
Programming Assignment 1: Shell
CSE3320
Due: Monday February 17th, 2020 5:30PM

Description

In this assignment you will write your own shell program, Mav shell (msh), similar to
bourne shell (bash), c-shell (csh), or korn shell (ksh). It will accept commands, fork a child
process and execute those commands. The shell, like csh or bash, will run and accept
commands until the user exits the shell. Your file must be named msh.c

Functional Requirements

Requirement 1: Your program will print out a prompt of msh> when it is ready to
accept input. It must read a line of input and, if the command given is a supported shell
command, it shall execute the command and display the output of the command.

Requirement 2: If the command is not supported your shell shall print the invalid
command followed by “: Command not found.”

Requirement 3: If the command option is an invalid option then your shell shall print
the command followed by “: invalid option --” and the option that was invalid as
well as a prompt to try —help. exec() outputs this automatically make sure you
pass it on to your user.

Requirement 4: After each command completes, your program shall print the msh>
prompt and accept another line of input.

Requirement 5: Your shell will exit with status zero if the command is “quit” or “exit”.

Requirement 6: If the user types a blank line, your shell will, quietly and with no other
output, print another prompt and accept a new line of input.

Requirement 7: Your version of Mav shell shall support up to 10 command line
parameters in addition to the command.

Requirement 8: Your shell shall support and execute any command entered. Any
command in /bin, /usr/bin/, /usr/local/bin/ and the current working directory
is to be considered valid for testing. 
Your shell shall search in the following PATH order:

1. Current working directory,

2. /usr/local/bin

3. /usr/bin

4. /bin

Parameters may also be combined. For example, ps may be executed as: ps –aef or ps
–a –e -f

Requirement 9: Mav shell shall be implemented using fork(), wait() and one of the
exec family of functions.

Your Mav shell shall not use system(). Use of system() will result in a grade of 0.

Requirement 10: Your shell shall support the cd command to change directories. Your
shell must handle cd ..

Requirement 11: Your shell shall support the showpids command to list the PIDs of
the last 15 processes spawned by your shell. If there have been less than 15 processes
spawned then it shall print only those process PIDs

Requirement 12: Your shell shall support the history command which will list the last
15 commands entered by the user. Typing !n, where n is a number between 1 and 15 will
result in your shell re-running the nth command. If the nth command does not exist then
your shell will state “Command not in history.”. The output shall be a list of
numbers 1 through n and their commands, each on a separate line, single spaced.

If there are less than 50 commands in the history only list the commands the user has
entered up to that point.

Requirement 13: Your source file shall be named msh.c. The source files must be
ASCII text files. No binary submissions will be accepted.

Requirement 14: Tabs or spaces shall be used to indent the code. Your code must use
one or the other. All indentation must be consistent.

Requirement 15: No line of code shall exceed 100 characters.

Requirement 16: Each source code file shall have the following header filled out:

Requirement 17: All code must be well commented. This means descriptive comments
that tell the intent of the code, not just what the code is executing.

The following are poor comments.

The following explains the intent:

When in doubt over comment your code.

Requirement 18: Keep your curly brace placement consistent. If you place curly braces
on a new line , always place curly braces on a new end. Don’t mix end line brace
placement with new line brace placement.

Requirement 19: Each function should have a header that describes its name, any
parameters expected, any return values, as well as a description of what the function does.
For example

Requirement 20: Remove all extraneous debug output before submission. The only
output shall be the output of the commands entered or the shell prompt.

Administrative

This assignment must be coded in C. Any other language will result in 0 points. You
programs will be compiled and graded on omega.uta.edu. Please make sure they
compile and run on omega before submitting them. Code that does not compile on
omega with:

gcc -Wall msh.c -o msh —std=c99

will result in a 0.

Your program, msh.c is to be turned in via Canvas. Submission time is determined by
the Canvas system time. You may submit your programs as often as you wish. Only your
last submission will be graded.

There are coding resources and working code you may use on Canvas and in the course
github repository at: https://github.com/CSE3320/Shell-Assignment . You are free to use
any of that code in your program if needed. You may use no other outside code.

Academic Integrity

This assignment must be 100% your own work. No code may be copied from friends,
previous students, books, web pages, etc. All code submitted is automatically checked
against a database of previous semester’s graded assignments, current student’s code
and common web sources. By submitting your code on Canvas you are attesting that
you have neither given nor received unauthorized assistance on this work. Code that
is copied from an external source or used as inspiration, excluding the
course github or Canvas, will result in a 0 for the assignment and referral to
the Office of Student Conduct.

Hints

Read the man pages for the following: fork, exec, exit, print, fgets,
strtok, strsep, strcmp, wait, and pause.

Use fork and one of the exec family as discussed in class to execute the command and call
wait to wait for the child to complete. If the command is “cd” then use chdir() instead of
exec. Note, chdir() must be called from the parent.

If you see garbage in any of your commands or parameters, try using the functions
memset() or bzero() to clear out your input string and token array before and/or after you
are done using them. Also, verify you are NULL terminating your strings.

There are examples on the course GitHub repository for this assignment that show how to
use execl and execvp.

