
Assignment 2

Big Data - Spring 2018

Using Spark to explore NYC Parking Violations

In this assignment, we will analyze different aspects of parking violations in NYC using Spark and python.
You will write pyspark programs using both RDDs and DataFrames for 7 different tasks, described later in
this document.

We will use the same datasets used in Assignment 1. As in Assignment 1, the full parking-violations.csv
and open-violations.csv files for the March 2016 dataset have already been made accessible on HDFS on
dumbo for you - you should not store additional copies in your HDFS directory. They are located at

/user/ecc290/HW1data/parking-violations.csv

and

/user/ecc290/HW1data/open-violations.csv

We have also made accessible versions with the headers included, which will be useful for defining
schema in the SparkSQL tasks:

/user/ecc290/HW1data/parking-violations-header.csv

/user/ecc290/HW1data/open-violations-header.csv

And again, for debugging purposes, we advise you to first test and debug your code on a smaller dataset,
which you should create yourself from the available data.

For your final submission, you will run the Spark programs on the complete March 2016 datasets using
Spark on dumbo.

Submission:
You will submit the Spark programs for all tasks in a .zip file named “yournetid.zip” (e.g., “ecc290.zip”).
The zip file should include 14 python files: task1.py, task1-sql.py,...,task7.py, task7-sql.py.

*For this assignment, you do not need to include output files in your submission.

You should also not include any input files in your submission.

Notes:

• For each task you will use both core Spark using RDDs and SparkSQL using DataFrames.

● Your program should read in the path to the input file on HDFS from the command line

arguments. For task 1, you are guaranteed that parking-violations.csv will be the first of the two
files passed in. In other words, we will execute your programs with the following commands:

 For task 1:

spark-submit --conf
spark.pyspark.python=/share/apps/python/3.4.4/bin/python
{your_netid}/task1.py /user/ecc290/HW1data/parking-violations.csv
/user/ecc290/HW1data/open-violations.csv

For task 1 - SQL:

spark-submit --conf
spark.pyspark.python=/share/apps/python/3.4.4/bin/python
{your_netid}/task1-sql.py /user/ecc290/HW1data/parking-violations-
header.csv /user/ecc290/HW1data/open-violations-header.csv

 For task 3:

spark-submit --conf
 spark.pyspark.python=/share/apps/python/3.4.4/bin/python
 {your_netid}/task3.py /user/ecc290/HW1data/open-violations.csv

For task 3-SQL:

spark-submit --conf
 spark.pyspark.python=/share/apps/python/3.4.4/bin/python
 {your_netid}/task3-sql.py /user/ecc290/HW1data/open-violations-
 header.csv

For all other tasks:

spark-submit --conf
 spark.pyspark.python=/share/apps/python/3.4.4/bin/python
 {your_netid}/taskx.py /user/ecc290/HW1data/parking-violations.csv

and for SQL versions:

spark-submit --conf
 spark.pyspark.python=/share/apps/python/3.4.4/bin/python
 {your_netid}/taskx-sql.py /user/ecc290/HW1data/parking-violations-
 header.csv

hp

● You should only use the most recent available versions of python and Spark on dumbo (3.4.4
and 2.2.0, respectively)

● Your code should output a directory named “taskx.out” or “taskx-sql.out” to HDFS, i.e., use the
Spark RDD function saveAsTextFile(“taskx.out”) or the Spark DataFrame function save(“taskx-
sql.out”,format=”text”) rather than python I/O. (In order for the hw2tester script to work, you must
name your output directories “taskx.out” and ”taskx-sql.out” where x is in 1 through 7).

● As in Assignment 1, you will be reading from CSV files. To do this in core Spark, reading into an
RDD, you would use, e.g.,

 from csv import reader

lines = sc.textFile(sys.argv[1], 1)

 lines = lines.mapPartitions(lambda x: reader(x))

 To do this in SparkSQL, reading into a DataFrame, you would use, e.g.,

parking =
spark.read.format('csv').options(header='true',inferschema='true').load
(sys.argv[1])

● For core Spark: You may find that using a final map() stage is helpful for formatting your output
correctly.

● For SparkSQL: You may find that using a final select() which produces a single column using
format_string() is helpful for formatting the output and writing to a text file. For example, for Task
1-SQL, if result is the dataframe that contains the query results, you could write:

result.select(format_string('%d\t%s, %d, %d,
%s',result.summons_number,result.plate_id,result.violation_precinct,result.violation_code,dat
e_format(result.issue_date,'yyyy-MM-dd'))).write.save("task1-sql.out",format="text")

hp

hp

Assignment:
===

Task 1

Write a Spark program that finds all parking violations that have been paid, i.e., that do not occur in open-
violations.csv.

Output: A key-value pair per line, where

 key = summons_number

 values = plate_id, violation_precinct, violation_code, issue_date

You should separate the key and value by a tab character (‘\t’) and elements within the key/value should
be separated by a comma and a space. Your output format should conform to the following example:

4617117696 GRV2608, 0, 36, 2016-03-09

4617863450 HAM2650, 0, 36, 2016-03-24

Task 1-SQL

Write a SparkSQL program for Task 1.

===

Task 2

Write a Spark program that finds the distribution of the violation types, i.e., for each violation code, the
number of violations that have this code.

Output: A key-value pair per line, where

 key = violation_code

 value = number of violations

You should separate the key and value by a tab character (‘\t’) and elements within the key/value should
be separated by a comma and a space. Your output format should conform to the following example:

1 159

2 5

Task 2-SQL

Write a SparkSQL program for Task 2.

===

Task 3

Write a Spark program that finds the total and average amount due in open violations for each license
type.

Output: A key-value pair per line, where

 key = license_type

 value = total, average

where total and average are rounded to 2 decimal places.

You should separate the key and value by a tab character (‘\t’) and elements within the key/value should
be separated by a comma and a space. Your output format should conform to the following example:

PAS 9482469.38, 35.82

USC 250.00, 125.00

Task 3-SQL

Write a SparkSQL program for Task 3.

===

Task 4

Write a Spark program that computes the total number of violations for vehicles registered in the state of
NY and all other vehicles.

Output: 2 key-value pairs with one key-value pair per line.

You should separate the key and value by a tab character (‘\t’). Your output format should conform to the
following example:

NY 12345

Other 6789

Task 4-SQL

Write a SparkSQL program for Task 4.

===

Task 5

Write a Spark program that finds the vehicle that has had the greatest number of violations (assume that
plate_id and registration_state uniquely identify a vehicle).

Output: One key-value pair

You should separate the key and value by a tab character (‘\t’) and elements within the key/value should
be separated by a comma and a space. Your output format should conform to the following example:

AP501F, NJ 138

Task 5-SQL

Write a SparkSQL program for Task 5.

===

Task 6

Write a Spark program that finds the top-20 vehicles in terms of total violations (assume that plate id and
registration state uniquely identify a vehicle).

Output: List of 20 key-value pairs, ordered by decreasing number of violations. For items with the same
number of violations, order by ascending plate_id.

You should separate the key and value by a tab character (‘\t’) and elements within the key/value should
be separated by a comma and a space. Your output format should conform to the following example:

AP501F, NJ 138

Task 6-SQL

Write a SparkSQL program for Task 1.

===

Task 7

In March 2016, the 5th, 6th, 12th, 13th, 19th, 20th, 26th, and 27th were weekend days (i.e., Sat. and
Sun.).

Write a Spark program that, for each violation code, lists the average number of violations with that code
issued per day on weekdays and weekend days. You may hardcode “8” as the number of weekend days
and “23” as the number of weekdays in March 2016.

Output: List of key-value pairs where

key = violation_code

value = weekend_average, week_average

where weekend_average and week_average are rounded to 2 decimal places.

You should separate the key and value by a tab character (‘\t’) and elements within the key/value should
be separated by a comma and a space. Your output format should conform to the following example:

1 3.25, 5.78

2 0.12, 0.17

Task 7-SQL

Write a SparkSQL program for Task 7.

===

Testing your solutions

We have provided a script to test your solutions on the March 2016 data. On dumbo, type

hfs -get /user/ecc290/HW1data/hw2tester.tar

hfs –get /user/ecc290/HW1data/README

To unpack the files, type

tar xvf hw2tester.tar

To run the tests, type

./testall.sh <INPUTPATH>

where <INPUTPATH> is the full path to your directory containing task1.py, task1-sql.py, task2.py, task2-
sql.py, etc. without a trailing slash (e.g., “/home/ecc290”)

You will be told for each task, whether you pass or fail. If you fail some task X, you can view the diff of
your output and the solution file in results/taskX.diff.

PLEASE READ THE README FILE FOR FURTHER DETAILS!

