
MOMENTUM - A MEMORY-HARD PROOF-OF-WORK VIA
FINDING BIRTHDAY COLLISIONS

DANIEL LARIMER
dlarimer@invictus-innovations.com

Invictus Innovations, Inc

ABSTRACT. We introduce the concept of memory-hard proof-of-work
algorithms and argue that in order for proof-of-work based systems to be
secure against attacks using custom hardware, they should be
constructed from memory-hard functions. Proof-of-work is an economic
measure that is designed to be expensive to find but cheap to verify.
Existing solutions used for proof-of-work are either trivial to parallelize or
too slow to verify when tuned to use gigabytes of memory. We present a
new family of proof-of-work algorithms that can be validated in less than a
millisecond but can demand any amount of memory for finding solutions in
a practical manner.

1. INTRODUCTION

 ! Proof-of-work schemes are designed to be hard to solve but relatively easy to
verify. Unfortunately, most approaches to proof-of-work achieve their fast verification
by simply verifying one round of an embarrassingly parallel search algorithm. These
embarrassingly parallel algorithms are quickly adapted to graphics cards, FPGAs, or
even ASIC designs which would give an attacker several orders of magnitude
advantage over the common computer.
! In the case of crypto-currencies where the primary goal of the proof-of-work is
decentralization of trust it becomes critical that the proof-of-work cannot be optimized
and accelerated by FPGA or ASIC designs with any meaningful economic return on
investment. One approach that has been adopted by many crypto-currencies is to use
what is known as a Sequential Memory-Hard Function1, such as Scrypt. These
algorithms attempt to make the proof-of-work dependent upon sequential random
access to a large array of data and thus be memory constrained which limits
parallelization. The challenge with sequential memory-hard functions is that when they

1 http://www.tarsnap.com/scrypt/scrypt.pdf

http://www.tarsnap.com/scrypt/scrypt.pdf
http://www.tarsnap.com/scrypt/scrypt.pdf

are tuned to use large amounts of memory they lose the property of being easy to verify.
For example, simply populating 1 Gigabyte of memory with crypto-graphically secure
pseudorandom data can take a second to perform. As a result the requirement to
validate such a memory-hard proof-of-work would create an opportunity to perform a
denial of service attack.
 ! This paper introduces a family of memory-hard proof-of-work algorithms that can
be validated in milliseconds while requiring gigabytes of memory to solve efficiently.

2. MEMORY-HARD PROOF-OF-WORK

 ! To achieve the goal of being trivial to verify but memory intensive to solve, the
proof-of-work must have asymmetry in the amount of memory required to validate the
work. As a consequence, the individual steps of the proof-of-work must be
embarrassingly parallel because they are the foundation of the validation step. Despite
embarrassingly parallel steps that can be run in less than a millisecond, algorithms can
be made memory-hard by requiring a solution that depends upon the relationship
between any two or more of the parallel steps and thereby benefits from the storage of
the result of every parallel step. The results can be quickly verified by performing just
two or three parallel steps and checking the relationship between the results produced.
! The most straightforward example is finding collisions based upon the Birthday
Problem [3]. In probability theory, the birthday problem concerns the probability that in
a set of n randomly chosen people, some pair of them will have the same birthday. By
the pigeonhole principle, the probability reaches 100% when the number of people
reaches 367. However, 99% probability is reached with just 57 people, and 50%
probability with 23 people. These conclusions assume that each day of the year is
equally probable for a birthday.
! Figure 1 shows the significant benefit achieved by remembering all n solutions in
the search for a matching pair of birthdays. If you were to expand the number of days
in the year to 128 billion and selected birthdays in a cryptographically secure pseudo-
random manner then the amount of memory required to efficiently find a matching pair
would be on the order of 45 megabytes. However, if you increase the requirement to
finding 3 people with the same birthday then the memory requirements exceed 1
gigabyte on average. Any attempt to replace memory with computation would force
the algorithm to follow the q(n) curve which is at such an algorithmic disadvantage that
massive parallelism cannot overcome the need for memory to efficiently solve this

2! MEMORY-HARD PROOF-OF-WORK VIA FINDING BIRTHDAY COLLISIONS

Page 2 of 5

problem. The best one could hope for is to generate potential matches in parallel, but
the results would have to be stored for most efficient solutions.

p(n) = probability of a match q(n) = probability of matching your birthday
Figure 1

! The most straightforward and parallel solution would require an array of 128
billion items and after finding each potential result check to see if there is an item in
memory at that location. This approach would require 500 Gigabytes of RAM and is
thus impractical. An alternative is to use a hash table which would dramatically reduce
the amount of memory required. Unfortunately for the potential attacker, such a hash
table becomes a source of lock contention or slow atomic operations. The
embarrassingly parallel birthday generation step is hobbled by the need to synchronize
storage in the hash table. This last synchronization step places a limit on the amount of
parallelism that can be employed.
! While hash tables force some serialization to the process of finding birthday
matches, there exist many means to minimize the overhead associated with such
serialization. If you consider the potential of simply ignoring random data corruption and
verifying your results when a potential match is found it becomes clear that the birthday
problem combined with a hash table is better than current proof-of-work systems, but
has room for improvement if a means can be found to define an additional constraint on
the collision that forces all parallel operations through a common mutex.

3! MEMORY-HARD PROOF-OF-WORK VIA FINDING BIRTHDAY COLLISIONS

Page 3 of 5

3. THE ALGORITHM

Assuming a cryptographically secure hashing function Hash(x) and a Sequental-
Memory-Hard hashing function BirthdayHash(x) such as scrypt the algorithm for this
proof of work can be defined as follows:

Given a block of data D, calculate H = Hash(D).
Find nonce A and nonce B such that BirthdayHash(A +H) == BirthdayHash(B+H)
If Hash(H + A + B) < TargetDifficulty then a result has been found, otherwise keep
searching.

4. SCALING DIFFICULTY
For crypto-currencies, it is not enough that the proof of work be memory hard, it must
also be flexible enough to scale the difficulty of the work to finely tune the block
production rate. For this reason the final step of the proof of work is to perform the hash
of the data and both birthday nonces and then check to see if the resulting hash is
below a target threshold. ! This final step behaves just like Bitcoin or Scrypt based proof
of work systems.

We speculate that the best of all results is to combine the Birthday Search with a
traditional sequential memory-hard function such as Scrypt that also leverages
hardware accelerated algorithms like AES to ensure that even the most fundamental,
embarrassingly parallel, step of the Birthday Search, the generation of birthdays, is non-
trivial to implement on an ASIC in a manner more efficient than a CPU. !

5. EMERGENT PROPERTIES
With traditional proof-of-work systems likes SHA256 or Scrypt it was possible to gain
performance through parallelism alone. However, regardless of how efficiently an ASIC
can run the individual birthday hash steps in parallel, your use of memory must scale to
store the result of every parallel run or you will lose an algorithmic advantage that
cannot be overcome by increasing levels of parallelism. If one were to create a Scrypt
ASIC capable of 1 Giga-hash / second then one would require 10 terabytes of RAM to
most efficiently find one solution at the target difficulty every 10 minutes on average.

4! MEMORY-HARD PROOF-OF-WORK VIA FINDING BIRTHDAY COLLISIONS

Page 4 of 5

The performance of the proof-of-work increases the longer it runs as it fills up memory
with potential birthday matches. As a result the efficiency of the algorithm has some
momentum to it which makes it expensive to restart the search with a new block of data.
This property has some very useful side effects for block chain based systems where
the miner could gain some advantage by adjusting the structure of the block they are
mining every time new data is available. The most efficient mining strategy is to cache
all transactions that you receive while mining the current block until someone finds the
current block, and then create a new block with all of the cached transactions. This
property means that a transaction broadcast 5 seconds after the last block was found
has no advantage over a transaction broadcast 5 minutes after the last block was found
because few miners will begin working on including either transaction until the next
block is found. It is because of the momentum property that we have named this proof
of work system Momentum.
!

6. CONCLUSIONS

! We have introduced a new class of memory-hard proof-of-work algorithms that
are asymmetric in the memory and time requirements for finding a solution in
comparison to verifying the solution and which contain a significant amount of
sequential operations. These algorithms are well suited for block-chain based proof-of-
work systems or stronger key derivation functions.

REFERENCES

[1] Colin Percival. Stronger Key Derivation Via Sequential Memory-Hard Functions
[2] Fabien Coelho. Exponential Memory-Bound Functions for Proof of Work Protocols
[3] Roberts Matthews, Fiona Stones. Coincidences: the truth is out there.
[4] Adam Back. Hashcash - A Denial of Service Counter-Measure

5! MEMORY-HARD PROOF-OF-WORK VIA FINDING BIRTHDAY COLLISIONS

Page 5 of 5

