Walking Aid System for Blind people In Smart
House(WASBISH)

Zhe Sun, 52029081 Divya S. Avalur, s2082330
April 21, 2011

Contents

(1 _Introduction|

2

Terminology]|

[3__Use method|
[dTeatured

4.1 User-define house by YAML filef o o o oo
4.2 Shortest walking path|
|4.3__Node recognition, distance and orientation detection, and voice notification|
[£.4State machine drives the aid walking procedure] v v i i

]

[6

System architecture|

7S Thical detail

7.1 Project scale and the number of classes|
[7.2 UML of the mainly class|
7.3 Message between PC and Android|
[7.4 Depth image noise remove| L e

8 Future workl

8.1 Start/destination point input by voice| Lo

8.2 Android text-to-speech|.
8.3 Mobile Kinectl

[9__Conclusionl

1 Introduction

The WASBISH has been developed for the blind people living in the smart homes. The main goal of
WASBISH is to provide a walking aid for the blind. We all know that blind people face a lot of difficulty
to search for the correct path inside the house. In any place which just place different markers, the blind
people who hold the Kinect with their hands can use WASBISH system. The most important aspect of
WASBISH is “Path Detection”. User inputs the start position and destination, then the system can tell
the blind people which direction should they go and the distance between the target point and the user.
The system can get a shortest path automatically and notify the information to the user in real time.
The other important aspect is the “Obstacle Detection”. This is basically developed for the safety of the
blind persons. If any obstacle is encountered in the path it alerts the person by making vibrations to his
mobile phone. In this project we use Android phones. This will prevent the blind person from falling,
colliding with the wall and other dangerous accidents.

2 Terminology

e WASBISH
Short for Walking Aid System for Blind people In Smart House

e Marker
Markers are the squares that the WASBISH can recognise and tracks in the image stream captured
by Kinect. Markers are the physical patterns that can be created or printed. They must be
square, have a continuous border (generally either full black or pure white) and they must sit on
a background of contrasting colour (generally the opposite of the border colour). By default, the
border thickness is 25% of the length of an edge of the marker. Figure|l|is an example of marker
which will be used in the demonstration.

e Node
A node is a specific spot which is tagged by a marker. User can assign some attributions of a node.
e Path
A path is two direction way to connect two nodes. It has the same meaning with graph in graph
theory.

e Smart House
In this report, Any space which is represented by the Node and Path and tagged by the marker is
called Smart House.

e YAML
YAML is a human friendly data serialization standard for all programming languages. In this
project YAML file is used to describe a Smart House.

3 Use method

1. Construct Smart House

(a) Define, generate and print marker by ARToolKit
(b) Paste the markers where the user expect in the house
(c) Edit YAML file: nodes, paths

2. Run Android phone side WASBISH application, don’t forget open Wifi of Android phone.
3. Run PC side WASBISH application.

(a) Input start point and destination by edit YAML file.
(b) Read YAML file. If user does not input YAML file name, “house.yaml” is the default file.

1 # a yaml file example

2 Nedes:

3 - index:: 1

4 name: "kitchen"

5 markerFileMName: "Data/patt.hiro”
& - index: 2

7 name: "living room”

g markerFileName: "Data/patt.kanji”
9 - indexn: 3

1o name: "bedroom"”

11 markerFileName: "Data/patt.sampleZ”
1z

13 Paths:

14 - pointl: 1

15 polntZ: 2

158 weight: 1

17 - peintl: 2

15 point2: 3

192

Z0 startPoint: 3
Z1 EndPeint: 1

An example of Marker An example of YAML file

Figure 1

) Generate the graph and shortest path

) Kinect start up

(e) Application state machine initial, speak “Begin working”.
) Set next node, application speak “Next is (the name of the node)”
e If the node is the destination, jump to step

(g) Blind people begin walking

(h) Obstacle detection

e If obstacle object is less than a pre-configure distance(means obstacle is near by the user),
mobile phone make a short vibration.
e If obstacle object is less than a pre-configure distance(means very close to the obstacle),
mobile phone make a long vibration.
(i) Detect the expected node

e If node is not detected by Kinect, speak “(the name of the node) is not in the view”,
jump to step [Bg
e If node is detected by Kinect, speak “(the name of the node) detected”
— If the distance is less than an pre-configure distance, speak “(the name of the node)
arrive”, jump to step
— If the distance is greater than an pre-configure distance, speak the distance and the
angle, jump to step
(j) End the application, release all the resource

4 Features

4.1 User-define house by YAML file

e User input YAML file
In WASBISH, YAML file is used to represent a house, start/destination points. YAML file name
is an input parameter for the application. If no file input, “house.yaml” is the default YAML file.
Figure [1] is sample YAML file, self description, easy syntax and nice portability.

e User-defined Node
User can define the name and marker pattern for each node. The name will be speak when system
is running. The marker pattern which can be recognized by the application should be printed and
pasted in the house.

e User-define path
User can define the path which connect two nodes. “weight” is an optional attribution. Sometimes
user has a preferent path for some reason, “weight” solves this kind of requirement.
The application has a maximal distinguish distance for marker recognition. This distance depends
on the size of the marker. It requires the path length shorter than the nearest maximal distinguish
distance.

e User-defined start node and destination node
User can define the start node and destination node freely, but the two point should be connected
in the graph.

4.2 Shortest walking path

By parsing the user-defined YAML file, the application generates a graph of the smart house and the
Dijkstra algorithm is used to get the shortest walking part.

4.3 Node recognition, distance and orientation detection, and voice notifi-
cation
e The application can recognize the node in the view of Kinect. The node distinguishing distance

depend on the size of the marker. A 20cm X 20cm can be recognized in 3.5 meters and a 10cm X
10cm can be recognized in about 2 meters.

e When a node is captured by the application, the distance and orientation(angle between Kinect
and node) can be calculated using the raw depth data from Kinect in the same time. In this way,
the user get to know where the target node is clearly.

e Application can read aloud the distance and orientation to the blind people.

4.4 State machine drives the aid walking procedure

A finite state machine maintains and drives the the aid walking procedure. The advantages of using
FSM is:

e Filter unstable marker in/out the view event
e Program is easy to maintain

e Clear software architecture

4.5 Obstacle detection and notification

Because of The sensor of Kinect has an angular field of view of 57 degree horizontally and 43 degree
vertically, the application only choose a 1m x 1m and distance less than 1.2m as the detection area.
The application can detect if there is obstacle object in the detection area per 600ms. The raw depth is
captured by Kinect, then use some image processing method(threshold, dilation, erosion, edge, etc) to
recognize the obstacle object and get the position. If an obstacle object do exist, the application send
message to Android phone side application and let the mobile phone vibration. The vibration pattern is
configurable. If the obstacle is near, the vibration is long; if far the vibration is short.

4.6 Real-time vidoe show for the view, marker and obstacle

The application can show the image captured by Kinect. When marker is detected, marker is tagged
as blue quad in the video. The same as obstacle just it is tagged as red color. In this way, software
developer can debug and give the demonstration more easily.

5.2

Developing environment

Hardware and software

Windows XP Service Package 3

Microsoft Visual C++ 2008

Eclipse v3.5

Android SDK v2.1

Kinect and third party driver SensorKinect-Win32-5.0.0
Android phone

Wifi wireless router

Third party tool/library

Yaml-cpp v1.2
C++ YAML parser and emitter. We use it to parse the YAML file and construct the House class.
http://code.google.com/p/yaml-cpp/

ARToolKit v2.72

The Augmented Reality library ARToolKit is a software library for building Augmented Reality
applications. We use it to pre-define the markers and detect markers in the image scene in real-
time.

http://www.hitl.washington.edu/artoolkit/

Microsoft Speech Application Interface(SAPI) v5
Microsoft text-to-speech API. We use it to notify the user by sound

OpenNI API v1.1.0

OpenNI is a middleware for kinect development. We use the APIs to get image and depth data.
The depth raw data is a array of depth data[0..2047] with the size of 640 x 480.
http://www.openni.org/

Protobuf v2.3

Protocol Buffers(Protobuf) are a way of encoding structured data in an efficient yet extensible
format. We use it to define, encode and decode message between PC and android side. The
most key role is serialize the message to avoid some data transmission problem between different
architecture CPU, like big/little endian. The reason we choose Protobuf is its light-weight and
stability.Google uses Protocol Buffers for almost all of its internal RPC protocols and file formats.
http://code.google.com/p/protobuf/

OpenCV v2.1

Open Source Computer Vision(OpenCV) is a library of programming functions for real time com-
puter vision. We use it to do some image processing operation like dilation, erosion and find
contours.

http://opencv.willowgarage.com/wiki/

OpenGL
We use OpenGL API show the scene, marker and obstacle video.

http://code.google.com/p/yaml-cpp/
http://www.hitl.washington.edu/artoolkit/
http://www.openni.org/
http://code.google.com/p/protobuf/
http://opencv.willowgarage.com/wiki/

Marker
distance/orientaion

Obstadle

Colar Image && detected
Marker position

Obstacle
position

k-J
w
]

=

=

Figure 2: System overview

Node Edge Kinect
-Index - Speech
Name -Moded, : Mode® -resolution
i ker -ModeB : Mode* -imgDatePtr
Mar ~Connect) bool | |" depthDatePtr tspeakl)
-cameraPara
+arablmg(] 1
+et Marker)
House i +markerDetect{)
-nodes : vector<Mode*> +obstacleDetect{)
-edges : vector<Edge™=
-startPoint : Mode™ 1
-endPoint : Mode® socket
+getihortestPathi) —socket
+petMexthode(] | Node* rsendBytes()
+recvBytes)
1 State 1 +...[)
#nodeln\iewCounter iy
HnodeDutViewlounter
dstateCounter 1
FSM :f::ﬁ :Ii?\ﬁ‘ socketClient socketServer
-currState_ : State* 1 l-speech:Speech®
getState]) : *State 1 1 -socketClient : socketClient™ [
+statedction() 1 1
+updateState()
e
[[o [|
| init | outofSynchronize Detected | Capture Arrive
nodelnviewCounter nodelnviewCounter #nodelnViewCounter nodelnviewCounter EFnodelinViewCounter
nodeCutViewCounter nodeQutViewCounter | [#nodeOutViewCounter nodeOutViewCounter | [#nocdeCutViewCounter
stateCounter statelounter YstateCounter stateCounter HetateCounter
+statedction]) +statefction|) +statedction]) +statedction]) +statedction)
+updateStatel] +updateStatel) +updateState() +updateStatel) +updateState()

Figure 3: UML of main classes

6 System architecture

The system diagram is figure [2| The pc side application is in charge of the main function of walking aid
and the android side are responsible for obstacle notification using vibration.
In the PC side application, there are 4 threads. The main thread control work flow by the state machine,
meanwhile other 3 threads execute some time-cost task. Share memory, Semaphore and socket are
used as thread synchronization and inter-thread communication, mutex-exclusive semaphores are used
to protect the critical section. The functions of each thread are listed below:

e Main thread

Initial all the data and instance of class

Create other three thread

Sample color/depth image per 40ms
— Maintain the finite state machine
— Tell Speech thread the text which it want to speak like state updating and marker position

— When the state machine finish, kill all the thread and release all the resource
e Speech thread

— Create a UDP socket server
— Suspend the thread until receive UDP datagram which contain the text

— speak the received text
e Obstacle detection thread

— Poll the depth data in the share memory

— Convert the depth data from project view to real world view

— Filter the data, only the detection area depth data is left

— Use image processing method to remove noise and detect the remarkable obstacle

— Detect the obstacle distance, encode vibration message by protobuf and send to Android
phone through Wifi.

— Approximate the obstacle object by polygon, and update the share memory which is used in
show thread.
e Show thread

— Poll the share memory
— When the image data update, show in the screen
— When the marker detected, show in the screen
— When obstacle is detected, show in the screen
In the Android side application, there are 2 threads. The main thread initial the application, show
the GUI, create the vibration thread and waiting the Exit button click event. The vibration thread is a

socket server, it listen and receive the vibration message from PC side application, decode the message
use protobuf and vibrate as the instruction from PC side application.

7 Some technical detail

7.1 Project scale and the number of classes

The application in PC side includes 24 files, 2600 lines of code, 18 classes. The application in Android
side includes 2 files, 550 lines of code, 4 classes.

7.2 UML of the mainly class

Figure [3] shows UML of the mainly class. The State Pattern and Singleton Pattern in Design Pattern
are used.

e Singleton Pattern
Class House is a class which describe the smart house. Class Kinect supply a group of method to
visit Kinect like get color/depth image, get distances and detect obstacle. Class Speech supply a
group of method to make PC speak. These classes can be regarded as an group of utilities. In the
project, Singleton pattern is used to get the facility: only one instance per class and only one visit
point globally.

o State Pattern
The state machine is as Figure Five states are used to represent different stage when aid
walking. They are Init, OutofSychronize, Detect, Capture, and Reach. State pattern is used
to implement the state machine and it make the code have clear structure and easy to maintain.

[/ 5et next node

:DutofSychronize If targetinView > 0 Detected
targetinView Htargetintiew
-targetOutiew i . HargetOutWiew
[if targetOutView »= 3
+DetectMarker|) HDetect Marker(}
+LpdateCaunter() rUpdateCounter(]
I

fi e =

Distance < 1m &8 {if targetiniiaw >=3
Node |= destination
If target QutView = 0

X uCapture
Distance = 1m &&

Mode == destination -targetintiew
Reach = -targetOutWiew
+Detectharker(]

+UpdateCounter|)

Figure 4: State transition condition

7.3 Message between PC and Android

The message between PC and Android is define like below. The android phone only support vibration
function, so only vibration and vibration pattern are defined in the message. But it is very easy to
expend the function.

package mobileProtocol;

option java_package = '"rug.ucProject";
option java_outer_classname = "mobileProtocol";

enum CmdType {
VIBRATION = O0;
}

message ucMsg {
required CmdType type = 1;
repeated 1int64 vPattern = 2;
3

Message can be compiled by Protobuf v2.3 and two new class files which supply encode, decode,
serialize and deserialize methods are generated. One class file is C++ class for PC side and another class
file is Java class for Android side.

7.4 Depth image noise remove

When convert the depth date from project view to real world view, a lot of texture/noise is generated.
Here an erosion and a dilation is use to remove the noise. Figure [5| show this. About the isolate noise
in the left bottom side, we can set a threshold of the area of the connects components. If less than 36
pixel, for example, we think the connect component is noise and remove them.

real world depth image After noise remove

Figure 5

8 Future work

8.1 Start/destination point input by voice

Obviously, blind people can not update the start/destination point by editing YAML file. Voice input is
apparently an essential component. An approach is using Speech Application Programming Interface.

8.2 Android text-to-speech

Now the Android phone only vibrate when obstacle object is detected. By using Android text-to-speech
API, the Android phone can also speak the position of obstacle object. Due to using the Google Protobuf
as transmission layer, this feature can be expanded easily.

8.3 Mobile Kinect

Besides the power from USB, a extra power supply is essential for Kinect working. It limits the mobility of
WASBISH — Just think of the long power wire behind Kinect. Since the output of the power supply is 12V
and 1.08A, using battery is possible. Now there is already some tutorial in the Internet like http://www.
ros.org/wiki/kinect/Tutorials/Adding20a%20Kinect?20to0%20an%20iRobot%20Create. But due
to this way will damage/modify the splitter permanently, we give up this method. In the demonstration
we will use cart to move the kinect with long power wire behind or just move the maker and obstacle to
simulate the walking.

10

http://www.ros.org/wiki/kinect/Tutorials/Adding%20a%20Kinect%20to%20an%20iRobot%20Create
http://www.ros.org/wiki/kinect/Tutorials/Adding%20a%20Kinect%20to%20an%20iRobot%20Create

8.4 Outlook if using 3D image sensor

Using Kinect as WASBISH is just a lab toy but not a production — huge volume, high power consumer,
poor mobility. If the 3D image sensor can be purchased in an acceptable price in the market, 3D image
sensor will substitute for Kinect in WASBISH system. All the kernel components will be integrated
in one PCB board, 3D image sensor chips array, CPU, memory, control chips and electronic circuit,
bluetooth /wifi interface, battery etc. Plus the 3D image/depth camera, wireless earphone and vibration
equipment(these two can be substitute by mobile phone) the whole hardware system will be no larger
than a pair of glass. Then, it is a tiny, mobile and easy-to-use system.

9 Conclusion

The main aim of our project is to develop an application which can be helpful for the disabled(in our
case blind) people. We chose the context of our project as SMART homes because they make use of the
latest technologies like 3D image sensors and other devices. This walking aid is very user-friendly and
efficient. It can be used in all environments — home, workplace and public place — as long as the place
is tagged and pasted by the markers and the nodes and paths are configured by YAML file. Hence it
is robust as well. The operation of this application is very simple and easy to use. It does not require
any basic training. It also makes use of very less hardware. This project when implemented in SMART
homes will definitely prove very beneficial for the blind.

11

	Introduction
	Terminology
	Use method
	Features
	User-define house by YAML file
	Shortest walking path
	Node recognition, distance and orientation detection, and voice notification
	State machine drives the aid walking procedure
	Obstacle detection and notification
	Real-time vidoe show for the view, marker and obstacle

	Developing environment
	Hardware and software
	Third party tool/library

	System architecture
	Some technical detail
	Project scale and the number of classes
	UML of the mainly class
	Message between PC and Android
	Depth image noise remove

	Future work
	Start/destination point input by voice
	Android text-to-speech
	Mobile Kinect
	Outlook if using 3D image sensor

	Conclusion

