DOI: 10.21105/joss.0XXXX

Software
= Review @
= Repository @
= Archive &

Editor: Editor Name 7

Submitted: 01 January 1900
Published: 01 January 3030

License

Authors of papers retain
copyright and release the work
under a Creative Commons
Attribution 4.0 International
License (CC-BY).

The Journal of Open Source Software

audiomate: A Python package for working with audio
datasets

Matthias Biichi' and Andreas Ahlenstorf!

1 ZHAW Zurich University of Applied Sciences, Winterthur, Switzerland

Summary

Machine learning tasks in the audio domain frequently require large datasets with training
data. Over the last years, numerous datasets have been made available for various purposes,
for example, (Snyder, Chen, & Povey, 2015) and (Ardila et al., 2019). Unfortunately, most
of the datasets are stored in widely differing formats. As a consequence, machine learning
practitioners have to convert datasets into other formats before they can be used or combined.
Furthermore, common tasks like reading, partitioning, or shuffling of datasets have to be
developed over and over again for each format and require intimate knowledge of the formats.
We purpose Audiomate, a Python toolkit, to solve this problem.

Audiomate provides a uniform programming interface to work with numerous datasets. Knowl-
edge about the structure or on-disk format of the datasets is not necessary. Audiomate
facilitates and simplifies a wide range of tasks:

= Reading and writing of numerous dataset formats using a uniform programming inter-
face, for example (Snyder et al., 2015), (Panayotov, Chen, Povey, & Khudanpur, 2015)
and (Ardila et al., 2019)

= Accessing metadata, like speaker information and labels

= Reading audio data (single files, batches of files)

= Retrieval of information about the data (e.g., number of speakers, total duration).

= Merging of multiple datasets (e.g., combine two speech datasets).

= Splitting data into smaller subsets (e.g., create training, validation, and test sets with
a reasonable distribution of classes).

= Validation of data for specific requirements (e.g., check whether all samples were as-
signed a label)

Use Cases

To illustrate Audiomate’s capabilities, we present two typical applications where Audiomate
significantly simplifies the task of a developer: Training a speech recognition model with
Mozilla's implementation of DeepSpeech and training a deep neural network to recognize
music.

Converting Datasets

In this example, we illustrate how to employ Audiomate to convert the LibriSpeech dataset
(Panayotov et al., 2015) into the CSV-format expected by Mozilla's implementation (https:
//github.com/mozilla/DeepSpeech) of DeepSpeech (Hannun et al., 2014) which can, in turn,
be used to train an automatic speech recognition model.

Mickey Mouse et al., (2019). audiomate: A Python package for working with audio datasets. , 1(1), 1. https://doi.org/10.21105 /joss.OXXXX 1

https://doi.org/10.21105/joss.0XXXX
https://github.com/ynop/audiomate
http://example.com
http://creativecommons.org/licenses/by/4.0/
https://github.com/mozilla/DeepSpeech
https://github.com/mozilla/DeepSpeech
https://doi.org/10.21105/joss.0XXXX

The Journal of Open Source Software

import audiomate
from audiomate.corpus import io

Download LibriSpeech corpus
downloader = io.LibriSpeechDownloader ()
downloader.download('/local/data/librispeech')

Read LibriSpeech
reader = io.LibriSpeechReader()
librispeech = reader.load('/local/data/librispeech')

Save in DeepSpeech format
writer = io.MozillaDeepSpeechWriter()
writer.save(librispeech, '/local/data/librispeech_ds')

Knowledge of the on-disk formats of the datasets is not required.

Some datasets contain invalid or corrupted files. If those are known, Audiomate tries to rectify
the problems or automatically excludes those files before processing any data.

Merging and Partitioning Datasets

Another area where Audiomate excels is mixing datasets and partitioning them into training,
test, and validation sets. Assume that the task is to train a neural network to detect seg-
ments in audio streams that are music. MUSAN (Snyder et al., 2015) and GTZAN (“GTZAN
music/speech collection,” n.d.) are two suitable datasets for this task because they provide
a wide selection of music, speech, and noise samples. In the example below, we first down-
load MUSAN and GTZAN to the local disk before creating Loader instances for each format
that allow Audiomate to access both datasets using a unified interface. Then, we instruct
Audiomate to merge both datasets. Afterwards, we use a Splitter to partition the merged
dataset into a train and test set. By merely creating views, Audiomate avoids creating un-
necessary disk |/O and is therefore ideally suited to work with large datasets in the range of
tens or hundreds of gigabytes. Ultimately, we load the samples and labels by iterating over
all utterances. Alternatively, it is possible to load the samples in batches, which is ideal for
feeding them to a deep learning toolkit like PyTorch.

import audiomate
from audiomate.corpus import io
from audiomate.corpus import subset

musan_dl = io.MusanDownloader()
musan_dl.download('/local/data/musan')

gtzan_dl = io.GtzanDownloader()
gtzan_dl.download('/local/data/gtzan')

musan = audiomate.Corpus.load('/local/data/musan', reader='musan')
gtzan = audiomate.Corpus.load('/local/data/gtzan', reader='gtzan')

full = audiomate.Corpus.merge_corpora([musan, gtzan])
splitter = subset.Splitter(full, random_seed=222)

subviews = splitter.split(proportions={
'"train': 0.8,

Mickey Mouse et al., (2019). audiomate: A Python package for working with audio datasets. , 1(1), 1. https://doi.org/10.21105/joss.OXXXX 2

https://doi.org/10.21105/joss.0XXXX

The Journal of Open Source Software

'test': 0.2,
1))

for utterance in subviews['train'].utterances.values():
samples = utterance.read_samples()
labels = utterance.label_lists[audiomate.corpus.LL_DOMAIN]

Implementation

Audiomate was designed with extensibility in mind. Therefore, it is straightforward to add
support for additional data formats. Support for another format can be added by implementing
at least one of three available abstract interfaces.

= Reader: A Reader defines the procedure to load data that is structured in a specific
format. It converts it into a Audiomate-specific data structure.

= Writer: A Writer defines the procedure to store data in a specific format. It does
that by converting the data from the Audiomate-specific data structure into the target
format.

= Downloader: A Downloader can be used to download a dataset. It downloads all
required files automatically.

Rarely all interfaces are implemented for a particular format. Usually, Reader and Downloader
are implemented for datasets, while Writer is implemented for machine learning toolkits.

Audiomate supports more than a dozen datasets and half as many toolkits.

References

Ardila, R., Branson, M., Davis, K., Henretty, M., Kohler, M., Meyer, J., Morais, R., et
al. (2019). Common voice: A massively-multilingual speech corpus. Retrieved from
http://arxiv.org/abs/1912.06670

GTZAN music/speech collection. (n.d.). http://marsyas.info/downloads/datasets.html.

Hannun, A. Y., Case, C., Casper, J., Catanzaro, B., Diamos, G., Elsen, E., Prenger, R., et al.
(2014). Deep speech: Scaling up end-to-end speech recognition. CoRR, abs/1412.5567.
Retrieved from http://arxiv.org/abs/1412.5567

Panayotov, V., Chen, G., Povey, D., & Khudanpur, S. (2015). Librispeech: An asr corpus
based on public domain audio books. 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), 5206-5210.

Snyder, D., Chen, G., & Povey, D. (2015). MUSAN: A Music, Speech, and Noise Corpus.

Mickey Mouse et al., (2019). audiomate: A Python package for working with audio datasets. , 1(1), 1. https://doi.org/10.21105/joss.0XXXX 3

http://arxiv.org/abs/1912.06670
http://marsyas.info/downloads/datasets.html
http://arxiv.org/abs/1412.5567
https://doi.org/10.21105/joss.0XXXX

	Summary
	Use Cases
	Converting Datasets
	Merging and Partitioning Datasets

	Implementation
	References

