
CHAPTER 5

Centrality Algorithms

Centrality algorithms are used to understand the roles of particular nodes in a graph
and their impact on that network. They’re useful because they identify the most
important nodes and help us understand group dynamics such as credibility, accessi‐
bility, the speed at which things spread, and bridges between groups. Although many
of these algorithms were invented for social network analysis, they have since found
uses in a variety of industries and fields.

We’ll cover the following algorithms:

• Degree Centrality as a baseline metric of connectedness
• Closeness Centrality for measuring how central a node is to the group, including

two variations for disconnected groups
• Betweenness Centrality for finding control points, including an alternative for

approximation
• PageRank for understanding the overall influence, including a popular option for

personalization

Different centrality algorithms can produce significantly different
results based on what they were created to measure. When you see
suboptimal answers, it’s best to check the algorithm you’ve used is
aligned to its intended purpose.

We’ll explain how these algorithms work and show examples in Spark and Neo4j.
Where an algorithm is unavailable on one platform or where the differences are
unimportant, we’ll provide just one platform example.

77

Figure 5-1 shows the differences between the types of questions centrality algorithms
can answer, and Table 5-1 is a quick reference for what each algorithm calculates with
an example use.

Figure 5-1. Representative centrality algorithms and the types of questions they answer

Table 5-1. Overview of centrality algorithms

Algorithm type What it does Example use Spark
example

Neo4j
example

Degree Centrality Measures the number of
relationships a node has

Estimating a person’s popularity by
looking at their in-degree and
using their out-degree to estimate
gregariousness

Yes No

Closeness Centrality
Variations: Wasserman and
Faust, Harmonic Centrality

Calculates which nodes have
the shortest paths to all
other nodes

Finding the optimal location of
new public services for maximum
accessibility

Yes Yes

Betweenness Centrality
Variation: Randomized-
Approximate Brandes

Measures the number of
shortest paths that pass
through a node

Improving drug targeting by
finding the control genes for
specific diseases

No Yes

PageRank
Variation: Personalized
PageRank

Estimates a current node’s
importance from its linked
neighbors and their
neighbors (popularized by
Google)

Finding the most influential
features for extraction in machine
learning and ranking text for entity
relevance in natural language
processing.

Yes Yes

Several of the centrality algorithms calculate shortest paths between
every pair of nodes. This works well for small- to medium-sized
graphs but for large graphs can be computationally prohibitive. To
avoid long runtimes on larger graphs, some algorithms (for exam‐
ple, Betweenness Centrality) have approximating versions.

78 | Chapter 5: Centrality Algorithms

First, we’ll describe the dataset for our examples and walk through importing the data
into Apache Spark and Neo4j. Each algorithm is covered in the order listed in
Table 5-1. We’ll start with a short description of the algorithm and, when warranted,
information on how it operates. Variations of algorithms already covered will include
less detail. Most sections also include guidance on when to use the related algorithm.
We demonstrate example code using a sample dataset at the end of each section.

Let’s get started!

Example Graph Data: The Social Graph
Centrality algorithms are relevant to all graphs, but social networks provide a very
relatable way to think about dynamic influence and the flow of information. The
examples in this chapter are run against a small Twitter-like graph. You can download
the nodes and relationships files we’ll use to create our graph from the book’s GitHub
repository.

Table 5-2. social-nodes.csv

id
Alice

Bridget

Charles

Doug

Mark

Michael

David

Amy

James

Table 5-3. social-relationships.csv

src dst relationship
Alice Bridget FOLLOWS

Alice Charles FOLLOWS

Mark Doug FOLLOWS

Bridget Michael FOLLOWS

Doug Mark FOLLOWS

Michael Alice FOLLOWS

Alice Michael FOLLOWS

Bridget Alice FOLLOWS

Michael Bridget FOLLOWS

Example Graph Data: The Social Graph | 79

src dst relationship
Charles Doug FOLLOWS

Bridget Doug FOLLOWS

Michael Doug FOLLOWS

Alice Doug FOLLOWS

Mark Alice FOLLOWS

David Amy FOLLOWS

James David FOLLOWS

Figure 5-2 illustrates the graph that we want to construct.

Figure 5-2. The graph model

We have one larger set of users with connections between them and a smaller set with
no connections to that larger group.

Let’s create graphs in Spark and Neo4j based on the contents of those CSV files.

Importing the Data into Apache Spark
First, we’ll import the required packages from Spark and the GraphFrames package:

from graphframes import *
from pyspark import SparkContext

We can write the following code to create a GraphFrame based on the contents of the
CSV files:

v = spark.read.csv("data/social-nodes.csv", header=True)
e = spark.read.csv("data/social-relationships.csv", header=True)
g = GraphFrame(v, e)

80 | Chapter 5: Centrality Algorithms

Importing the Data into Neo4j
Next, we’ll load the data for Neo4j. The following query imports nodes:

WITH "https://github.com/neo4j-graph-analytics/book/raw/master/data/" AS base
WITH base + "social-nodes.csv" AS uri
LOAD CSV WITH HEADERS FROM uri AS row
MERGE (:User {id: row.id})

And this query imports relationships:

WITH "https://github.com/neo4j-graph-analytics/book/raw/master/data/" AS base
WITH base + "social-relationships.csv" AS uri
LOAD CSV WITH HEADERS FROM uri AS row
MATCH (source:User {id: row.src})
MATCH (destination:User {id: row.dst})
MERGE (source)-[:FOLLOWS]->(destination)

Now that our graphs are loaded, it’s on to the algorithms!

Degree Centrality
Degree Centrality is the simplest of the algorithms that we’ll cover in this book. It
counts the number of incoming and outgoing relationships from a node, and is used
to find popular nodes in a graph. Degree Centrality was proposed by Linton C. Free‐
man in his 1979 paper “Centrality in Social Networks: Conceptual Clarification”.

Reach
Understanding the reach of a node is a fair measure of importance. How many other
nodes can it touch right now? The degree of a node is the number of direct relation‐
ships it has, calculated for in-degree and out-degree. You can think of this as the
immediate reach of node. For example, a person with a high degree in an active social
network would have a lot of immediate contacts and be more likely to catch a cold
circulating in their network.

The average degree of a network is simply the total number of relationships divided by
the total number of nodes; it can be heavily skewed by high degree nodes. The degree
distribution is the probability that a randomly selected node will have a certain num‐
ber of relationships.

Figure 5-3 illustrates the difference looking at the actual distribution of connections
among subreddit topics. If you simply took the average, you’d assume most topics
have 10 connections, whereas in fact most topics only have 2 connections.

Degree Centrality | 81

Figure 5-3. This mapping of subreddit degree distribution by Jacob Silterrapa provides an
example of how the average does not often reflect the actual distribution in networks.
CC BY-SA 3.0.

These measures are used to categorize network types such as the scale-free or small-
world networks that were discussed in Chapter 2. They also provide a quick measure
to help estimate the potential for things to spread or ripple throughout a network.

When Should I Use Degree Centrality?
Use Degree Centrality if you’re attempting to analyze influence by looking at the
number of incoming and outgoing relationships, or find the “popularity” of individ‐
ual nodes. It works well when you’re concerned with immediate connectedness or
near-term probabilities. However, Degree Centrality is also applied to global analysis
when you want to evaluate the minimum degree, maximum degree, mean degree, and
standard deviation across the entire graph.

Example use cases include:

• Identifying powerful individuals though their relationships, such as connections
of people in a social network. For example, in BrandWatch’s “Most Influential
Men and Women on Twitter 2017”, the top 5 people in each category have over
40 million followers each.

• Separating fraudsters from legitimate users of an online auction site. The weigh‐
ted centrality of fraudsters tends to be significantly higher due to collusion aimed

82 | Chapter 5: Centrality Algorithms

at artificially increasing prices. Read more in the paper by P. Bangcharoensap et
al., “Two Step Graph-Based Semi-Supervised Learning for Online Auction Fraud
Detection”.

Degree Centrality with Apache Spark
Now we’ll execute the Degree Centrality algorithm with the following code:

total_degree = g.degrees
in_degree = g.inDegrees
out_degree = g.outDegrees

(total_degree.join(in_degree, "id", how="left")
 .join(out_degree, "id", how="left")
 .fillna(0)
 .sort("inDegree", ascending=False)
 .show())

We first calculate the total, in, and out degrees. Then we join those DataFrames
together, using a left join to retain any nodes that don’t have incoming or outgoing
relationships. If nodes don’t have relationships we set that value to 0 using the fillna
function.

Here’s the result of running the code in pyspark:

id degree inDegree outDegree
Doug 6 5 1

Alice 7 3 4

Michael 5 2 3

Bridget 5 2 3

Charles 2 1 1

Mark 3 1 2

David 2 1 1

Amy 1 1 0

James 1 0 1

We can see in Figure 5-4 that Doug is the most popular user in our Twitter graph,
with five followers (in-links). All other users in that part of the graph follow him and
he only follows one person back. In the real Twitter network, celebrities have high
follower counts but tend to follow few people. We could therefore consider Doug a
celebrity!

Degree Centrality | 83

Figure 5-4. Visualization of degree centrality

If we were creating a page showing the most-followed users or wanted to suggest peo‐
ple to follow, we could use this algorithm to identify those people.

Some data may contain very dense nodes with lots of relationships.
These don’t add much additional information and can skew some
results or add computational complexity. You may want to filter out
these dense notes by using a subgraph, or use a projection to sum‐
marize the relationships as weights.

Closeness Centrality
Closeness Centrality is a way of detecting nodes that are able to spread information
efficiently through a subgraph.

The measure of a node’s centrality is its average farness (inverse distance) to all other
nodes. Nodes with a high closeness score have the shortest distances from all other
nodes.

For each node, the Closeness Centrality algorithm calculates the sum of its distances
to all other nodes, based on calculating the shortest paths between all pairs of nodes.
The resulting sum is then inverted to determine the closeness centrality score for that
node.

The closeness centrality of a node is calculated using the formula:

C u = 1
∑v = 1

n − 1 d u, v

84 | Chapter 5: Centrality Algorithms

where:

• u is a node.
• n is the number of nodes in the graph.
• d(u,v) is the shortest-path distance between another node v and u.

It is more common to normalize this score so that it represents the average length of
the shortest paths rather than their sum. This adjustment allows comparisons of the
closeness centrality of nodes of graphs of different sizes.

The formula for normalized closeness centrality is as follows:

Cnorm u = n − 1
∑v = 1

n − 1 d u, v

When Should I Use Closeness Centrality?
Apply Closeness Centrality when you need to know which nodes disseminate things
the fastest. Using weighted relationships can be especially helpful in evaluating inter‐
action speeds in communication and behavioral analyses.

Example use cases include:

• Uncovering individuals in very favorable positions to control and acquire vital
information and resources within an organization. One such study is “Mapping
Networks of Terrorist Cells”, by V. E. Krebs.

• As a heuristic for estimating arrival time in telecommunications and package
delivery, where content flows through the shortest paths to a predefined target. It
is also used to shed light on propagation through all shortest paths simultane‐
ously, such as infections spreading through a local community. Find more details
in “Centrality and Network Flow”, by S. P. Borgatti.

• Evaluating the importance of words in a document, based on a graph-based key‐
phrase extraction process. This process is described by F. Boudin in “A Compari‐
son of Centrality Measures for Graph-Based Keyphrase Extraction”.

Closeness Centrality works best on connected graphs. When the
original formula is applied to an unconnected graph, we end up
with an infinite distance between two nodes where there is no path
between them. This means that we’ll end up with an infinite close‐
ness centrality score when we sum up all the distances from that
node. To avoid this issue, a variation on the original formula will be
shown after the next example.

Closeness Centrality | 85

Closeness Centrality with Apache Spark
Apache Spark doesn’t have a built-in algorithm for Closeness Centrality, but we can
write our own using the aggregateMessages framework that we introduced in the
“Shortest Path (Weighted) with Apache Spark” on page 54 in the previous chapter.

Before we create our function, we’ll import some libraries that we’ll use:

from graphframes.lib import AggregateMessages as AM
from pyspark.sql import functions as F
from pyspark.sql.types import *
from operator import itemgetter

We’ll also create a few user-defined functions that we’ll need later:

def collect_paths(paths):
 return F.collect_set(paths)

collect_paths_udf = F.udf(collect_paths, ArrayType(StringType()))

paths_type = ArrayType(
 StructType([StructField("id", StringType()), StructField("distance", IntegerType())]))

def flatten(ids):
 flat_list = [item for sublist in ids for item in sublist]
 return list(dict(sorted(flat_list, key=itemgetter(0))).items())

flatten_udf = F.udf(flatten, paths_type)

def new_paths(paths, id):
 paths = [{"id": col1, "distance": col2 + 1} for col1,
 col2 in paths if col1 != id]
 paths.append({"id": id, "distance": 1})
 return paths

new_paths_udf = F.udf(new_paths, paths_type)

def merge_paths(ids, new_ids, id):
 joined_ids = ids + (new_ids if new_ids else [])
 merged_ids = [(col1, col2) for col1, col2 in joined_ids if col1 != id]
 best_ids = dict(sorted(merged_ids, key=itemgetter(1), reverse=True))
 return [{"id": col1, "distance": col2} for col1, col2 in best_ids.items()]

merge_paths_udf = F.udf(merge_paths, paths_type)

86 | Chapter 5: Centrality Algorithms

def calculate_closeness(ids):
 nodes = len(ids)
 total_distance = sum([col2 for col1, col2 in ids])
 return 0 if total_distance == 0 else nodes * 1.0 / total_distance

closeness_udf = F.udf(calculate_closeness, DoubleType())

And now for the main body that calculates the closeness centrality for each node:

vertices = g.vertices.withColumn("ids", F.array())
cached_vertices = AM.getCachedDataFrame(vertices)
g2 = GraphFrame(cached_vertices, g.edges)

for i in range(0, g2.vertices.count()):
 msg_dst = new_paths_udf(AM.src["ids"], AM.src["id"])
 msg_src = new_paths_udf(AM.dst["ids"], AM.dst["id"])
 agg = g2.aggregateMessages(F.collect_set(AM.msg).alias("agg"),
 sendToSrc=msg_src, sendToDst=msg_dst)
 res = agg.withColumn("newIds", flatten_udf("agg")).drop("agg")
 new_vertices = (g2.vertices.join(res, on="id", how="left_outer")
 .withColumn("mergedIds", merge_paths_udf("ids", "newIds",
 "id")).drop("ids", "newIds")
 .withColumnRenamed("mergedIds", "ids"))
 cached_new_vertices = AM.getCachedDataFrame(new_vertices)
 g2 = GraphFrame(cached_new_vertices, g2.edges)

(g2.vertices
 .withColumn("closeness", closeness_udf("ids"))
 .sort("closeness", ascending=False)
 .show(truncate=False))

If we run that we’ll see the following output:

id ids closeness
Doug [[Charles, 1], [Mark, 1], [Alice, 1], [Bridget, 1], [Michael, 1]] 1.0

Alice [[Charles, 1], [Mark, 1], [Bridget, 1], [Doug, 1], [Michael, 1]] 1.0

David [[James, 1], [Amy, 1]] 1.0

Bridget [[Charles, 2], [Mark, 2], [Alice, 1], [Doug, 1], [Michael, 1]] 0.7142857142857143

Michael [[Charles, 2], [Mark, 2], [Alice, 1], [Doug, 1], [Bridget, 1]] 0.7142857142857143

James [[Amy, 2], [David, 1]] 0.6666666666666666

Amy [[James, 2], [David, 1]] 0.6666666666666666

Mark [[Bridget, 2], [Charles, 2], [Michael, 2], [Doug, 1], [Alice, 1]] 0.625

Charles [[Bridget, 2], [Mark, 2], [Michael, 2], [Doug, 1], [Alice, 1]] 0.625

Alice, Doug, and David are the most closely connected nodes in the graph with a 1.0
score, which means each directly connects to all nodes in their part of the graph.
Figure 5-5 illustrates that even though David has only a few connections, within his

Closeness Centrality | 87

group of friends that’s significant. In other words, this score represents the closeness
of each user to others within their subgraph but not the entire graph.

Figure 5-5. Visualization of closeness centrality

Closeness Centrality with Neo4j
Neo4j’s implementation of Closeness Centrality uses the following formula:

C u = n − 1
∑v = 1

n − 1 d u, v
where:

• u is a node.
• n is the number of nodes in the same component (subgraph or group) as u.
• d(u,v) is the shortest-path distance between another node v and u.

A call to the following procedure will calculate the closeness centrality for each of the
nodes in our graph:

CALL algo.closeness.stream("User", "FOLLOWS")
YIELD nodeId, centrality
RETURN algo.getNodeById(nodeId).id, centrality
ORDER BY centrality DESC

Running this procedure gives the following output:

user centrality
Alice 1.0

Doug 1.0

88 | Chapter 5: Centrality Algorithms

user centrality
David 1.0

Bridget 0.7142857142857143

Michael 0.7142857142857143

Amy 0.6666666666666666

James 0.6666666666666666

Charles 0.625

Mark 0.625

We get the same results as with the Spark algorithm, but, as before, the score repre‐
sents their closeness to others within their subgraph but not the entire graph.

In the strict interpretation of the Closeness Centrality algorithm, all
the nodes in our graph would have a score of ∞ because every node
has at least one other node that it’s unable to reach. However, it’s
usually more useful to implement the score per component.

Ideally we’d like to get an indication of closeness across the whole graph, and in the
next two sections we’ll learn about a few variations of the Closeness Centrality algo‐
rithm that do this.

Closeness Centrality Variation: Wasserman and Faust
Stanley Wasserman and Katherine Faust came up with an improved formula for cal‐
culating closeness for graphs with multiple subgraphs without connections between
those groups. Details on their formula are in their book, Social Network Analysis:
Methods and Applications. The result of this formula is a ratio of the fraction of nodes
in the group that are reachable to the average distance from the reachable nodes.

The formula is as follows:

CWF u = n − 1
N − 1

n − 1
∑v = 1

n − 1 d u, v
where:

• u is a node.
• N is the total node count.
• n is the number of nodes in the same component as u.
• d(u,v) is the shortest-path distance between another node v and u.

Closeness Centrality | 89

We can tell the Closeness Centrality procedure to use this formula by passing the
parameter improved: true.

The following query executes Closeness Centrality using the Wasserman and Faust
formula:

CALL algo.closeness.stream("User", "FOLLOWS", {improved: true})
YIELD nodeId, centrality
RETURN algo.getNodeById(nodeId).id AS user, centrality
ORDER BY centrality DESC

The procedure gives the following result:

user centrality
Alice 0.5

Doug 0.5

Bridget 0.35714285714285715

Michael 0.35714285714285715

Charles 0.3125

Mark 0.3125

David 0.125

Amy 0.08333333333333333

James 0.08333333333333333

As Figure 5-6 shows, the results are now more representative of the closeness of
nodes to the entire graph. The scores for the members of the smaller subgraph
(David, Amy, and James) have been dampened, and they now have the lowest scores
of all users. This makes sense as they are the most isolated nodes. This formula is
more useful for detecting the importance of a node across the entire graph rather
than within its own subgraph.

90 | Chapter 5: Centrality Algorithms

Figure 5-6. Visualization of closeness centrality

In the next section we’ll learn about the Harmonic Centrality algorithm, which ach‐
ieves similar results using another formula to calculate closeness.

Closeness Centrality Variation: Harmonic Centrality
Harmonic Centrality (also known as Valued Centrality) is a variant of Closeness Cen‐
trality, invented to solve the original problem with unconnected graphs. In “Harmony
in a Small World”, M. Marchiori and V. Latora proposed this concept as a practical
representation of an average shortest path.

When calculating the closeness score for each node, rather than summing the distan‐
ces of a node to all other nodes, it sums the inverse of those distances. This means
that infinite values become irrelevant.

The raw harmonic centrality for a node is calculated using the following formula:

H u = ∑
v = 1

n − 1 1
d u, v

where:

• u is a node.
• n is the number of nodes in the graph.
• d(u,v) is the shortest-path distance between another node v and u.

As with closeness centrality, we can also calculate a normalized harmonic centrality
with the following formula:

Closeness Centrality | 91

Hnorm u =
∑v = 1

n − 1 1
d u, v

n − 1
In this formula, ∞ values are handled cleanly.

Harmonic Centrality with Neo4j
The following query executes the Harmonic Centrality algorithm:

CALL algo.closeness.harmonic.stream("User", "FOLLOWS")
YIELD nodeId, centrality
RETURN algo.getNodeById(nodeId).id AS user, centrality
ORDER BY centrality DESC

Running this procedure gives the following result:

user centrality
Alice 0.625

Doug 0.625

Bridget 0.5

Michael 0.5

Charles 0.4375

Mark 0.4375

David 0.25

Amy 0.1875

James 0.1875

The results from this algorithm differ from those of the original Closeness Centrality
algorithm but are similar to those from the Wasserman and Faust improvement.
Either algorithm can be used when working with graphs with more than one connec‐
ted component.

Betweenness Centrality
Sometimes the most important cog in the system is not the one with the most overt
power or the highest status. Sometimes it’s the middlemen that connect groups or the
brokers who the most control over resources or the flow of information. Betweenness
Centrality is a way of detecting the amount of influence a node has over the flow of
information or resources in a graph. It is typically used to find nodes that serve as a
bridge from one part of a graph to another.

The Betweenness Centrality algorithm first calculates the shortest (weighted) path
between every pair of nodes in a connected graph. Each node receives a score, based
on the number of these shortest paths that pass through the node. The more shortest
paths that a node lies on, the higher its score.

92 | Chapter 5: Centrality Algorithms

Betweenness Centrality was considered one of the “three distinct intuitive concep‐
tions of centrality” when it was introduced by Linton C. Freeman in his 1971 paper,
“A Set of Measures of Centrality Based on Betweenness”.

Bridges and control points
A bridge in a network can be a node or a relationship. In a very simple graph, you can
find them by looking for the node or relationship that, if removed, would cause a sec‐
tion of the graph to become disconnected. However, as that’s not practical in a typical
graph, we use a Betweenness Centrality algorithm. We can also measure the between‐
ness of a cluster by treating the group as a node.

A node is considered pivotal for two other nodes if it lies on every shortest path
between those nodes, as shown in Figure 5-7.

Figure 5-7. Pivotal nodes lie on every shortest path between two nodes. Creating more
shortest paths can reduce the number of pivotal nodes for uses such as risk mitigation.

Pivotal nodes play an important role in connecting other nodes—if you remove a piv‐
otal node, the new shortest path for the original node pairs will be longer or more
costly. This can be a consideration for evaluating single points of vulnerability.

Calculating betweenness centrality
The betweenness centrality of a node is calculated by adding the results of the follow‐
ing formula for all shortest paths:

B u = ∑
s ≠ u ≠ t

p u
p

where:

• u is a node.
• p is the total number of shortest paths between nodes s and t.

Betweenness Centrality | 93

• p(u) is the number of shortest paths between nodes s and t that pass through
node u.

Figure 5-8 illustrates the steps for working out betweenness centrality.

Figure 5-8. Basic concepts for calculating betweenness centrality

Here’s the procedure:

1. For each node, find the shortest paths that go through it.
a. B, C, E have no shortest paths and are assigned a value of 0.

2. For each shortest path in step 1, calculate its percentage of the total possible
shortest paths for that pair.

3. Add together all the values in step 2 to find a node’s betweenness centrality score.
The table in Figure 5-8 illustrates steps 2 and 3 for node D.

4. Repeat the process for each node.

When Should I Use Betweenness Centrality?
Betweenness Centrality applies to a wide range of problems in real-world networks.
We use it to find bottlenecks, control points, and vulnerabilities.

Example use cases include:

• Identifying influencers in various organizations. Powerful individuals are not
necessarily in management positions, but can be found in “brokerage positions”
using Betweenness Centrality. Removal of such influencers can seriously destabi‐
lize the organization. This might be considered a welcome disruption by law
enforcement if the organization is criminal, or could be a disaster if a business
loses key staff it underestimated. More details are found in “Brokerage Qualifica‐
tions in Ringing Operations”, by C. Morselli and J. Roy.

94 | Chapter 5: Centrality Algorithms

• Uncovering key transfer points in networks such as electrical grids. Counterin‐
tuitively, removal of specific bridges can actually improve overall robustness by
“islanding” disturbances. Research details are included in “Robustness of the
European Power Grids Under Intentional Attack”, by R. Solé, et al.

• Helping microbloggers spread their reach on Twitter, with a recommendation
engine for targeting influencers. This approach is described in a paper by S. Wu
et al., “Making Recommendations in a Microblog to Improve the Impact of a
Focal User”.

Betweenness Centrality makes the assumption that all communica‐
tion between nodes happens along the shortest path and with the
same frequency, which isn’t always the case in real life. Therefore, it
doesn’t give us a perfect view of the most influential nodes in a
graph, but rather a good representation. Mark Newman explains
this in more detail in Networks: An Introduction (Oxford University
Press, p186).

Betweenness Centrality with Neo4j
Spark doesn’t have a built-in algorithm for Betweenness Centrality, so we’ll demon‐
strate this algorithm using Neo4j. A call to the following procedure will calculate the
betweenness centrality for each of the nodes in our graph:

CALL algo.betweenness.stream("User", "FOLLOWS")
YIELD nodeId, centrality
RETURN algo.getNodeById(nodeId).id AS user, centrality
ORDER BY centrality DESC

Running this procedure gives the following result:

user centrality
Alice 10.0

Doug 7.0

Mark 7.0

David 1.0

Bridget 0.0

Charles 0.0

Michael 0.0

Amy 0.0

James 0.0

Betweenness Centrality | 95

As we can see in Figure 5-9, Alice is the main broker in this network, but Mark and
Doug aren’t far behind. In the smaller subgraph all shortest paths go through David,
so he is important for information flow among those nodes.

Figure 5-9. Visualization of betweenness centrality

For large graphs, exact centrality computation isn’t practical. The
fastest known algorithm for exactly computing betweenness of all
the nodes has a runtime proportional to the product of the number
of nodes and the number of relationships.
We may want to filter down to a subgraph first or use (described in
the next section) that works with a subset of nodes.

We can join our two disconnected components together by introducing a new user
called Jason, who follows and is followed by people from both groups of users:

WITH ["James", "Michael", "Alice", "Doug", "Amy"] AS existingUsers

MATCH (existing:User) WHERE existing.id IN existingUsers
MERGE (newUser:User {id: "Jason"})

MERGE (newUser)<-[:FOLLOWS]-(existing)
MERGE (newUser)-[:FOLLOWS]->(existing)

If we rerun the algorithm we’ll see this output:

96 | Chapter 5: Centrality Algorithms

user centrality
Jason 44.33333333333333

Doug 18.333333333333332

Alice 16.666666666666664

Amy 8.0

James 8.0

Michael 4.0

Mark 2.1666666666666665

David 0.5

Bridget 0.0

Charles 0.0

Jason has the highest score because communication between the two sets of users will
pass through him. Jason can be said to act as a local bridge between the two sets of
users, as illustrated in Figure 5-10.

Figure 5-10. Visualization of betweenness centrality with Jason

Before we move on to the next section, let’s reset our graph by deleting Jason and his
relationships:

MATCH (user:User {id: "Jason"})
DETACH DELETE user

Betweenness Centrality | 97

Betweenness Centrality Variation: Randomized-Approximate
Brandes
Recall that calculating the exact betweenness centrality on large graphs can be very
expensive. We could therefore choose to use an approximation algorithm that runs
much faster but still provides useful (albeit imprecise) information.

The Randomized-Approximate Brandes (RA-Brandes for short) algorithm is the
best-known algorithm for calculating an approximate score for betweenness central‐
ity. Rather than calculating the shortest path between every pair of nodes, the RA-
Brandes algorithm considers only a subset of nodes. Two common strategies for
selecting the subset of nodes are:

Random
Nodes are selected uniformly, at random, with a defined probability of selection. The
default probability is: log10 N

e2 . If the probability is 1, the algorithm works the same

way as the normal Betweenness Centrality algorithm, where all nodes are loaded.

Degree
Nodes are selected randomly, but those whose degree is lower than the mean are
automatically excluded (i.e., only nodes with a lot of relationships have a chance of
being visited).

As a further optimization, you could limit the depth used by the Shortest Path algo‐
rithm, which will then provide a subset of all the shortest paths.

Approximation of Betweenness Centrality with Neo4j
The following query executes the RA-Brandes algorithm using the random selection
method:

CALL algo.betweenness.sampled.stream("User", "FOLLOWS", {strategy:"degree"})
YIELD nodeId, centrality
RETURN algo.getNodeById(nodeId).id AS user, centrality
ORDER BY centrality DESC

Running this procedure gives the following result:

user centrality
Alice 9.0

Mark 9.0

Doug 4.5

98 | Chapter 5: Centrality Algorithms

user centrality
David 2.25

Bridget 0.0

Charles 0.0

Michael 0.0

Amy 0.0

James 0.0

Our top influencers are similar to before, although Mark now has a higher ranking
than Doug.

Due to the random nature of this algorithm, we may see different results each time
that we run it. On larger graphs this randomness will have less of an impact than it
does on our small sample graph.

PageRank
PageRank is the best known of the centrality algorithms. It measures the transitive (or
directional) influence of nodes. All the other centrality algorithms we discuss meas‐
ure the direct influence of a node, whereas PageRank considers the influence of a
node’s neighbors, and their neighbors. For example, having a few very powerful
friends can make you more influential than having a lot of less powerful friends. Pag‐
eRank is computed either by iteratively distributing one node’s rank over its neigh‐
bors or by randomly traversing the graph and counting the frequency with which
each node is hit during these walks.

PageRank is named after Google cofounder Larry Page, who created it to rank web‐
sites in Google’s search results. The basic assumption is that a page with more incom‐
ing and more influential incoming links is more likely a credible source. PageRank
measures the number and quality of incoming relationships to a node to determine
an estimation of how important that node is. Nodes with more sway over a network
are presumed to have more incoming relationships from other influential nodes.

Influence
The intuition behind influence is that relationships to more important nodes contrib‐
ute more to the influence of the node in question than equivalent connections to less
important nodes. Measuring influence usually involves scoring nodes, often with
weighted relationships, and then updating the scores over many iterations. Some‐
times all nodes are scored, and sometimes a random selection is used as a representa‐
tive distribution.

PageRank | 99

Keep in mind that centrality measures represent the importance of
a node in comparison to other nodes. Centrality is a ranking of the
potential impact of nodes, not a measure of actual impact. For
example, you might identify the two people with the highest cen‐
trality in a network, but perhaps policies or cultural norms are in
play that actually shift influence to others. Quantifying actual
impact is an active research area to develop additional influence
metrics.

The PageRank Formula
PageRank is defined in the original Google paper as follows:

PR u = 1 − d + d PR T1
C T1 + . . . + PR Tn

C Tn
where:

• We assume that a page u has citations from pages T1 to Tn.
• d is a damping factor which is set between 0 and 1. It is usually set to 0.85. You

can think of this as the probability that a user will continue clicking. This helps
minimize rank sink, explained in the next section.

• 1-d is the probability that a node is reached directly without following any rela‐
tionships.

• C(Tn) is defined as the out-degree of a node T.

Figure 5-11 walks through a small example of how PageRank will continue to update
the rank of a node until it converges or meets the set number of iterations.

100 | Chapter 5: Centrality Algorithms

Figure 5-11. Each iteration of PageRank has two calculation steps: one to update node
values and one to update link values.

PageRank | 101

Iteration, Random Surfers, and Rank Sinks
PageRank is an iterative algorithm that runs either until scores converge or until a set
number of iterations is reached.

Conceptually, PageRank assumes there is a web surfer visiting pages by following
links or by using a random URL. A damping factor _d _ defines the probability that
the next click will be through a link. You can think of it as the probability that a surfer
will become bored and randomly switch to another page. A PageRank score repre‐
sents the likelihood that a page is visited through an incoming link and not randomly.

A node, or group of nodes, without outgoing relationships (also called a dangling
node) can monopolize the PageRank score by refusing to share. This is known as a
rank sink. You can imagine this as a surfer that gets stuck on a page, or a subset of
pages, with no way out. Another difficulty is created by nodes that point only to each
other in a group. Circular references cause an increase in their ranks as the surfer
bounces back and forth among the nodes. These situations are portrayed in
Figure 5-12.

Figure 5-12. Rank sink is caused by a node, or group of nodes, without outgoing rela‐
tionships.

There are two strategies used to avoid rank sinks. First, when a node is reached that
has no outgoing relationships, PageRank assumes outgoing relationships to all nodes.
Traversing these invisible links is sometimes called teleportation. Second, the damping
factor provides another opportunity to avoid sinks by introducing a probability for
direct link versus random node visitation. When you set d to 0.85, a completely ran‐
dom node is visited 15% of the time.

102 | Chapter 5: Centrality Algorithms

Although the original formula recommends a damping factor of 0.85, its initial use
was on the World Wide Web with a power-law distribution of links (most pages have
very few links and a few pages have many). Lowering the damping factor decreases
the likelihood of following long relationship paths before taking a random jump. In
turn, this increases the contribution of a node’s immediate predecessors to its score
and rank.

If you see unexpected results from PageRank, it is worth doing some exploratory
analysis of the graph to see if any of these problems are the cause. Read Ian Rogers’s
article, “The Google PageRank Algorithm and How It Works” to learn more.

When Should I Use PageRank?
PageRank is now used in many domains outside web indexing. Use this algorithm
whenever you’re looking for broad influence over a network. For instance, if you’re
looking to target a gene that has the highest overall impact to a biological function, it
may not be the most connected one. It may, in fact, be the gene with the most rela‐
tionships with other, more significant functions.

Example use cases include:

• Presenting users with recommendations of other accounts that they may wish to
follow (Twitter uses Personalized PageRank for this). The algorithm is run over a
graph that contains shared interests and common connections. The approach is
described in more detail in the paper “WTF: The Who to Follow Service at Twit‐
ter”, by P. Gupta et al.

• Predicting traffic flow and human movement in public spaces or streets. The
algorithm is run over a graph of road intersections, where the PageRank score
reflects the tendency of people to park, or end their journey, on each street. This
is described in more detail in “Self-Organized Natural Roads for Predicting Traf‐
fic Flow: A Sensitivity Study”, a paper by B. Jiang, S. Zhao, and J. Yin.

• As part of anomaly and fraud detection systems in the healthcare and insurance
industries. PageRank helps reveal doctors or providers that are behaving in an
unusual manner, and the scores are then fed into a machine learning algorithm.

David Gleich describes many more uses for the algorithm in his paper, “PageRank
Beyond the Web”.

PageRank with Apache Spark
Now we’re ready to execute the PageRank algorithm. GraphFrames supports two
implementations of PageRank:

PageRank | 103

• The first implementation runs PageRank for a fixed number of iterations. This
can be run by setting the maxIter parameter.

• The second implementation runs PageRank until convergence. This can be run
by setting the tol parameter.

PageRank with a fixed number of iterations
Let’s see an example of the fixed iterations approach:

results = g.pageRank(resetProbability=0.15, maxIter=20)
results.vertices.sort("pagerank", ascending=False).show()

Notice in Spark that the damping factor is more intuitively called
the reset probability, with the inverse value. In other words, reset
Probability=0.15 in this example is equivalent to dampingFac
tor:0.85 in Neo4j.

If we run that code in pyspark we’ll see this output:

id pageRank
Doug 2.2865372087512252

Mark 2.1424484186137263

Alice 1.520330830262095

Michael 0.7274429252585624

Bridget 0.7274429252585624

Charles 0.5213852310709753

Amy 0.5097143486157744

David 0.36655842368870073

James 0.1981396884803788

As we might expect, Doug has the highest PageRank because he is followed by all
other users in his subgraph. Although Mark only has one follower, that follower is
Doug, so Mark is also considered important in this graph. It’s not only the number of
followers that is important, but also the importance of those followers.

The relationships in the graph on which we ran the PageRank algo‐
rithm don’t have weights, so each relationship is considered equal.
Relationship weights are added by specifying a weight column in
the relationships DataFrame.

104 | Chapter 5: Centrality Algorithms

PageRank until convergence
And now let’s try the convergence implementation that will run PageRank until it
closes in on a solution within the set tolerance:

results = g.pageRank(resetProbability=0.15, tol=0.01)
results.vertices.sort("pagerank", ascending=False).show()

If we run that code in pyspark we’ll see this output:

id pageRank
Doug 2.2233188859989745

Mark 2.090451188336932

Alice 1.5056291439101062

Michael 0.733738785109624

Bridget 0.733738785109624

Amy 0.559446807245026

Charles 0.5338811076334145

David 0.40232326274180685

James 0.21747203391449021

The PageRank scores for each person are slightly different than with the fixed number
of iterations variant, but as we would expect, their order remains the same.

Although convergence on a perfect solution may sound ideal, in
some scenarios PageRank cannot mathematically converge. For
larger graphs, PageRank execution may be prohibitively long. A
tolerance limit helps set an acceptable range for a converged result,
but many choose to use (or combine this approach with) the maxi‐
mum iteration option instead. The maximum iteration setting will
generally provide more performance consistency. Regardless of
which option you choose, you may need to test several different
limits to find what works for your dataset. Larger graphs typcially
require more iterations or smaller tolerance than medium-sized
graphs for better accuracy.

PageRank with Neo4j
We can also run PageRank in Neo4j. A call to the following procedure will calculate
the PageRank for each of the nodes in our graph:

CALL algo.pageRank.stream('User', 'FOLLOWS', {iterations:20, dampingFactor:0.85})
YIELD nodeId, score
RETURN algo.getNodeById(nodeId).id AS page, score
ORDER BY score DESC

PageRank | 105

Running this procedure gives the following result:

page score
Doug 1.6704119999999998

Mark 1.5610085

Alice 1.1106700000000003

Bridget 0.535373

Michael 0.535373

Amy 0.385875

Charles 0.3844895

David 0.2775

James 0.15000000000000002

As with the Spark example, Doug is the most influential user, and Mark follows
closely after as the only user that Doug follows. We can see the importance of the
nodes relative to each other in Figure 5-13.

PageRank implementations vary, so they can produce different
scoring even when the ordering is the same. Neo4j initializes nodes
using a value of 1 minus the dampening factor whereas Spark uses
a value of 1. In this case, the relative rankings (the goal of Pag‐
eRank) are identical but the underlying score values used to reach
those results are different.

Figure 5-13. Visualization of PageRank

106 | Chapter 5: Centrality Algorithms

As with our Spark example, the relationships in the graph on which
we ran the PageRank algorithm don’t have weights, so each rela‐
tionship is considered equal. Relationship weights can be consid‐
ered by including the weightProperty property in the config
passed to the PageRank procedure. For example, if relationships
have a property weight containing weights, we would pass the fol‐
lowing config to the procedure: weightProperty: "weight".

PageRank Variation: Personalized PageRank
Personalized PageRank (PPR) is a variant of the PageRank algorithm that calculates
the importance of nodes in a graph from the perspective of a specific node. For PPR,
random jumps refer back to a given set of starting nodes. This biases results toward,
or personalizes for, the start node. This bias and localization make PPR useful for
highly targeted recommendations.

Personalized PageRank with Apache Spark
We can calculate the personalized PageRank score for a given node by passing in the
sourceId parameter. The following code calculates the PPR for Doug:

me = "Doug"
results = g.pageRank(resetProbability=0.15, maxIter=20, sourceId=me)
people_to_follow = results.vertices.sort("pagerank", ascending=False)

already_follows = list(g.edges.filter(f"src = '{me}'").toPandas()["dst"])
people_to_exclude = already_follows + [me]

people_to_follow[~people_to_follow.id.isin(people_to_exclude)].show()

The results of this query could be used to make recommendations for people who
Doug should follow. Notice that we are also making sure that we exclude people who
Doug already follows, as well as himself, from our final result.

If we run that code in pyspark we’ll see this output:

id pageRank
Alice 0.1650183746272782

Michael 0.048842467744891996

Bridget 0.048842467744891996

Charles 0.03497796119878669

David 0.0

James 0.0

Amy 0.0

PageRank | 107

Alice is the best suggestion for somebody that Doug should follow, but we might sug‐
gest Michael and Bridget as well.

Summary
Centrality algorithms are an excellent tool for identifying influencers in a network. In
this chapter we’ve learned about the prototypical centrality algorithms: Degree Cen‐
trality, Closeness Centrality, Betweenness Centrality, and PageRank. We’ve also cov‐
ered several variations to deal with issues such as long runtimes and isolated
components, as well as options for alternative uses.

There are many wide-ranging uses for centrality algorithms, and we encourage their
exploration for a variety of analyses. You can apply what we’ve learned to locate opti‐
mal touch points for disseminating information, find the hidden brokers that control
the flow of resources, and uncover the indirect power players lurking in the shadows.

Next, we’ll turn to community detection algorithms that look at groups and parti‐
tions.

108 | Chapter 5: Centrality Algorithms

