,™" 1Q{l)/ IEmax.

When we say, "the concepts of a class," "the conceptual relations of a class,” "the concepts
and conceptual relations of a method," etc., we mean the concepts or conceptual relations that
have been identified by semantic processing of the class (or method), as being associated in the
knowledge-base with that class or method.

This metric measures the number of edges of a graph divided by the max number of possible
edges in the graph. In this case, the graph vertices are methods in the class, and the edge from
one vertex to another is represented as the set of conceptual relations linking the vertices. The
mathematical formulation of the LORM metric is similar to that of the Co’ metric defined by

"o

75

76

Briand et al. [5]; however, the LORM metric differs from the Co’ metric in that it is
semantically-related, while the Co’ metric is a syntactically-related metric that employs method
accesses of attributes. LORM satisfies all four cohesion properties specified by Briand et al
[5], except that for cohesion property 3, if additional relationships were added between two
methods that had already been linked, the cohesion value would not increase.

The LORM metric determines the relatedness of the separate tasks performed by methods,
but does not measure an overlap in functionality. A different measure, that determines the
overlap of functionality, is to examine the concepts that appear in more than one function. We
call this metric LORM2, but do not present it here due to space limitations.

Note that these metrics employ only local methods in the calculations. Whether adding
employing inherited methods in the calculation would improve the cohesion calculations
requires further study.

The methods of a class are supposed to be logically related (logical cohesion). However, it
is not useful for the methods to have the same functionality, that is, to perform the same tasks.
Thus the LORM?2 metric should be used with care. A value close to 1 for this metric would be
expected if all methods performed the same task! However, a value close to O for this metric
would indicate that no methods perform any related tasks. Thus, "goodness" bounds for this
metric must be empirically derived.

The LORM?2 metric has a drawback in that it considers only concepts and not conceptual
relations. If both are considered, then the problem becomes one of detecting overlap by
performing the intersection of conceptual graphs associated with each method. This leads to
another semantic cohesion metric:

Definition. For two conceptual graphs, v; and v,, given concept(s) c;, (1<= i <= n, where n
is the total number of concepts in v;), and concepts dj, (1<= j <= m, where m is the total
number of concepts in v,), such that the criteria for a compatible projection hold, for 1<=q<=i,
l<=r<=j:

® Type(micy) N Type(Mod,) > T, where T is the universal type

o The referents of m,cq and ,d, conform to Type(7;cq) N Type(T,d,).

o If referent(m;c,) is the individual marker s, then referent (m,d,) is either s or *.
Where T,:v; 5w, T vy;—> w.

Then there exists a graph w that contains all concepts in the compatible projection of c; and
d;. We define w as the intersection (maximal common subgraph) of conceptual graphs v, and
v,, and Iwl is the number of concepts plus the number of conceptual relations in w.

Thus, a definition for this cohesion metric is as follows:

LORMS3 = (UM) Ziet™ Epnias™ Zuer® [(1/Q) (IWiggl /
min(lviql, |qu|)
where,
I wi | = 1Ug® {Wig} | = number of concepts and conceptual relations in the set of maximal
common subgraphs that form the intersection set of the set of conceptual graphs belonging to
method f; and the set of conceptual graphs belonging to method f;.
N = number of methods in the class
M = number of pairs of methods = N choose 2 = N!/2! (N-2)! =N (N-1)/2
Q = number of separate conceptual graphs in the method
This metric meets all four cohesion properties of Briand et al. [5]. Note that this metric is
measuring concept similarity, rather than concept equality.

o] []

@D G
[o |

W=l
@ M=an-1)2=2()2=1

LORM3 = (3/5M/1 = 3/5 = 0.6
Figure 1. LORM3 Calculation
4.2 Class domain complexity

Complexity is probably the most commonly measured software quality. However, most
previous object-oriented complexity metrics have been syntactically based. The closest
approach to a semantic object-oriented complexity metric in the past has been the concept of
entropy, originally used in the area of information theory to estimate the content of messages.
This was shown to be useful in evaluating procedural software's code complexity [8, 18], and
more recently was used to examine object-oriented design complexity [2].

We wish to propose two new metrics to measure the domain complexity of a class. Metrics
that measure the domain complexity of a class examine a different quantity than the syntactic
complexity measures of the past. The syntactic metrics measure the complexity of the
program, and in those metrics it is the details of the implementation that determine the
program’s complexity. Metrics that measure domain complexity measure the complexity of the
problem, rather than the complexity of the program. They also provide a description of the
psychological complexity, or the difficulty of understanding, of the program. We call the first
metric Class Domain Complexity (CDC), and the second Semantic Class Definition Entropy
(SCDE). The first metric, CDC, is described here. The second, SCDE, is obtained by
applying the concept of entropy to domain information. It is described in detail elsewhere [12].
Thus, we define Class Domain Complexity as follows:

CDC = X" Iconcept plus its associated conceptual
relations| X Weighting Factor.
where m = number of concepts associated with the class

Iconcept plus its associated conceptual relationsl = I+number of conceptual relations
linking the current concept to another concept recognized by the class. Concepts linking to
concepts not recognized by the class are not included in the count. Only outgoing conceptual
relations are included in the count, to prevent counting a conceptual relation multiple times.

Similarly to the usage in the Function Point metrics [1], the Weighting Factor is divided into
Simple, Average, and Complex values. However, here the Weighting Factor is an indication
of the abstraction level of the concept, and is stored as part of the concept when the
knowledge-base is developed. Very specific simple concepts would receive a "simple”
weight, while concepts that relate to large domain items would receive a "complex” weight.

Initially we define the Weighting Factor of the concept for the CDC metric as follows :
Complex = 1.0, Average = 0.50, Simple = 0.25.

This choice of values are initial rules of thumb, and should be later verified by empirical
evidence. An alternative method for determining concept complexity would be to employ the
depth of the concept within the type hierarchy as an indication of complexity.

77

78

The CDC metric satisfies Weyucker’s properties 1, 2, 3,and 5. CDC does not meet property
4 since it provides a measure of domain complexity rather than program complexity. There are
some possible situations where the CDC metric satisfies property 7, and others where it does
not. For example, if the CDC metric is calculated using information derived only from the
comments of a class, then it meets property 7 if the comments are multi-line comments, where
some comment sentences stretch over multiple lines. It does not meet property 7 if all the
comments are single line comments. In a similar situation, properties 6 and 9 are satisfied if,
when the programs are concatenated, the comments documenting the programs are updated to
address the interactions between the programs. The CDC metric does not meet property 8.
The CDC metric measures domain complexity, or psychological complexity, while property 8
specifically avoids measuring psychological complexity. We note here, as well, that the CDC
metric can be used as part of a quantification of the usefulness of mnemonics, which Weyucker
specifically says property 8 does not address.

The Semantic Class Definition Entropy metric is described in detail elsewhere [12]. This
metric has been partly validated, with good initial results [12].

4.3 Relative class complexity and key class identification

Most often, what is more important to a software designer than a general complexity
measure for a class, is a relative comparison of the complexity of a particular class to all other
classes in the same system. For this reason, we define Relative Class Domain Complexity:

RCDC = CDC/ maximum CDC for any class in the same system
Where CDC = Class Domain Complexity, as defined above

Therefore, the class with maximum domain complexity in the entire system will have an
RCDC of 1, and classes with similarly large domain complexity will have values near 1.
Uncomplex classes will have low RCDC, nearer 0.

This can be used to detect key classes in the system. We define a metric for key class
identity, based on the RCDC metric:

KCI={(0or1)!| (0 when RCDC < 0.75, 1 when RCDC >=0.75) } .

The cutoff for a key class, 0.75, is an initial rule of thumb, and should be verified
empirically. The analysis relative to Weyucker’s properties for RCDC and for KCI is
the same as for the CDC metric.

4.4 Class interface complexity

We define two different metrics for class interface complexity, which we call CIC and
SCIDE. CIC and SCIDE measure the complexity of the interface methods of a class (in C++,
the public functions of the class). CIC is defined similarly to CDC, but over the interface
methods of the class. Also, the Semantic Class Definition Entropy metric can be easily
modified to measure interface complexity instead of class complexity; we call this metric
Semantic Class Interface Definition Entropy (SCIDE).

4.5 Class overlap

We define two class overlap measures, Class Overlap A (COa), and Class Overlap B (COb)
that determine the overlap of functionality between two classes by examining the concepts that
appear in more than one class. For example, if concept A appears in both class 1’ set of
conceptual graphs and the set of conceptual graphs belonging to class 2, then classes 1 and 2

overlap on concept A. In our current definition, a concept A in class 1 is considered to be the

same concept as a concept B in class 2 only if either:

Option 1 concept A is exactly the same as concept B (same concept, in same location), or

Option 2

e Type (Concept A) = Type (Concept B), and

e If referent (Concept A) is the individual marker i, then referent (concept B) is either i or *,
the generic concept.

Thus,

COa = (/M) Z,*' (Ziyu™ | overlap of pairs of classes ¢; and ¢; | / Itotal number of
possible overlaps!)

Where loverlap of pairs of classes ¢; and ¢; | = number of concepts that belong to the
conceptual graphs of both ¢; and c;.

Itotal number of possible overlapsl = minimum number of concepts (c;, ¢;) (if Icjl < Icjl, then
total number of possible overlaps = Ic;, else total number of possible overlaps = Icjl).

N = number of classes in the system .

M = number of pairs of classes = N choose 2 = N!/2! (N-2)! =N (N-1)/2

An alternate definition of COa is possible, if the first part of Option 2 in the concept overlap
definition is modified to read: Type(Concept A) N Type (Concept B). Whether this is a useful
modification of COa is a topic for further study.

Although this metric measures overlap of class functionality, it has much in common with
cohesion metrics, and thus is evaluated with respect to the properties of cohesion metrics. This
metric meets all four cohesion properties of Briand et al. [5].

This metric has a drawback in that it considers only concepts and not conceptual relations.
If both are considered, then the problem becomes one of detecting overlap by performing the
intersection of conceptual graphs associated with each method. This leads to the definition of
overlap metric COb, which has a formulation similar to that of LORM3, but which is not
presented here due to space considerations. ‘

4.6 Documentation

The documentation quality of a class can be measured by examining the level of useful
information provided by the identifiers of the class (names of methods, attributes, etc.), and by
examining the level of useful information provided by the comments in the class. Before now,
the only determiner for comment quality was a count of comments, and there was no
automated determination possible for identifier quality. However, many software developers
think that a class is best documented by the use of good identifier names [6, 26]. The use of
semantic metrics can provide both. We define the following metrics, Overall Class
Documentation Quality A (OCDQa), Overall Class Documentation Quality B (OCDQb), the
Class Comment Quality (CCQ), and the Class Identifier Quality (CIQ), not presented here due
to space limitations.

5. Conclusions

A new object-oriented semantic metrics suite has been presented . The metrics of this suite
provide a higher level, semantic, domain oriented view of object-oriented software than is
possible employing traditional, syntactically-oriented object-oriented metrics, and thus can be
more accurate in many cases than syntactic metrics. Some quantities, such as key class
identification, class overlap, and documentation quality, can be measured with these metrics,

79

80

whereas measuring these quantities with syntactic metrics was difficult or impossible.

The semantic metrics presented here have been evaluated by the use of Weyucker’s
properties [26] and Briand et al.’s cohesion properties [5], as appropriate. Validation of these
metrics is underway. Early validation efforts have been good [12].

REFERENCES

[1] Albrecht, A.J., and G.E.Gaffney. Software Function, Source Lines of Code and Development Effort Prediction:
A Software Science Validation. JEEE Trans. on Software Engineering, Nov. 1983, pp. 639-648.

[2] Bansiya, Jagdish, Davis, Carl, and Etzkorn, Letha,.An Entropy Based Complexity Measure for Object-Oriented
Designs. Theory and Practice of Object Systems, S, 2, May, 1999, pp.1-9.

[3] Bansiya, J., Etzkorn, L., Davis, C., and Li, W. A Class Cohesion Metric for Object-Oriented Design. Journal of
Object-Oriented Programming, 11, 8, Jan.,1999, pp. 47-52.

[4] Basili, V., L. Briand, and W.L. Melo,. A validation of object-oriented metrics as quality indicators. IEEE Trans.
on Software Engineering, 22, 10, Oct. 1996, pp.751-761.

[5] Briand, L.C., Daly, J.W.,and Wust, J. A Unified Framework for Cohesion Measurement in Object-Oriented
Systems. Empirical Software Engineering, 3, 1, 1998, pp. 65-115.

[6] Chidamber, S.R., and Kemerer, C.F. A Metrics Suite for Object-Oriented Design. IEEE Trans. on Software
Engineering, 20,6, 476-493,1994.

[7] Chidamber, S.R., and Kemerer, C.F. Toward a Metrics Suite for Object-Oriented Design. Proc. of OOPSLA,
1991, pp. 197-211.

[8] Davis, J., & LeBlanc, R. A Study of the Applicability of Complexity Measures. IEEE Trans. on Software
Engineering, 14, Sept, 1988, pp. 1366-1372.

[9] Eder, J., Kappel, G., and Schrefl, M.. Coupling and Cohesion in Object-Oriented Systems. Technical Report,
University of Klagenfurt, 1994.

[10] Etzkorn, Letha, Bansiya, Jagdish, and Davis, Carl. Design and Code Complexity Metrics for OO Classes.
Journal of Object-Oriented Programming, 12,1, March,1999, pp. 35-40.

[11] Etzkomn, Letha, Bowen, Lisa, and Davis, Carl. An Approach to Program Understanding by Natural Language
Understanding. Natural Language Engineering, accepted, to be published in 5, 1, 1999, pp.1-18.

[12] Etzkorn, L.H., Bansiya, J., and Davis, C.G.. A Semantic Entropy Metric. currently in final development.

[13] Etzkomn, L.H., and Davis, C.G. Automated Object-Oriented Reusable Component Identification. Knowledge-
Based Systems, 9, 8, Dec. 1996, pp. 517-524.

[14] Etzkorn, L.H., and Davis, C.G. Automatically Identifying Reusable OO Legacy Code. [EEE Computer, 30,10,
1997, pp. 66-71.

[15] Etzkorn, L.H., and Davis, C.G. A Documentation-related Approach to Object-Oriented Program
Understanding. Proc. of the IEEE Third Workshop on Program Comprehension, IEEE Computer Society Press, Los
Alamitos, CA, 1994, pp. 39-45.

[16] Etzkom, L.H., Davis, C.G., Bowen, L.L., Etzkorn, D.B., Lewis, L.W., Vinz, B.L., and Wolf, J.C.. A
Knowledge-Based Approach to Object-Oriented Legacy Code Reuse. Proc. of the Second IEEE International
Conference on Engineering of Complex Computer Systems (ICECCS '96), IEEE Computer Society Press, Los
Alamitos, CA, 1996, pp. 39-45.

[17] Etzkorn, L., Davis, C., and Li, W. A Practical Look at the Lack of Cohesion in Methods Metric. Journal of
Object-Oriented Programming, 11, 5, Sept. 1998, pp.27-34

[18] Harrison, W. An entropy-based measure of software complexity. JEEE Trans. on Software Engineering, 18,
Nov., 1992, pp.1025-1029.

[19] Henderson-Sellers, Brian. Object-Oriented- Metrics: Measures of Complexity, Prentice-Hall, Upper Saddle
River, NJ, 1996.

{20] Hitz, M., and Montazeri, B. Chidamber and Kemerer’s Metrics Suite: A Measurement Theory Perspective.
IEEE Trans. on Software Engineering, 22, 4, April, 1996, pp. 267-271.

[21] Li, W. Another Metric Suite for Object-Oriented Programming. Journal of Systems and Software, 44, 1998, pp.
155-162.

[22] Li, W,, Etzkom, L., Davis, C., and Talburt, J. An Empirical Study of Design Evolution in a Software System.
Information and Software Technology, accepted, to appear 2000.

[23] Li, W., and Henry, S. Object-oriented Metrics that Predict Maintainability. The Journal of Systems and
Software, 23, 2, 111-122 (1993).

[24] Lorenz, M., and Kidd, J. Object-Oriented Software Metrics, PTR Prentice-Hall, Englewood Cliffs, NJ, 1994,
[25] Sowa, J.F. Conceptual Structures: Information Processing in Mind and Machine, Addison-Wesley, 1984.

[26] Weyucker, E.J. Evaluating Software Complexity Measures. IEEE Trans. on Software Engineering, Vol. 14,
No. 9, Sept. 1988, pp. 1357-1365.

