
The Interpretation and Utility of Three
Cohesion Metrics for Object-Oriented Design

STEVE COUNSELL and STEPHEN SWIFT

Brunel University

JASON CRAMPTON

University of London

The concept of cohesion in a class has been the subject of various recent empirical studies and
has been measured using many different metrics. In the structured programming paradigm, the
software engineering community has adopted an informal yet meaningful and understandable
definition of cohesion based on the work of Yourdon and Constantine. The object-oriented (OO)
paradigm has formalised various cohesion measures, but the argument over the most meaningful
of those metrics continues to be debated. Yet achieving highly cohesive software is fundamental to its
comprehension and thus its maintainability. In this article we subject two object-oriented cohesion
metrics, CAMC and NHD, to a rigorous mathematical analysis in order to better understand and
interpret them. This analysis enables us to offer substantial arguments for preferring the NHD
metric to CAMC as a measure of cohesion. Furthermore, we provide a complete understanding of the
behaviour of these metrics, enabling us to attach a meaning to the values calculated by the CAMC
and NHD metrics. In addition, we introduce a variant of the NHD metric and demonstrate that it
has several advantages over CAMC and NHD. While it may be true that a generally accepted formal
and informal definition of cohesion continues to elude the OO software engineering community,
there seems considerable value in being able to compare, contrast, and interpret metrics which
attempt to measure the same features of software.

Categories and Subject Descriptors: D.2.8 [Software Engineering]: Metrics; D.2.2 [Software

Engineering]: Design Tools and Techniques—Object-oriented design methods

General Terms: Measurement, Theory

Additional Key Words and Phrases: Cohesion

1. INTRODUCTION

It is approximately twenty-five years since Yourdon and Constantine [1979]
first proposed their seven point ordinal scale for component cohesion relating

Authors’ addresses: S. Counsell, S. Swift, Department of Information Systems and Computing,
Brunel University, Uxbridge, UB8 3PH, England; email: {steve.counsell,stephen.swift}@brunel.
ac.uk; J. Crampton, Information Security Group, Royal Halloway, University of London, TW20
0EX, England; email: jason.crampton@rhul.ac.uk.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515
Broadway, New York, NY 10036 USA, fax: +1 (212) 869-0481, or permissions@acm.org.
C© 2006 ACM 1049-331X/06/0400-0123 $5.00

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006, Pages 123–149.

124 • S. Counsell et al.

to the procedural programming paradigm. At one end of their scale functional
cohesion indicated that a module performed a single well-defined function. At
the other end of the scale coincidental cohesion indicated that the module per-
formed more than one function, and that those functions were unrelated. The
scale they proposed gave an intuitive feel for software cohesion, yet gave very lit-
tle in the way of a quantifiable and justifiable metric for this feature of software.
For the structured paradigm, the informal definition of cohesion was built on
the basis of sound programmer practice and experience and underpinned work
on measuring module cohesion [Lakhotia 1993]. High cohesion thus reflected
use of development techniques known to produce robust and maintainable
code.

More recently, and in an object-oriented (OO) sense, the most well known
metric for measuring cohesion has been the lack of cohesion of methods metric
(LCOM) [Chidamber and Kemerer 1994]. It is based on the assumption that
a class is cohesive if the same instance variables appear in most or all of the
methods in a class. Indeed, the LCOM metric has become the standard by
which all other attempts to measure OO cohesion have been compared. This is
despite the fact that the LCOM metric is difficult to interpret, gives little insight
into the nature of the class itself, and has been refined multiple times from its
original form, primarily because of its inadequacies [Briand et al. 1998; Hitz and
Montazeri 1996; Li and Henry 1993]. In contrast to the structured paradigm,
the OO community has yet to establish a generally accepted informal definition
of cohesion.

An alternative approach to that of LCOM is to regard a class as cohesive if
the methods of the class use the same set of parameter types [Bansiya et al.
1999]. Any metric based on this alternative definition of cohesion (which we will
use throughout the remainder of this article) has a number of key advantages
over the approach that the LCOM metric takes.

Firstly, any such metric can be viewed as a design metric, applicable at an
earlier stage of development, since the prototypes of a class’ methods are avail-
able earlier on than the usage of attributes in method bodies. It is also far
easier and cheaper to modify a class at the design stage than at later stages of
development.

Secondly, the attributes passed as parameters to the method are just as in-
dicative (if not more) of what is actually going on inside the body of the method,
since it is the parameters which largely dictate the behaviour of the method.
The instance variables rely on parameters as a basis for the work done by the
class; we would further contest they give a better feel for the behaviour of the
class than consideration of the instance variables themselves (as earlier OO co-
hesion metrics would have us believe). Moreover, we justify the use of method
parameters empirically through a prior visual inspection of the header files of
the 21 C++ classes used in this article. The aim of this static code inspection was
to establish if any of the methods in those 21 classes failed to access an instance
variable of the same type as the parameter passed to it. No occurrence of such
a parameter was found; in other words, for every class, every parameter in a
method’s signature was used in the body of that method. Indeed, assignment to
the instance variables of a class is usually achieved in this fashion. A method,

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

The Interpretation and Utility of Three Cohesion Metrics • 125

passed a parameter of type T, will usually assign to an instance variable of the
same type T; this gives us as much insight into the use of instance variables as
LCOM. We do accept, however, that a parameter can be simply used for output
purposes (i.e., it is not always used in an assignment operation as such). We
also accept that using a sample of significantly more than 21 classes would give
us a higher degree of confidence in our claim about parameters and assignment
of those parameters to instance variables.

Clearly, it is unlikely that every method will use the same number of parame-
ters each of the same type, so it is necessary to define metrics which can measure
the degree of correspondence between the parameter types across each of the
methods in a class. Two metrics for measuring cohesion have been proposed
recently: the cohesion among methods in a class metric (CAMC) Bansiya et al.
[1999] and the normalised Hamming distance metric (NHD) Counsell et al.
[2002]. However, the values of these metrics, which are assumed to represent
cohesive classes, have no formal justification. Furthermore, it is not immedi-
ately obvious that these metrics even measure cohesion in an appropriate way.
In short, the criticisms aimed at the LCOM metric appear to apply equally well
to the CAMC and NHD metrics.

The purpose of this article is to subject these metrics to a rigorous mathe-
matical analysis. The analysis will determine whether these metrics have any
qualitative meaning given the definition of cohesion above, and what values of
these metrics should be considered to represent a cohesive class. We empha-
sise that the objective of the article is not to introduce the definitive cohesion
metric or to suggest that there is a best way of capturing cohesion. Rather, that
with an underlying relational system for cohesion as a basis and in the context
of past attempts, there are interesting properties about the approaches taken
so far at capturing cohesion per se. Mathematically, one approach may exhibit
more desirable properties than another. We stress the point that until the OO
community can decide on a generally accepted informal definition of cohesion,
we will still be unable to claim that one class is more cohesive than another,
other than from our own interpretation of what constitutes a cohesive class.

In particular, we establish the maximum and minimum values that CAMC
and NHD can take. In the case of the NHD metric, these values are sensitive
to different arrangements of the same parameters when occurrences of those
parameters are represented as matrices. Hence, we find that the NHD has a
much richer interpretation and provides a finer level of discrimination between
classes than the CAMC metric. We also answer several questions raised by
empirical investigations and provide a meaningful interpretation of CAMC and
NHD. The analysis also suggests that there may be more appropriate ways of
defining a cohesion metric. In particular, we introduce a new cohesion metric
SNHD, based on NHD, which attempts to address the shortcomings of the
CAMC and NHD metrics. Furthermore, our investigation raises some questions
about the suitability of the definition of cohesion.

The following section describes the motivation for our work and is followed
in Section 3 by some preliminary definitions and concepts. A detailed, for-
mal comparison of the CAMC and NHD metrics is presented in Section 4. In
Section 5 we compare the values of the metrics for several classes in three

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

126 • S. Counsell et al.

different C++ systems. In Section 6 we discuss some of the issues raised in
the study and point to its limitations. Finally, in Section 7 we discuss some
conclusions and pointers to further work.

2. MOTIVATION AND RELATED WORK

Motivation for the study in this article stems from a number of sources. Firstly,
a mathematical comparison of the properties of cohesion metrics is an under-
researched area. We see our work as going some way to redressing this de-
ficiency. The OO community has yet to arrive at a consensus about the ap-
propriate measurement of cohesion and so any research of this type is useful.
Secondly, identifying common failings or properties of cohesion metrics informs
our understanding of OO systems, OO languages and their different traits. Fi-
nally, cohesion is just one aspect of software which the software engineering
community has tried to capture through metrics. Examination and scrutiny of
current cohesion metrics may reveal further relevant research issues of concern
to us as researchers and practitioners.

The roots of cohesion go as far back as the early seventies, when Stevens
et al. [1974] first began looking at inter-module metrics. Later, Yourdon and
Constantine [1979] proposed their seven point ordinal scale for component co-
hesion. Both of these studies related to a view of cohesion from a procedural
programming viewpoint where modules were the key elements by which cohe-
sion was measured. More recently, the focus of attempts to capture cohesion
has switched from the procedural to the object-oriented paradigm, and the no-
tion of class cohesion has superceded that of module cohesion. The best known
attempt at evaluating cohesion from an OO perspective is the LCOM metric of
Chidamber and Kemerer [1991].

The original definition of the metric calculates cohesion according to the
use of class attributes in the methods of a class. The metric is based on the
principle that an instance variable occurring in many methods of a class causes
that class to be more cohesive than one where the same variable is used in
very few methods of the class. A high value of the LCOM metric indicates that
the methods in the class are unrelated and a low value of the metric indicates
that they are related. The LCOM metric suffers from several disadvantages.
Firstly, the definition of the metric itself is difficult to understand. Secondly,
values produced by the metric are difficult to interpret and give little insight
into the nature of the class other than the distribution of attributes therein.
Finally, the LCOM metric is an implementation metric. It is widely recognised
that a measure of cohesion is required earlier in the development process (that
is, at design time).

Several researchers have proposed extensions to the LCOM metric [Bieman
and Ott 1994; Henderson-Sellers et al. 1996; Briand et al. 1998] have provided
a uniform framework in which LCOM and its derivatives can be evaluated, and
which can be extended to evaluate new cohesion metrics. A more general treat-
ment of the properties and validation issues, including cohesion and coupling
metrics, in object-based and object-oriented systems can be found in [Basili
et al. 1996; Briand et al. 1996, 1999].

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

The Interpretation and Utility of Three Cohesion Metrics • 127

The CAMC metric Bansiya et al. [1999] is a cohesion metric that can be
evaluated at design time. Bansiya et al. computed CAMC for 17 C++ classes
drawn from three well-known graphical user interface packages. It was shown
that there exists a strong correlation between the CAMC and LCOM metrics;
the implication of this is that assuming the LCOM metric is a good indicator of
cohesion, it is preferable to use CAMC because it is easier to collect and is also
a design time metric. The authors do not consider the validity of either metric
in terms of exactly what software attribute they are trying to quantify. The
CAMC metric was also found to correlate with external experts’ evaluations of
cohesiveness of the same 17 classes, suggesting further that the metric reflects
the views on cohesion of system developers. The CAMC metric forms part of
the QMOOD suite of metrics which has been used to evaluate the quality of
object-oriented systems [Bansiya and Davis 2002]. Interestingly, results herein
show a negative correlation between CAMC and LCOM (see Table IV), thus
contradicting the earlier results of Bansiya et al. [1999].

Data slicing has also been used as a measure of functional cohesion [Bieman
and Ott 1994]. Program slices can be used to assess the frequency of attribute
use in programs and the dependency between parts of code and attributes used.
Empirical studies have also been undertaken in this area Binkley et al. [2000].
One final approach to evaluating cohesion and coupling has been to employ
information theoretic techniques [Allen and Khoshgoftaar 1999]. Investigat-
ing the dynamic features of cohesion metrics (i.e., at run-time as opposed to
statically) is also a topic of some current research [Mitchell and Power 2004].
Cohesion (and coupling) metrics have also been applied to knowledge-based
systems; frames were used a basis for those metrics [Kramer and Kaindl 2004].

The lack of rigour, appeal to measurement theory, and empirical evaluation
of cohesion metrics is highlighted well by Briand et al. [1998], which clarifies the
terminology associated with the measurement of cohesion and presents a uni-
fied framework for measuring cohesion and comparing measures of cohesion.

A variation of the metric proposed in this article was first used by Counsell
et al. [2001] to determine the disagreement between four groups of subjects; the
subjects were taking part in an experiment in which they had to identify four
faults seeded in a requirements document. The metric gave a valuable insight
into the characteristics within the individual groups and allowed comparisons
between the four groups to be made. Its usefulness for establishing the distance
between two randomly selected entities was a key motivation for using it rather
than the CAMC metric to measure cohesion in this article.

3. PRELIMINARIES

In the examples and tables throughout this article we use classes randomly cho-
sen from three industrial-sized C++ systems. The three systems were chosen
because they represent a variety of different application domains, have evolved
to varying degrees, and were originally developed by industrial programmers.
The same three systems have also been the subject of a number of previous em-
pirical studies, the most notable of these being Counsell et al. [2004]. It could
thus be argued that our understanding of cohesion issues in these three systems

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

128 • S. Counsell et al.

is informed by that prior knowledge obtained about these systems. The systems
used were Edge, a graph editor, consisting of approximately 30.8 thousand
noncomment source lines (KNCSL) and containing 80 classes; Rocket, a com-
piler, consisting of 32.4 KNCSL and containing 322 classes; and Et++, a user
interface framework, consisting of approximately 56.3 KNCSL and containing
508 classes.

Underlying the capture of any software feature through metrics is the notion
of an entity relational system (ERS) [Fenton and Pfleeger 1996], which provides
a mapping from the real world attribute of the entity being measured to values
representing those attributes in the empirical world. We accept that there are
potentially many ways of measuring cohesion and that no single measure can
be considered definitive; each has its merits. The ERS we introduce is based
on the strong belief that the set of attributes is less susceptible to change than
the processes that manipulate those attributes. The purpose of the methods
provided by the class is merely to facilitate computation.

We consider a cohesion metric to be a function from the set of classes to the
real numbers that assigns a measure of the similarity between the parameter
types of the methods for each class. A class X is more cohesive than class Y if this
function returns a higher value for X when there is greater sharing of parame-
ters between the methods of a class; a lower value is produced by this function
when the opposite is true. It is entirely feasible for the function to return the
same value for two different classes. It then makes sense to state that one class
is twice as cohesive as another class. Such an ERS is also able to distinguish be-
tween the cohesiveness of n classes using the same metric. Observations about
cohesiveness in the real world rest on the belief that developers always aim to
minimise the number of methods in a class and maximise the use of the in-
stance variables across those methods; this is made possible by the parameters
of those methods. In the subsequent analysis, we include every type of method,
whether public, private, or protected; we also include the class constructors and
destructors as if they are normal methods. An interesting extension to our work
would be to independently analyse each method type.

3.1 Notation

Throughout, we denote the (i, j)th entry of a matrix M by mij. We denote the
binomial coefficient n!

r!(n−r)! by
(n

r

)
. We use the fact that

(n
2

) = 1
2 n(n−1) extensively.

We define
(n

r

) = 0 if n < r. We denote the smallest integer larger than x by �x�,
and the largest integer smaller than x by �x�. For example,

⌈
7/2

⌉ = 4 and⌊
7/2

⌋ = 3.
Given a class C with k methods, the parameter type list L is the set of the

data types that appear at least once as the type of a parameter in at least one
method in the class. We denote the length of L by l .

The parameter occurrence matrix O has columns indexed by the members of
L and rows indexed by the methods and, for 1 � i � k, 1 � j � l ,

oij =
⎧⎨
⎩1 if the j th data type occurs as a parameter in the ith method,

0 otherwise.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

The Interpretation and Utility of Three Cohesion Metrics • 129

Fig. 1. The Alert class and associated matrices.

In other words, the parameter occurrence matrix is a binary k × l matrix. The
ith row in O is called a parameter occurrence vector (for method i). A parameter
occurrence vector is a bit pattern which indicates the presence of data types
in the ith method. An example of a parameter occurrence matrix is shown in
Figure 1b. It represents the parameter occurrence matrix for the C++ class
Alert shown in Figure 1a.

We denote the number of 1s in the ith row by ri, the number of 1s in the j th
column by c j , and the number of 1s in the parameter occurrence matrix by σ .
That is,

ri =
l∑

j=1

oij, c j =
k∑

i=1

oij, σ =
k∑

i=1

l∑
j=1

oij.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

130 • S. Counsell et al.

4. COHESION METRICS

In the following section we describe the cohesion metrics which will be used
throughout the remainder of the article.

4.1 CAMC

The CAMC metric for a class C is computed as follows [Bansiya et al. 1999]:

CAMC(C) = 1
kl

k∑
i=1

l∑
j=1

oij = σ

kl
. (1)

In other words, CAMC is the average of the entries in the parameter occurrence
matrix. For example,

CAMC(Alert) = 1
7.6

(
3 + 0 + 0 + 1 + 2 + 0 + 2

) = 8
42

≈ 0.19.

Bansiya et al. [1999] defined the CAMC metric and evaluated it for 17 differ-
ent C++ classes. In these calculations the type of the class was always included
in the parameter type list (since every method implicitly has a “self” parame-
ter). In other words, in this formulation one column of the parameter occurrence
matrix would consist entirely of 1s. It could be suggested that the self param-
eter was included to provide a value for the CAMC metric when no methods
of the class had any parameters. We view as undefined any metric value for a
class with parameterless methods.

We will denote this calculation of the metric by CAMCs. For example, the
parameter occurrence matrix in Figure 1 would be used to calculate CAMC,
rather than CAMCs.

PROPOSITION 4.1. For any class C,

1
k

� CAMC(C) � 1, (2)

l + k − 1
kl

� CAMCs(C) � 1, (3)

CAMC(C) � CAMCs(C), with equality if CAMC(C) = 1. (4)

PROOF. Proof of (2): Clearly, the maximum is attained if and only if every
entry in the parameter occurrence matrix is 1. The minimum is attained if and
only if every column in the matrix contains a single 1 (note that every column
must contain at least one nonzero entry, otherwise, the parameter type does not
appear in the class and would not be included in the matrix). Hence, the sum
of the entries in the matrix is at least l . Therefore, CAMC(C) � l/kl = 1/k.

Proof of (3): The parameter matrix must include one column in which every
entry is 1. The remaining l −1 columns must include at least one nonzero entry.
Hence, the sum of the entries in the matrix is at least k+l −1. The result follows.

Proof of (4): By definition

CAMC(C) = σ

kl
.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

The Interpretation and Utility of Three Cohesion Metrics • 131

To compute CAMCs we add a column of 1s to the parameter occurrence matrix.
Hence,

CAMCs(C) = σ + k
k(l + 1)

and

CAMCs(C) − CAMC(C) = σ + k
k(l + 1)

− σ

kl
= kl − σ

l (l + 1)
� 0,

since σ � kl by definition.

PROPOSITION 4.2. Let l � σ � kl . Then CAMC is invariant for all classes
whose parameter occurrence matrix has k rows, l columns and contains σ 1s.

PROOF. By definition, CAMC = σ/kl . The result follows immediately.

Proposition 4.2 means that CAMC is incapable of discriminating between
two classes which have the same number of 1s in their respective parameter
occurrence matrices. Indeed, CAMC merely calculates the relative frequency
of 1s in the parameter occurrence matrix. In this sense, the ratio gives an im-
pression of matrix sparseness. However, we believe that different distributions
of parameter types across the methods of a class will lead to different levels of
cohesion.

4.1.1 Interpreting CAMC . It has been noted that the CAMC metric tends
to find smaller classes more cohesive [Counsell et al. 2002]. It is clear from the
above analysis that this is a natural consequence of the definition of CAMC,
particularly if the “self” parameter is included. Specifically, if the parameter
occurrence has few rows and columns, and it is constrained to have at least
one 1 in each column (by definition of CAMC) and a column containing 1s (by
definition of CAMCs), then a large number of 1s must be present in the matrix.
Hence, the value of both CAMC and CAMCs will be large. This is not true in
general for classes with large numbers of methods and a large parameter type
list.

Bansiya et al. [1999] consider classes that have a CAMC value of 0.35 and
above to be cohesive classes. However, (3) shows that for k = 18 and l = 2, for
example, CAMCs is always at least 19/36 > 0.5. It is difficult, therefore, to have
much faith in this interpretation of the CAMC metric.

Table I shows the minimum values of CAMC and CAMCs for different values
of k and l (correct to three decimal places). It can be seen that very few minimum
values of CAMCs are below the threshold value of 0.35. One has to wonder,
therefore, why values of 0.35 should be considered cohesive.

We also note that the value of both CAMC and CAMCs increases linearly
with the number of 1s in the parameter occurrence matrix and is unaffected by
the shape of the matrix. The only impact that the shape of the matrix has is on
the threshold value of σ under which CAMC cannot be calculated. For example,
suppose σ � 36: if k = 9 and l = 4 then CAMC can be calculated if σ � 4 and
CAMCs can be calculated if σ � 12; if k = l = 6 then CAMC can be calculated
if σ � 6 and CAMCs can be calculated if σ � 11.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

132 • S. Counsell et al.

Table I. Minimum Values of CAMC and CAMCs

kl k l σ CAMC σ s CAMCs

6 2 3 3 0.500 4 0.667

3 2 2 0.333 4 0.667

12 2 6 6 0.500 7 0.583

3 4 4 0.333 6 0.500

4 3 3 0.250 6 0.500

6 2 2 0.167 7 0.583

24 2 12 12 0.500 13 0.542

3 8 8 0.330 10 0.417

4 6 6 0.250 9 0.375

6 4 4 0.167 9 0.375

8 3 3 0.125 10 0.417

12 2 2 0.083 13 0.542

36 2 18 18 0.500 19 0.528

3 12 12 0.333 14 0.389

4 9 9 0.250 12 0.333

6 6 6 0.167 11 0.306

9 4 4 0.111 12 0.333

12 3 3 0.083 14 0.389

18 2 2 0.056 19 0.528

In short, the CAMC metric suffers from the following problems: It cannot dis-
tinguish between the cohesion of different matrices with the same value of σ ; the
use of 0.35 as a threshold for an indicator of cohesion is fundamentally flawed
(particularly if the “self” parameter type is included); and the metric is likely
to find smaller classes more cohesive, irrespective of their actual properties.

4.2 NHD

The hamming distance (HD) metric was introduced by Counsell et al. [2001].
Informally, it provides a measure of disagreement between rows in a binary
matrix. The definition of HD leads naturally to the NHD metric Counsell et al.
[2002], which measures agreement between rows in a binary matrix. Clearly,
this means that the NHD metric could be used as an alternative measure of
the cohesion in the sense computed by the CAMC metric.

The parameter agreement between methods mi and m j is the number of
places in which the parameter occurrence vectors of the two methods are equal.
The parameter agreement matrix A is a lower triangular square matrix of di-
mension k − 1, where aij is defined to be the parameter agreement between
methods i and j for 1 � j < i � k, and 0 otherwise. The parameter agreement
matrix for the Alert class is shown in Figure 1c (the column totals have been
shown in the parameter agreement matrix in order to facilitate the calculation
of the NHD metric; 0s have been omitted for convenience).

For a class C, the NHD is defined as follows [Counsell et al. 2002]:

NHD(C) = 1

l
(k

2

) k−1∑
j=1

k∑
i= j+1

aij = 2
lk(k − 1)

k−1∑
j=1

k∑
i= j+1

aij (5)

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

The Interpretation and Utility of Three Cohesion Metrics • 133

Hence,

NHD (Alert) = 2
6.7.6

(
13 + 25 + 19 + 15 + 8 + 4

) = 168
252

≈ 0.67.

We now state an alternative form of the NHD metric. This leads to a more
efficient way of computing NHD and facilitates the analysis of its properties.

PROPOSITION 4.3. For any class C,

NHD = 1 − 2
lk(k − 1)

l∑
j=1

c j (k − c j).

where c j is the number of 1s in the j th column of the parameter occurrence
matrix.

PROOF. For the j th parameter, there are c j (k − c j) disagreements between
the methods. Hence, there are

(k
2

)−c j (k−c j) agreements between the methods.
By definition,

NHD = 1

l
(k

2

) l∑
j=1

((
k
2

)
− c j (k − c j)

)
= 1

l
(k

2

)
(

l
(

k
2

)
−

l∑
j=1

c j (k − c j)

)
.

The result follows.

In other words, to calculate NHD we compute the sum of the disagreements
between methods over all parameters and subtract from 1. For example, the
parameter occurrence matrix has a single 1 in the first column. Therefore, there
will be 6 disagreements between methods on this parameter. In the fourth
column there are three 1s. Therefore, there will be 4.3 disagreements between
methods on this parameter. Recalculating NHD for Alert, we have

NHD = 1 − 2
6.7.6

(
6 + 6 + 6 + 4.3 + 6 + 6

) = 1 − 84
252

≈ 0.67.

Of course, Proposition 4.3 provides a method for computing NHD that does
not require the construction of the parameter agreement matrix. Hence, the
NHD metric can be computed in O(l) rather than O(k2) time.

Remark 4.1. Unlike the metric CAMC, the metric NHD can distinguish
between different parameter occurrence matrices with the same number of 1s.
If we admit that certain parameter occurrence matrices with σ 1s have a higher
cohesion than other matrices with σ 1s, we conclude that the NHD metric is a
more meaningful measure of cohesion than the CAMC metric.

THEOREM 4.1. Given a parameter occurrence matrix that contains σ 1s, l �
σ � kl ,

NHDmin � NHD � NHDmax,

where

NHDmin = 1 − 2
lk(k − 1)

(
q(d + 1)(k − d − 1) + (l − q)d (k − d)

)
, (6)

NHDmax = 1 − 2
lk(k − 1)

(
(r + 1)(k − r − 1) + (l − c − 1)(k − 1)

)
, (7)

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

134 • S. Counsell et al.

with

d =
⌊σ

l

⌋
, σ ≡ q mod l , c =

⌊
σ − l
k − 1

⌋
, σ − l ≡ r mod k − 1.

PROOF. The graph of c(k − c), 0 � c � k is a parabola which takes its
maximum value when c = k/2 and is 0 when c = 0 or c = k. By definition of the
parameter occurrence matrix, c j > 0, 1 � j � l . In other words, the sum of the
disagreements is maximised (and NHD minimised) when the 1s are distributed
as evenly as possible between each of the l columns. In this case, there are d +1
1s in q columns and d 1s in l − q columns. The value of NHDmin follows.

Similarly, the sum of the disagreements is minimised when the first row of
the parameter occurrence matrix consists of 1s with the remaining σ − l 1s
distributed among the fewest number of columns. This can be done by filling
c columns with 1s and putting the remaining r 1s in another column. The
remaining l −c−1 columns contain a single 1. The value of NHDmax follows.

Let σ = 8, k = 7 and l = 6 as in the Alert class. The matrices Omin and Omax

show parameter occurrence matrices that minimise and maximise the value of
NHD.

Omin =

O t1 t2 t3 t4 t5 t6

m1 1 1 1 1 1 1
m2 1 1 0 0 0 0
m3 0 0 0 0 0 0
m4 0 0 0 0 0 0
m5 0 0 0 0 0 0
m6 0 0 0 0 0 0
m7 0 0 0 0 0 0

Omax =

O t1 t2 t3 t4 t5 t6

m1 1 1 1 1 1 1
m2 1 0 0 0 0 0
m3 1 0 0 0 0 0
m4 0 0 0 0 0 0
m5 0 0 0 0 0 0
m6 0 0 0 0 0 0
m7 0 0 0 0 0 0

Of course, any permutation of the values in a given column and any permu-
tation of the columns results in the same value of NHD. In other words, there
are several matrices that give rise to the same value of NHD, O ′

max being one
example for σ = 8, k = 7 and l = 6. In fact, it can be seen that NHD for Alert is
equal to the maximum possible value, since the parameter occurrence matrix
for Alert has a column that contains three 1s, the remaining columns each
containing a single 1.

O ′
max =

O t1 t2 t3 t4 t5 t6

m1 0 0 0 0 0 0
m2 0 1 1 1 1 0
m3 1 1 0 0 0 0
m4 0 0 0 0 0 0
m5 0 0 0 0 0 1
m6 0 1 0 0 0 0
m7 0 0 0 0 0 0

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

The Interpretation and Utility of Three Cohesion Metrics • 135

Remark 4.2. It can be shown that

NHDmin = q(2d − k + 1) + 1
2

l (2d2 − 2dk + k(k − 1)), (8)

NHDmax = 1
2

(k − 1)(k(l − 1) + 2c) + 1
2

(2r2 − 2r(k − 1) + (k − 1)(k − 2)). (9)

Given that d takes discrete integer values that change every l values and q
takes integers between 0 and l − 1, the graph of NHDmin is a series of line seg-
ments that is approximately parabolic. Similarly, NHDmax is a series of parabo-
lae, each of whose starting points lie on a straight line.

Figure 2 shows two graphs comparing NHDmax and NHDmin with CAMC as
σ varies for values of k = l = 6 and k = 9, l = 4. Note that the CAMC metric
takes the same values in both figures. That is, the CAMC metric is not sensitive
to parameter occurrence matrices of different shapes.

The CAMCs metric includes the “self” parameter type in the parameter oc-
currence matrix. We can define the NHDs metric in the same way.

PROPOSITION 4.4. For any class C,

0 � NHD(C) � 1, (10)

NHD(C) � NHDs(C). (11)

PROOF. Proof of (10): Clearly, there are no disagreements if the parameter
occurrence matrix contains only 1s. In this case, NHD(C) = 1.

We maximise the number of disagreements by setting c j = k/2, 1 � j � l .
In this case, c j (k − c j) = k2/4 and for k � 2,

NHD(C) = 1 − 2
lk(k − 1)

lk2

4
= 1

2k(k − 1)
(2(k − 1) − k) = k − 2

2(k − 1)
� 0,

with equality when k = 2. Clearly, NHD has no meaning when k = 0 or k = 1;
therefore, NHD = 0 if there are two methods (k = 2) and half the entries in the
matrix are 1. This obviously corresponds to the intuitive case where we have
two bit patterns which disagree on each bit.

Proof of (11): By definition,

NHD(C) = 2
lk(k − 1)

l∑
j=1

c j (k − c j).

To compute NHDs, we append a column of 1s to the parameter occurrence
matrix forming the (l + 1)th column. Clearly, there are no disagreements in
this new column. Hence,

NHDs(C) =1 − 2
(l + 1)k(k − 1)

l+1∑
j=1

c j (k − c j) =1 − 2
(l + 1)k(k − 1)

l∑
j=1

c j (k − c j)

� 1 − 2
lk(k − 1)

l∑
j=1

c j (k − c j) = NHD(C)

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

136 • S. Counsell et al.

Fig. 2. A comparison of NHDmin, NHDmax and CAMC.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

The Interpretation and Utility of Three Cohesion Metrics • 137

4.2.1 Interpretation of the NHD Metric. Counsell et al. [2002] suggest that
a class for which the NHD metric is more than 0.5 should be considered cohesive.
The basis for this decision is not rigorously justified.

It is likely that the parameter occurrence matrix for a class with a large
number of methods and parameter types will be sparse. The analysis in the
previous section and Figure 2 implies that the value of NHD for such a class
will be high because there will be a high number of agreements arising from
the 0s in the matrix. It is questionable whether this is satisfactory behaviour
for a cohesion metric, as small classes are generally regarded as being more
cohesive than large ones Counsell et al. [2002].

We must also consider the interpretation of the matrices that give rise to
NHDmax and NHDmin. In particular, is it intuitively reasonable to regard Omin

as less cohesive than Omax? Omin contains d rows that agree in every position
and k − d − 1 rows that agree in every position, while Omax exhibits agreement
within a subset of the parameter types. It is not obvious which of these extremes
represents a cohesive class. In short, we must reconsider carefully what we
mean by cohesion. Only then will we be able to interpret NHD (and CAMC)
properly. Clearly, there is a case for saying that the classes represented by
Omin and Omax are both cohesive, albeit in different ways. This is obviously
an attractive suggestion for proponents of the NHD metric, as it extends the
range of classes about which the NHD metric has something meaningful to
say.

4.2.2 The Scaled NHD Metric. Finally, we introduce the scaled NHD met-
ric (SNHD). The SNHD metric is intended to make use of the fact that both
ends of the range of values for NHD could be considered to represent cohesion
in a class.

Informally, SNHD represents how close the NHD metric is to the maximum
value of NHD compared to the minimum value. Formally, we have

SNHD =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if NHDmin = NHDmax and σ < kl ,

1 if σ = kl ,

2
(

NHD − NHDmin

NHDmax − NHDmin

)
− 1 otherwise.

Hence, SNHD has the following properties:

(1) |SNHD| � 1. In particular, SNHD = −1 implies that NHD = NHDmin and
SNHD = 1 implies that NHD = NHDmax.

(2) The closer SNHD is to ±1, the closer NHD is to either the maximum or
minimum value of NHD.

(3) The closer SNHD is to 0, the less cohesive the class.
(4) SNHD = 0 whenever NHDmin = NHDmax. We chose to define SNHD in

this way because if σ < kl and NHDmax = NHDmin implies that σ = l
or σ = l + 1. Hence, there is little that can be said about the cohesion
of a class with such a sparse parameter occurrence matrix (note that if
σ = l no pair of methods shares a parameter of the same type, and if

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

138 • S. Counsell et al.

Table II. Evaluation of Cohesion Metrics

System Class k l CAMCs CAMC NHDs NHD SNHDs SNHD

Et++ Alert 7 6 0.306 0.190 0.714 0.667 1.000 1.000

ApplDialog 4 3 0.438 0.250 0.625 0.500 1.000 0.000

BagItem 11 4 0.309 0.136 0.804 0.755 1.000 1.000

Dialog 15 6 0.248 0.122 0.810 0.778 0.830 −0.586

CycleItem 14 11 0.202 0.130 0.797 0.778 0.512 −0.451

BitMap 22 10 0.169 0.086 0.856 0.842 0.757 −0.555

Assoc 11 3 0.409 0.212 0.773 0.697 1.000 1.000

Rocket Arc 5 2 0.467 0.200 0.733 0.600 1.000 0.000

ArcList 9 3 0.389 0.185 0.764 0.685 1.000 1.000

CallGraph 11 4 0.273 0.091 0.855 0.818 1.000 0.000

DDGArcTypeList 9 3 0.389 0.185 0.764 0.685 1.000 1.000

DDGNNodePtrList 10 3 0.475 0.300 0.661 0.548 0.227 −0.835

DataType 20 5 0.225 0.070 0.887 0.864 0.989 −1.000

DeclaratorPtrList 11 3 0.477 0.303 0.664 0.552 0.177 −0.875

Edge null dummy 7 4 0.343 0.179 0.733 0.667 1.000 0.000

constr descriptor 8 9 0.225 0.139 0.757 0.730 1.000 0.000

constr queue 8 8 0.292 0.203 0.687 0.647 0.344 −0.807

constr manager 17 8 0.229 0.132 0.827 0.805 0.773 0.206

gne default 14 3 0.393 0.190 0.775 0.700 0.868 0.013

elist 10 2 0.533 0.300 0.704 0.556 0.521 −0.490

intersect 21 4 0.314 0.143 0.800 0.750 0.758 −0.750

σ = l + 1 then one pair of methods shares a parameter of the same
type).

5. EMPIRICAL RESULTS

We computed the values of CAMC, CAMCs, NHD, NHDs, SNHD, and SNHDs

for seven classes from each of three C++ systems: Et++ is a user interface frame-
work, Rocket is a compiler system, and Edge is a graph editor. The seven classes
were chosen at random from each of the three systems. We concede that the
small size of each sample is not enough to draw meaningful relationships about
all classes in the system. However, they are large enough to allow a detailed
mathematical appraisal of the metrics under study. Table II is a summary of
the results. The parameter occurrence matrices for each of the classes used are
shown in Appendix (these matrices were compiled by inspection of the source
code for each of the classes.)

Table IIIa shows Pearson’s correlation coefficient (PCC) [Snedecor and
Cochran 1989] between each distinct pair of metrics. PCC measures the like-
lihood of the existence of a linear relationship between two sets of data. The
absolute value of PCC is less than or equal to 1, where a positive value indicates
a linear relationship with positive gradient, and vice versa. The significance of
a given value of PCC varies with the number of observations. In our case, there
are 21 observations and 1% significance holds if the absolute value of PCC is

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

The Interpretation and Utility of Three Cohesion Metrics • 139

Table III. Pearson’s Correlation Coefficient

CAMC NHD s NHD SNHD s SNHD

CAMC s 0.891 −0.716 −0.869 −0.234 0.092

CAMC − −0.896 −0.944 −0.522 −0.044

NHD s − − 0.962 0.415 0.032

NHD − − − 0.360 0.010

SNHD s − − − − 0.648

(a) Pairwise by metric.

CAMC s CAMC NHD s NHD SNHD s SNHD

kl −0.801 −0.638 0.615 0.708 −0.131 −0.338

k −0.552 −0.562 0.730 0.718 −0.115 −0.406

l −0.843 −0.551 0.363 0.556 −0.136 −0.219

(b) By metric with respect to k, l and kl .

greater than 0.549 (entries marked in bold in Table III exceed this threshold
value).

From Table IIIa it can be seen that there is a high correlation between CAMC
and CAMCs, NHD and NHDs, and SNHD and SNHDs; this would be expected
since the metrics are computed from parameter occurrence matrices which dif-
fer only by an additional column of 1s. In many cases this changes the matrix
only slightly. The most striking features of this table are that the SNHD vari-
ants have poor correlation with the CAMC metrics, whilst the NHD variants
have a very strong negative correlation with the CAMC metrics. This means
that if a class has a high value for the NHD metric, then it is likely that the
value of CAMC will be low, and vice versa. Figure 3 is a scatter plot of the values
of CAMC and NHD from Table II and shows the (negative) linear relationship
between the two metrics.

Table IIIb shows PCC for each class when compared to each of k, l and kl .
It is clear from the table that CAMC, CAMCs, NHD, and NHDs each have a
strong linear relationship of some type with kl (this confirms our earlier claim
that CAMC would be higher for small groups and that NHD would be higher for
large groups). On the other hand, the table indicates that SNHD would seem to
be independent of class size features, a desirable characteristic of any cohesion
metric. For completeness, Appendix B contains the corresponding Spearman’s
and Kendall’s correlation coefficients corresponding to Tables IIIa and IIIb.
Further empirical investigations will need to be undertaken, in conjunction
with practitioners, to establish whether SNHD corresponds to an application
developer’s sense of cohesion.

5.1 Cross Comparison of the Three Metrics

In order to illustrate the extent to which the three metrics (LCOM, SNHD,
and CAMC) correlate, coefficients for the latter two metrics versus LCOM were
computed. Table IV shows the values produced, together with the mean values
of the three coefficients. None of the correlation values were significant at the

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

140 • S. Counsell et al.

Fig. 3. Scatter plot of NHD against CAMC.

Table IV. Correlations Between the Three Cohesion Metrics

Comparison Pearson’s Spearman’s Kendall’s Mean

LCOM versus SNHD −0.458 −0.425 −0.337 −0.407

LCOM versus CAMC −0.540 −0.239 −0.156 −0.312

1% or 5% level (although for LCOM versus SNHD, the values were just outside
this threshold).

Interestingly, for the nonparametric correlation coefficients (Spearman’s and
Kendall’s), LCOM versus SNHD showed the highest negative correlation val-
ues. Negative values are also evident between LCOM and CAMC. Since high
values of LCOM indicate low cohesion and vice versa, and the table shows that
there is evidence of correlation between design-time metrics (such as CAMC
and SNHD) and code-based metrics (such as LCOM), we may infer that CAMC
and SNHD provide a useful alternative to LCOM, since they can be computed
far earlier in the development cycle. This is despite the fact that in many meth-
ods there is direct relationship (i.e., instance variables are assigned to the value
of parameters in many cases).

Table Va confirms our earlier analysis. In particular, CAMC takes values
that are considerably less than NHD. The median values of CAMC and NHD
for the 20 classes in Table Va are approximately 0.43 and 0.81, respectively.
The value of NHD is slightly higher than one might expect by inspection of
Figure 2, and the value of CAMC is slightly lower than might be expected.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

The Interpretation and Utility of Three Cohesion Metrics • 141

Table V. Cumulative Frequencies of NHD and CAMC
Values for Two Sets of Classes

Value NHD CAMC

< 0.1 0 0

< 0.2 0 0

< 0.3 0 6

< 0.4 1 12

< 0.5 2 17

< 0.6 6 19

< 0.7 9 20

< 0.8 19 20

< 0.9 20 20

< 1.0 20 20

(a) AWT toolkit

Value NHD CAMC

< 0.1 2 0

< 0.2 2 0

< 0.3 2 0

< 0.4 5 1

< 0.5 8 4

< 0.6 9 10

< 0.7 12 12

< 0.8 13 13

< 0.9 13 13

< 1.0 20 20

(b) Event package

We would expect from our analysis that the classes in AWT give rise to large
parameter occurrence matrices (which yield relatively high values of NHD and
relatively low values of CAMC). Indeed, the average number of methods in the
20 AWT classes studied was approximately 13.80.

In contrast, the values of NHD and CAMC are more similar in Table Vb. This
is partly because of the peculiarity of two classes having an NHD value of 0.
This can only happen if the class has two methods and the parameter occurrence
vectors disagree on each coordinate (in this case, CAMC = 0.5, which seems
a particularly inappropriate result for this metric since the methods disagree
on every parameter type). It is also due to the fact that the average number of
methods of the 20 Event classes studied was only 4.15. That is, the classes in
the Event classes were smaller on average than those in the AWT classes. We
have already seen that CAMC tends to be larger for small classes and NHD
tends to be smaller.

In short, the results of empirical studies confirm the results of our analysis:
The NHD metric produces higher results than CAMC; the NHD metric finds
higher cohesion in larger classes; and the CAMC metric finds higher cohesion
in smaller classes.

6. DISCUSSION

Our interpretation of cohesion has been made on the assumption that a class
which shares a high proportion of its parameter types is more cohesive than
one which shares a low proportion of its parameter types. We accept that there
may be classes that would have low cohesion by our measures, yet be generally
considered cohesive: For example, a class representing a Person entity with at-
tributes such as Age and Social Security Number; both attributes are related
in the context of class Person but are unrelated in terms of potential computa-
tion. We would argue that while it is entirely possible for such a class to exist,
three arguments could be put forward mitigating this criticism. Firstly, based
on our experience of the way classes are written, it is unlikely that the setting
of the attributes of such a class would be coded via one method per attribute. A

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

142 • S. Counsell et al.

developer is more likely to set a number of attributes (such as those described)
in a single method and for those values to be passed in the form of parameters.
Secondly, classes in systems do not generally tend to fall into this category of
class; the nature of most classes is for attributes to be shared amongst meth-
ods. This is particularly apparent if the class has evolved over time and new
attributes and methods have been added. Finally, if developers seek to min-
imise the number of methods in a class, then it makes more sense to localise
the assignment of instance variables to as few methods as possible.

There are a number of limitations of this research that are worth stating.
Firstly, we could be criticised for introducing metrics which merely add to the
body of current work on cohesion, some of which claims to have produced the
best definition of cohesion. In our defence, we have introduced variations of a
metric that attempt to capture our interpretation of cohesion; those metrics
have been introduced to further our mathematical analysis and in comparison
with other existing metrics. Secondly, the small number of classes used in the
study may pose a threat to the scalability of the results. In our defence, the
chief purpose of the article was to assess the relative merits of two metrics; this
could be achieved without using a large sample. We thus leave for future work
the scaling-up of the empirical study, the results of which we believe would
support our conclusions. Thirdly, classes in different OO application types may
exhibit significantly different trends in metric values to those examined in this
article; for example, a GUI application compared with a set of library classes.
Identifying traits across applications is beyond the scope of this study. Further
empirical research needs to be undertaken before any concrete conclusions can
be drawn in this sense. Finally, the interplay between cohesion and OO cou-
pling has not been explicitly addressed in this article. Extending the study to
investigate this feature of software may shed further light on the issues raised,
especially in view of the fact that calculation of our cohesion metrics and others
deal with class coupling in the form of parameter types.

7. CONCLUSIONS AND FURTHER WORK

In this article we have analysed three cohesion metrics, namely, CAMC, NHD,
and SNHD. We have examined the formal properties of these metrics and then
applied the metrics to 21 classes from three C++ applications.

The CAMC metric has the following properties:

(1) The metric is an indication of the sparsity of the parameter occurrence
matrix.

(2) Given a fixed number σ , any parameter occurrence matrix containing σ 1s
has the same value of CAMC.

(3) The CAMC metric tends to produce high values for small matrices and vice
versa.

We believe that the first two of these properties have little relevance to deter-
mining the cohesion of a class. For example, it would be simple to construct two
nontrivial parameter occurrence matrices with the same value for σ that would

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

The Interpretation and Utility of Three Cohesion Metrics • 143

seem to have very different cohesion. The third property means that CAMC is
not independent of the size of the parameter occurrence matrix. If it is the case
that cohesion is some property of the distribution of the 0s and 1s in the matrix
(and not simply the number of rows and columns in the matrix), then CAMC is
a poor measure of cohesion.

The NHD metric has the following properties:

(1) Given a parameter occurrence matrix, NHD measures the number of agree-
ments between methods on usage of parameter types.

(2) Given a fixed number σ , there exist parameter occurrence matrices that
attain minimum and maximum values for the NHD metric.

(3) The NHD metric tends to produce high values for large matrices, and vice
versa.

The first property for the NHD metric suggests that NHD is measuring a quan-
tity closer to our interpretation of cohesion. The second property suggests that
given a fixed value for σ , there are arrangements which can reflect a very
cohesive class and a poorly cohesive class. Unfortunately, the third property
suggests that NHD, like CAMC, is biased by the size of the underlying class.

For a given value of σ , there exists a maximum and a minimum possible
value of NHD. The parameter occurrence matrix that gives rise to either the
maximum or minimum possible value can be regarded as representing a cohe-
sive class. Hence, we introduce the SNHD metric, which reflects how close the
value of the NHD metric for a class is to the maximum or minimum possible
value of NHD.

If we adopt the interpretation that the NHD metric is useful at both ends of
its range for a given value of σ , then it is clear that SNHD offers a significant
improvement on the CAMC metric. Even if we adopt the interpretation that the
NHD metric is useful at the upper end of its range for a given value of σ , then
we claim it is still a more useful measure of cohesion than the CAMC metric
because it can distinguish between several parameter occurrence matrices with
the same value of σ .

In conclusion, we believe that the NHD and SNHD metrics are far more
useful measures of cohesion than the CAMC metric. However, we also believe
that it may be necessary to refine our definition and assumptions about what
cohesion means in object-oriented software in light of the matrices Omax and
Omin.

There are numerous opportunities for further work in this area. Firstly, we
will undertake a more formal and extensive analysis of the SNHD metric, sim-
ilar to that presented in this article for CAMC and NHD. In particular, it would
be valuable to prove that SNHD is independent of the size of the parameter
occurrence matrix (as suggested by the empirical evidence in Table IIIa). Sec-
ondly, we intend to conduct more extensive tests on whole systems. In order to
do this, an automated method of generating the parameter occurrence matrix of
a class is needed. Finally, it is vital that we establish that significant values of
the SNHD metric actually correspond to a consensus view of cohesion amongst
application and system developers.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

144 • S. Counsell et al.

APPENDIX

A. PARAMETER OCCURRENCE MATRICES

A.1 Et++ System

ApplDialog⎛
⎜⎜⎜⎝

1 1 0
0 0 0
0 0 1
0 0 0

⎞
⎟⎟⎟⎠

Alert⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
0 0 0 1 0 1
0 0 0 0 0 0
0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Assoc⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0
0 0 0
0 0 0
0 0 0
1 0 0
1 0 0
0 0 0
1 0 0
1 0 0
0 1 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

BagItem⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
1 0 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

CycleItem⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 0 0 0 0
0 1 1 0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 1 1 0 0
0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Dialog⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 0 1
0 0 0 0 0 0
1 0 0 0 0 0
0 1 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 1 0 0 0
0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Bitmap⎛
⎜⎜⎜⎝

1 0 0 0 0 1 0 0 0 0
0 0 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎠

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

The Interpretation and Utility of Three Cohesion Metrics • 145

A.2 Rocket System

Arc⎛
⎜⎜⎜⎜⎜⎝

1 0
0 0
0 1
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎠

ArcList⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 0 1
0 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

DDGArcTypeList⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 1
0 0 0
0 0 0
0 0 0
0 0 0
1 0 0
1 0 0
1 0 0
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

DDGNNodePtrList⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
1 0 0
1 0 0
1 1 0
1 1 0
0 0 1
0 0 1
0 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

DeclaratorPtrList⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0
0 0 0
1 0 0
1 0 0
1 1 0
1 1 0
0 0 1
0 0 1
0 0 1
0 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

CallGraph⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0
0 0 1 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 1 0 0
1 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

DataType⎛
⎜⎜⎝

0 1 0 0 0
1 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1

⎞
⎟⎟⎠

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

146 • S. Counsell et al.

A.3 Edge System

null dummy⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0
0 0 0 0
0 0 0 0
0 1 1 0
0 0 1 1
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

constr queue⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0
0 1 0 1 1 1 0 0
0 0 1 0 0 0 1 0
0 1 0 0 0 0 1 1
1 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

constr descriptor⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1 1 1 1 1
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

elist⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0
1 0
0 0
1 0
0 1
1 0
0 1
1 0
0 0
0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

gne default⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 0
0 0 0
1 0 0
0 0 0
0 1 0
0 0 0
0 1 0
0 0 0
0 1 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

constr manager⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0
0 1 0 1 1 1 0 0
0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

intersect⎛
⎜⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
1 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1
0 0 0 1
0 0 0 0
0 0 1 0
1 1 0 0

⎞
⎟⎟⎟⎠

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

The Interpretation and Utility of Three Cohesion Metrics • 147

B. CORRELATION COEFFICIENTS

B.1 Spearman’s

The following table gives the value of Spearman’s correlation coefficient pair-
wise by cohesion metric.

CAMC NHDs NHD SNHDs SNHD
CAMCs 0.881 −0.698 −0.827 −0.012 0.064
CAMC − −0.894 −0.935 −0.167 0.006
NHDs − − 0.973 0.104 0.062
NHD − − − 0.067 0.022
SNHDs − − − − 0.742

The following table gives the value of Spearman’s correlation coefficient with
respect to kl , k and l .

CAMCs CAMC NHDs NHD SNHDs SNHD
kl −0.869 −0.742 0.705 0.813 −0.365 −0.299
k −0.448 −0.564 0.775 0.747 −0.462 −0.319
l −0.932 −0.687 0.467 0.636 −0.177 −0.157

B.2 Kendall’s

The following table gives the value of Kendall’s correlation coefficient pairwise
by cohesion metric.

CAMC NHDs NHD SNHDs SNHD
CAMCs 0.733 −0.505 −0.607 0.022 0.035
CAMC − −0.742 −0.807 −0.114 0.000
NHDs − − 0.906 0.059 0.050
NHD − − − 0.022 0.010
SNHDs − − − − 0.582

The following table gives the value of Kendall’s correlation coefficient with
respect to kl , k and l .

CAMCs CAMC NHDs NHD SNHDs SNHD
kl −0.324) −0.394) (0.609) (0.581) (−0.359) (−0.231)
k (−0.822) (−0.528) (0.357) (0.466) (−0.174) −0.108)
l (−0.710) (−0.547) (0.536) (0.639) (−0.287) (−0.207)

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their insightful
and helpful comments from which the article has benefitted hugely. The authors

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

148 • S. Counsell et al.

would also like to thank Jim Bieman at the Department of Computer Science,
Colorado State University, for providing access to the three systems used for
the empirical work in this article.

REFERENCES

ALLEN, E. AND KHOSHGOFTAAR, T. 1999. Measuring coupling and cohesion: An information-theory
approach. In Proceedings of the IEEE International Symposium on Software Metrics (Boca Raton,
Fla), 119–127.

BANSIYA, J. AND DAVIS, C. 2002. A hierarchical model for object-oriented design quality assessment.
IEEE Trans. Soft. Eng. 28, 1, 4–17.

BANSIYA, J., ETZKORN, L., DAVIS, C., AND LI, W. 1999. A class cohesion metric for object-oriented
designs. J. Object-Oriented Program. 11, 8, 47–52.

BASILI, V., BRIAND, L., AND MELO, W. 1996. A validation of object-oriented design metrics as quality
indicators. IEEE Trans. Soft. Eng. 22, 10, 751–761.

BIEMAN, J. AND KANG, B.-K. 1995. Cohesion and reuse in an object-oriented system. In Proceedings
of the ACM Symposium on Software Reusability SSR’95 (Seattle, Wash.), 259–262.

BIEMAN, J. AND OTT, L. 1994. Measuring functional cohesion. IEEE Trans. Softw. Eng. 20, 8, 644–
657.

BINKLEY, D., HARMAN, M., RASZEWSKI, I., AND SMITH, C. 2000. An empirical study of amorphous
slicing as a program comprehension tool. In Proceedings of the 8th International Workshop on
Program Comprehension IWPC 2000 (Limerick, Ireland), 161–170.

BRIAND, L., DALY, J., AND WUST, J. 1998. A unified framework for cohesion measurement in object-
oriented systems. Empirical Softw. Eng. J. 3, 1, 65–117.

BRIAND, L., MORASCA, S., AND BASILI, V. 1996. Property-based software engineering measurement.
IEEE Trans. Soft. Eng. 22, 1, 68–85.

BRIAND, L., MORASCA, S., AND BASILI, V. 1999. Defining and validating measures for object-based
high-level design. IEEE Trans. Soft. Eng. 25, 5, 722–743.

CHIDAMBER, S. AND KEMERER, C. 1991. Towards a metrics suite for object-oriented design. In Pro-
ceedings of the OOPSLA’91 (Phoenix, Ariz.), 197–211.

CHIDAMBER, S. AND KEMERER, C. 1994. A metrics suite for object oriented design. IEEE Trans. Soft.
Eng. 20, 6, 467–493.

COUNSELL, S., MENDES, E., SWIFT, S., AND TUCKER, A. 2001. An empirical investigation of fault
seeding in requirements document. In Proceedings of the Empirical Assessment in Software En-
gineering EASE’01 (Keele, UK).

COUNSELL, S., MENDES, E., SWIFT, S., AND TUCKER, A. 2002. Evaluation of an object-oriented cohesion
metric through Hamming distances. Tech. Rep. BBKCS-02-10, Birkbeck College, University of
London, UK.

COUNSELL, S., NEWSON, P., AND MENDES, E. 2004. Design level hypothesis testing through reverse
engineering of object-oriented software. Int. J. Soft. Eng. Knowl. Eng. 14, 2, 207–220.

FENTON, N. AND PFLEEGER, S. 1996. Software Metrics, A Rigorous and Practical Approach. Thom-
son International.

HENDERSON-SELLERS, B., CONSTANTINE, L., AND GRAHAM, I. 1996. Coupling and cohesion (towards a
valid metrics suite for object-oriented analysis and design). Object Oriented Syst. 3, 3, 143–158.

HITZ, M. AND MONTAZERI, B. 1995. Measuring coupling and cohesion in object-oriented systems.
In Proceedings of the 3rd International Symposium on Applied Corporate Computing ISACC’95
(Monterrey, Mexico).

KRAMER, S. AND KAINDL, H. 2004. Coupling and cohesion metrics for knowledge-based systems
using frames and rules. ACM Trans. Soft. Eng. Methodol. 13, 3, 332–358.

LAKHOTIA, A. 1993. Rule-based approach to computing module cohesion. In Proceedings of the
15th International Conference on Software Engineering (Baltimore, Md.), 35–44.

LI, W. AND HENRY, S. 1993. Maintenance metrics for the object-oriented paradigm. In Proceedings
of the 1st International Software Metrics Symposium (Baltimore, Md.), 52–60.

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

The Interpretation and Utility of Three Cohesion Metrics • 149

MITCHELL, A. AND POWER, J. 2004. Run-time cohesion metrics: An empirical investigation. In
Proceedings of the International Conference on Software Engineering Research and Practice (Las
Vegas, Nev.), 9–14.

SNEDECOR, G. AND COCHRAN, W. 1989. Statistical Methods, 8th ed., Iowa State University Press,
Ames, Iowa.

STEVENS, W., MYERS, G., AND CONSTANTINE, L. 1974. Structured design. IBM Syst. J. 13, 2, 115–139.
YOURDON, E. AND CONSTANTINE, L. 1979. Structured Design. Prentice Hall, Englewood Cliffs, NJ.

Received July 2002; revised August 2004; accepted August 2004

ACM Transactions on Software Engineering and Methodology, Vol. 15, No. 2, April 2006.

