
CHAPTER 3

Graph Platforms and Processing

In this chapter, we’ll quickly cover different methods for graph processing and the
most common platform approaches. We’ll look more closely at the two platforms
used in this book, Apache Spark and Neo4j, and when they may be appropriate for
different requirements. Platform installation guidelines are included to prepare you
for the next several chapters.

Graph Platform and Processing Considerations
Graph analytical processing has unique qualities such as computation that is
structure-driven, globally focused, and difficult to parse. In this section we’ll look at
the general considerations for graph platforms and processing.

Platform Considerations
There’s debate as to whether it’s better to scale up or scale out graph processing.
Should you use powerful multicore, large-memory machines and focus on efficient
data structures and multithreaded algorithms? Or are investments in distributed pro‐
cessing frameworks and related algorithms worthwhile?

A useful evaluation approach is the Configuration that Outperforms a Single Thread
(COST), as described in the research paper “Scalability! But at What COST?” by F.
McSherry, M. Isard, and D. Murray. COST provides us with a way to compare a sys‐
tem’s scalability with the overhead the system introduces. The core concept is that a
well-configured system using an optimized algorithm and data structure can outper‐
form current general-purpose scale-out solutions. It’s a method for measuring perfor‐
mance gains without rewarding systems that mask inefficiencies through
parallelization. Separating the ideas of scalability and efficient use of resources will
help us build a platform configured explicitly for our needs.
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Some approaches to graph platforms include highly integrated solutions that opti‐
mize algorithms, processing, and memory retrieval to work in tighter coordination.

Processing Considerations
There are different approaches for expressing data processing; for example, stream or
batch processing or the map-reduce paradigm for records-based data. However, for
graph data, there also exist approaches which incorporate the data dependencies
inherent in graph structures into their processing:

Node-centric
This approach uses nodes as processing units, having them accumulate and com‐
pute state and communicate state changes via messages to their neighbors. This
model uses the provided transformation functions for more straightforward
implementations of each algorithm.

Relationship-centric
This approach has similarities with the node-centric model but may perform bet‐
ter for subgraph and sequential analysis.

Graph-centric
These models process nodes within a subgraph independently of other subgraphs
while (minimal) communication to other subgraphs happens via messaging.

Traversal-centric
These models use the accumulation of data by the traverser while navigating the
graph as their means of computation.

Algorithm-centric
These approaches use various methods to optimize implementations per algo‐
rithm. This is a hybrid of the previous models.

Pregel is a node-centric, fault-tolerant parallel processing frame‐
work created by Google for performant analysis of large graphs. 
Pregel is based on the bulk synchronous parallel (BSP) model. BSP
simplifies parallel programming by having distinct computation
and communication phases.
Pregel adds a node-centric abstraction atop BSP whereby algo‐
rithms compute values from incoming messages from each node’s
neighbors. These computations are executed once per iteration and
can update node values and send messages to other nodes. The
nodes can also combine messages for transmission during the
communication phase, which helpfully reduces the amount of net‐
work chatter. The algorithm completes when either no new mes‐
sages are sent or a set limit has been reached.
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Most of these graph-specific approaches require the presence of the entire graph for
efficient cross-topological operations. This is because separating and distributing the
graph data leads to extensive data transfers and reshuffling between worker instances.
This can be difficult for the many algorithms that need to iteratively process the
global graph structure.

Representative Platforms
To address the requirements of graph processing, several platforms have emerged.
Traditionally there was a separation between graph compute engines and graph data‐
bases, which required users to move their data depending on their process needs:

Graph compute engines
These are read-only, nontransactional engines that focus on efficient execution of
iterative graph analytics and queries of the whole graph. Graph compute engines
support different definition and processing paradigms for graph algorithms, like
node-centric (e.g., Pregel, Gather-Apply-Scatter) or MapReduce-based
approaches (e.g., PACT). Examples of such engines are Giraph, GraphLab,
Graph-Engine, and Apache Spark.

Graph databases
From a transactional background, these focus on fast writes and reads using
smaller queries that generally touch a small fraction of a graph. Their strengths
are in operational robustness and high concurrent scalability for many users.

Selecting Our Platform
Choosing a production platform involves many considersations, such as the type of
analysis to be run, performance needs, the existing environment, and team preferen‐
ces. We use Apache Spark and Neo4j to showcase graph algorithms in this book
because they both offer unique advantages.

Spark is an example of a scale-out and node-centric graph compute engine. Its popu‐
lar computing framework and libraries support a variety of data science workflows. 
Spark may be the right platform when our:

• Algorithms are fundamentally parallelizable or partitionable.
• Algorithm workflows need “multilingual” operations in multiple tools and lan‐

guages.
• Analysis can be run offline in batch mode.
• Graph analysis is on data not transformed into a graph format.
• Team needs and has the expertise to code and implement their own algorithms.
• Team uses graph algorithms infrequently.
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• Team prefers to keep all data and analysis within the Hadoop ecosystem.

The Neo4j Graph Platform is an example of a tightly integrated graph database and
algorithm-centric processing, optimized for graphs. It is popular for building graph-
based applications and includes a graph algorithms library tuned for its native graph
database. Neo4j may be the right platform when our:

• Algorithms are more iterative and require good memory locality.
• Algorithms and results are performance sensitive.
• Graph analysis is on complex graph data and/or requires deep path traversal.
• Analysis/results are integrated with transactional workloads.
• Results are used to enrich an existing graph.
• Team needs to integrate with graph-based visualization tools.
• Team prefers prepackaged and supported algorithms.

Finally, some organizations use both Neo4j and Spark for graph processing: Spark for
the high-level filtering and preprocessing of massive datasets and data integration,
and Neo4j for more specific processing and integration with graph-based applica‐
tions.

Apache Spark
Apache Spark (henceforth just Spark) is an analytics engine for large-scale data pro‐
cessing. It uses a table abstraction called a DataFrame to represent and process data in
rows of named and typed columns. The platform integrates diverse data sources and
supports languages such as Scala, Python, and R. Spark supports various analytics
libraries, as shown in Figure 3-1. Its memory-based system operates by using effi‐
ciently distributed compute graphs.

GraphFrames is a graph processing library for Spark that succeeded GraphX in 2016,
although it is separate from the core Apache Spark. GraphFrames is based on
GraphX, but uses DataFrames as its underlying data structure. GraphFrames has sup‐
port for the Java, Scala, and Python programming languages. In spring 2019, the
“Spark Graph: Property Graphs, Cypher Queries, and Algorithms” proposal was
accepted (see “Spark Graph Evolution” on page 33). We expect this to bring a number
of graph features using the DataFrame framework and Cypher query language into
the core Spark project. However, in this book our examples will be based on the
Python API (PySpark) because of its current popularity with Spark data scientists.
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Figure 3-1. Spark is an open-source distributed and general-purpose clustercomputing
framework. It includes several modules for various workloads.

Spark Graph Evolution
The Spark Graph project is a joint initiative from Apache project contributors in
Databricks and Neo4j to bring support for DataFrames, Cypher, and DataFrames-
based algorithms into the core Apache Spark project as part of the 3.0 release.

Cypher started as a declarative graph query language implemented in Neo4j, but
through the openCypher project it’s now used by multiple database vendors and an
opensource project, Cypher for Apache Spark (CAPS).

In the very near future, we look forward to using CAPS to load and project graph
data as an integrated part of the Spark platform. We’ll publish Cypher examples after
the Spark Graph project is implemented.

This development does not impact the algorithms covered in this book but may add
new options to how procedures are called. The underlying data model, concepts, and
computation of graph algorithms will remain the same.

Nodes and relationships are represented as DataFrames with a unique ID for each
node and a source and destination node for each relationship. We can see an example
of a nodes DataFrame in Table 3-1 and a relationships DataFrame in Table 3-2. A
GraphFrame based on these DataFrames would have two nodes, JFK and SEA, and
one relationship, from JFK to SEA.

Table 3-1. Nodes DataFrame

id city state
JFK New York NY

SEA Seattle WA
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Table 3-2. Relationships DataFrame

src dst delay tripId
JFK SEA 45 1058923

The nodes DataFrame must have an id column—the value in this column is used to
uniquely identify each node. The relationships DataFrame must have src and dst
columns—the values in these columns describe which nodes are connected and
should refer to entries that appear in the id column of the nodes DataFrame.

The nodes and relationships DataFrames can be loaded using any of the DataFrame
data sources, including Parquet, JSON, and CSV. Queries are described using a com‐
bination of the PySpark API and Spark SQL.

GraphFrames also provides users with an extension point to implement algorithms
that aren’t available out of the box.

Installing Spark
You can download Spark from the Apache Spark website. Once you’ve downloaded it,
you need to install the following libraries to execute Spark jobs from Python:

pip install pyspark graphframes

You can then launch the pyspark REPL by executing the following command:

export SPARK_VERSION="spark-2.4.0-bin-hadoop2.7"
./${SPARK_VERSION}/bin/pyspark \
  --driver-memory 2g \
  --executor-memory 6g \
  --packages graphframes:graphframes:0.7.0-spark2.4-s_2.11

At the time of writing the latest released version of Spark is spark-2.4.0-bin-
hadoop2.7, but that may have changed by the time you read this. If so, be sure to
change the SPARK_VERSION environment variable appropriately.

Although Spark jobs should be executed on a cluster of machines,
for demonstration purposes we’re only going to execute the jobs on
a single machine. You can learn more about running Spark in pro‐
duction environments in Spark: The Definitive Guide, by Bill
Chambers and Matei Zaharia (O’Reilly).

You’re now ready to learn how to run graph algorithms on Spark.

Neo4j Graph Platform
The Neo4j Graph Platform supports transactional processing and analytical process‐
ing of graph data. It includes graph storage and compute with data management and
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analytics tooling. The set of integrated tools sits on top of a common protocol, API,
and query language (Cypher) to provide effective access for different uses, as shown
in Figure 3-2.

Figure 3-2. The Neo4j Graph Platform is built around a native graph database that sup‐
ports transactional applications and graph analytics.

In this book, we’ll be using the Neo4j Graph Algorithms library. The library is
installed as a plug-in alongside the database and provides a set of user-defined proce‐
dures that can be executed via the Cypher query language.

The graph algorithm library includes parallel versions of algorithms supporting
graph analytics and machine learning workflows. The algorithms are executed on top
of a task -based parallel computation framework and are optimized for the Neo4j
platform. For different graph sizes there are internal implementations that scale up to
tens of billions of nodes and relationships.

Results can be streamed to the client as a tuples stream and tabular results can be
used as a driving table for further processing. Results can also be optionally written
back to the database efficiently as node properties or relationship types.

In this book, we’ll also be using the Neo4j Awesome Procedures on
Cypher (APOC) library. APOC consists of more than 450 proce‐
dures and functions to help with common tasks such as data inte‐
gration, data conversion, and model refactoring.
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Installing Neo4j
Neo4j Desktop is a convenient way for developers to work with local Neo4j databases.
It can be downloaded from the Neo4j website. The graph algorithms and APOC
libraries can be installed as plug-ins once you’ve installed and launched the Neo4j
Desktop. In the lefthand menu, create a project and select it. Then click Manage on
the database where you want to install the plug-ins. On the Plugins tab, you’ll see
options for several plug-ins. Click the Install button for graph algorithms and APOC.
See Figures 3-3 and 3-4.

Figure 3-3. Installing the graph algorithms library
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Figure 3-4. Installing the APOC library

Jennifer Reif explains the installation process in more detail in her blog post “Explore
New Worlds—Adding Plugins to Neo4j”. You’re now ready to learn how to run graph
algorithms in Neo4j.

Summary
In the previous chapters we’ve described why graph analytics is important to studying
real-world networks and looked at fundamental graph concepts, analysis, and pro‐
cessing. This puts us on solid footing for understanding how to apply graph algo‐
rithms. In the next chapters, we’ll discover how to run graph algorithms with
examples in Spark and Neo4j.
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