
CHAPTER 4

Pathfinding and Graph Search Algorithms

Graph search algorithms explore a graph either for general discovery or explicit
search. These algorithms carve paths through the graph, but there is no expectation
that those paths are computationally optimal. We will cover Breadth First Search and
Depth First Search because they are fundamental for traversing a graph and are often
a required first step for many other types of analysis.

Pathfinding algorithms build on top of graph search algorithms and explore routes
between nodes, starting at one node and traversing through relationships until the
destination has been reached. These algorithms are used to identify optimal routes
through a graph for uses such as logistics planning, least cost call or IP routing, and
gaming simulation.

Specifically, the pathfinding algorithms we’ll cover are:

• Shortest Path, with two useful variations (A* and Yen’s): finding the shortest path
or paths between two chosen nodes

• All Pairs Shortest Path and Single Source Shortest Path: for finding the shortest
paths between all pairs or from a chosen node to all others

• Minimum Spanning Tree: for finding a connected tree structure with the smallest
cost for visiting all nodes from a chosen node

• Random Walk: because it’s a useful preprocessing/sampling step for machine
learning workflows and other graph algorithms

In this chapter we’ll explain how these algorithms work and show examples in Spark
and Neo4j. In cases where an algorithm is only available in one platform, we’ll pro‐
vide just that one example or illustrate how you can customize our implementation.

39

Figure 4-1 shows the key differences between these types of algorithms, and Table 4-1
is a quick reference to what each algorithm computes with an example use.

Figure 4-1. Pathfinding and search algorithms

40 | Chapter 4: Pathfinding and Graph Search Algorithms

Table 4-1. Overview of pathfinding and graph search algorithms

Algorithm type What it does Example use Spark
example

Neo4j
example

Breadth First Search Traverses a tree structure by fanning
out to explore the nearest neighbors
and then their sublevel neighbors

Locating neighbor nodes in
GPS systems to identify
nearby places of interest

Yes No

Depth First Search Traverses a tree structure by exploring
as far as possible down each branch
before backtracking

Discovering an optimal
solution path in gaming
simulations with
hierarchical choices

No No

Shortest Path
Variations: A*, Yen’s

Calculates the shortest path between a
pair of nodes

Finding driving directions
between two locations

Yes Yes

All Pairs Shortest Path Calculates the shortest path between
all pairs of nodes in the graph

Evaluating alternate routes
around a traffic jam

Yes Yes

Single Source Shortest Path Calculates the shorest path between a
single root node and all other nodes

Least cost routing of phone
calls

Yes Yes

Minimum Spanning Tree Calculates the path in a connected tree
structure with the smallest cost for
visiting all nodes

Optimizing connected
routing, such as laying cable
or garbage collection

No Yes

Random Walk Returns a list of nodes along a path of
specified size by randomly choosing
relationships to traverse.

Augmenting training for
machine learning or data for
graph algorithms.

No Yes

First we’ll take a look at the dataset for our examples and walk through how to import
the data into Apache Spark and Neo4j. For each algorithm, we’ll start with a short
description of the algorithm and any pertinent information on how it operates. Most
sections also include guidance on when to use related algorithms. Finally, we provide
working sample code using the sample dataset at the end of each algorithm section.

Let’s get started!

Example Data: The Transport Graph
All connected data contains paths between nodes, which is why search and pathfind‐
ing are the starting points for graph analytics. Transportation datasets illustrate these
relationships in an intuitive and accessible way. The examples in this chapter run
against a graph containing a subset of the European road network. You can download
the nodes and relationships files from the book’s GitHub repository.

Table 4-2. transport-nodes.csv

id latitude longitude population
Amsterdam 52.379189 4.899431 821752

Example Data: The Transport Graph | 41

id latitude longitude population
Utrecht 52.092876 5.104480 334176

Den Haag 52.078663 4.288788 514861

Immingham 53.61239 -0.22219 9642

Doncaster 53.52285 -1.13116 302400

Hoek van Holland 51.9775 4.13333 9382

Felixstowe 51.96375 1.3511 23689

Ipswich 52.05917 1.15545 133384

Colchester 51.88921 0.90421 104390

London 51.509865 -0.118092 8787892

Rotterdam 51.9225 4.47917 623652

Gouda 52.01667 4.70833 70939

Table 4-3. transport-relationships.csv

src dst relationship cost
Amsterdam Utrecht EROAD 46

Amsterdam Den Haag EROAD 59

Den Haag Rotterdam EROAD 26

Amsterdam Immingham EROAD 369

Immingham Doncaster EROAD 74

Doncaster London EROAD 277

Hoek van Holland Den Haag EROAD 27

Felixstowe Hoek van Holland EROAD 207

Ipswich Felixstowe EROAD 22

Colchester Ipswich EROAD 32

London Colchester EROAD 106

Gouda Rotterdam EROAD 25

Gouda Utrecht EROAD 35

Den Haag Gouda EROAD 32

Hoek van Holland Rotterdam EROAD 33

Figure 4-2 shows the target graph that we want to construct.

42 | Chapter 4: Pathfinding and Graph Search Algorithms

Figure 4-2. The transport graph

For simplicity we consider the graph in Figure 4-2 to be undirected because most
roads between cities are bidirectional. We’d get slightly different results if we evalu‐
ated the graph as directed because of the small number of one-way streets, but the
overall approach remains similar. However, both Spark and Neo4j operate on direc‐
ted graphs. In cases like this where we want to work with undirected graphs (e.g.,
bidirectional roads), there is an easy way to accomplish that:

• For Spark, we’ll create two relationships for each row in transport-
relationships.csv—one going from dst to src and one from src to dst.

• For Neo4j, we’ll create a single relationship and then ignore the relationship
direction when we run the algorithms.

Having understood those little modeling workarounds, we can now get on with load‐
ing graphs into Spark and Neo4j from the example CSV files.

Importing the Data into Apache Spark
Starting with Spark, we’ll first import the packages we need from Spark and the
GraphFrames package:

from pyspark.sql.types import *
from graphframes import *

Example Data: The Transport Graph | 43

The following function creates a GraphFrame from the example CSV files:

def create_transport_graph():
 node_fields = [
 StructField("id", StringType(), True),
 StructField("latitude", FloatType(), True),
 StructField("longitude", FloatType(), True),
 StructField("population", IntegerType(), True)
]
 nodes = spark.read.csv("data/transport-nodes.csv", header=True,
 schema=StructType(node_fields))

 rels = spark.read.csv("data/transport-relationships.csv", header=True)
 reversed_rels = (rels.withColumn("newSrc", rels.dst)
 .withColumn("newDst", rels.src)
 .drop("dst", "src")
 .withColumnRenamed("newSrc", "src")
 .withColumnRenamed("newDst", "dst")
 .select("src", "dst", "relationship", "cost"))

 relationships = rels.union(reversed_rels)

 return GraphFrame(nodes, relationships)

Loading the nodes is easy, but for the relationships we need to do a little preprocess‐
ing so that we can create each relationship twice.

Now let’s call that function:

g = create_transport_graph()

Importing the Data into Neo4j
Now for Neo4j. We’ll start by loading the nodes:

WITH "https://github.com/neo4j-graph-analytics/book/raw/master/data" AS base
WITH base + "transport-nodes.csv" AS uri
LOAD CSV WITH HEADERS FROM uri AS row
MERGE (place:Place {id:row.id})
SET place.latitude = toFloat(row.latitude),
 place.longitude = toFloat(row.latitude),
 place.population = toInteger(row.population)

And now the relationships:

WITH "https://github.com/neo4j-graph-analytics/book/raw/master/data/" AS base
WITH base + "transport-relationships.csv" AS uri
LOAD CSV WITH HEADERS FROM uri AS row
MATCH (origin:Place {id: row.src})
MATCH (destination:Place {id: row.dst})
MERGE (origin)-[:EROAD {distance: toInteger(row.cost)}]->(destination)

Although we’re storing directed relationships, we’ll ignore the direction when we exe‐
cute algorithms later in the chapter.

44 | Chapter 4: Pathfinding and Graph Search Algorithms

Breadth First Search
Breadth First Search (BFS) is one of the fundamental graph traversal algorithms. It
starts from a chosen node and explores all of its neighbors at one hop away before
visiting all the neighbors at two hops away, and so on.

The algorithm was first published in 1959 by Edward F. Moore, who used it to find
the shortest path out of a maze. It was then developed into a wire routing algorithm
by C. Y. Lee in 1961, as described in “An Algorithm for Path Connections and Its
Applications”.

BFS is most commonly used as the basis for other more goal-oriented algorithms. For
example, Shortest Path, Connected Components, and Closeness Centrality all use the
BFS algorithm. It can also be used to find the shortest path between nodes.

Figure 4-3 shows the order in which we would visit the nodes of our transport graph
if we were performing a breadth first search that started from the Dutch city, Den
Haag (in English, The Hague). The numbers next to the city name indicate the order
in which each node is visited.

Breadth First Search | 45

Figure 4-3. Breadth First Search starting from Den Haag. Node numbers indicate the
order traversed.

We first visit all of Den Haag’s direct neighbors, before visiting their neighbors, and
their neighbors’ neighbors, until we’ve run out of relationships to traverse.

Breadth First Search with Apache Spark
Spark’s implementation of the Breadth First Search algorithm finds the shortest path
between two nodes by the number of relationships (i.e., hops) between them. You can
explicitly name your target node or add criteria to be met.

46 | Chapter 4: Pathfinding and Graph Search Algorithms

For example, we can use the bfs function to find the first medium-sized (by Euro‐
pean standards) city that has a population of between 100,000 and 300,000 people.
Let’s first check which places have a population matching those criteria:

(g.vertices
 .filter("population > 100000 and population < 300000")
 .sort("population")
 .show())

This is the output we’ll see:

id latitude longitude population
Colchester 51.88921 0.90421 104390

Ipswich 52.05917 1.15545 133384

There are only two places matching our criteria, and we’d expect to reach Ipswich first
based on a breadth first search.

The following code finds the shortest path from Den Haag to a medium-sized city:

from_expr = "id='Den Haag'"
to_expr = "population > 100000 and population < 300000 and id <> 'Den Haag'"
result = g.bfs(from_expr, to_expr)

result contains columns that describe the nodes and relationships between the two
cities. We can run the following code to see the list of columns returned:

print(result.columns)

This is the output we’ll see:

['from', 'e0', 'v1', 'e1', 'v2', 'e2', 'to']

Columns beginning with e represent relationships (edges) and columns beginning
with v represent nodes (vertices). We’re only interested in the nodes, so let’s filter out
any columns that begin with e from the resulting DataFrame:

columns = [column for column in result.columns if not column.startswith("e")]
result.select(columns).show()

If we run the code in pyspark we’ll see this output:

from v1 v2 to
[Den Haag, 52.078… [Hoek van Holland… [Felixstowe, 51.9… [Ipswich, 52.0591…

As expected, the bfs algorithm returns Ipswich! Remember that this function is satis‐
fied when it finds the first match, and as you can see in Figure 4-3, Ipswich is evalu‐
ated before Colchester.

Breadth First Search | 47

Depth First Search
Depth First Search (DFS) is the other fundamental graph traversal algorithm. It starts
from a chosen node, picks one of its neighbors, and then traverses as far as it can
along that path before backtracking.

DFS was originally invented by French mathematician Charles Pierre Trémaux as a
strategy for solving mazes. It provides a useful tool to simulate possible paths for sce‐
nario modeling.

Figure 4-4 shows the order in which we would visit the nodes of our transport graph
if we were performing a DFS that started from Den Haag.

Figure 4-4. Depth First Search starting from Den Haag. Node numbers indicate the
order traversed.

Notice how different the node order is compared to BFS. For this DFS, we start by
traversing from Den Haag to Amsterdam, and are then able to get to every other
node in the graph without needing to backtrack at all!

We can see how search algorithms lay the groundwork for moving through graphs.
Now let’s look at the pathfinding algorithms that find the cheapest path in terms of
the number of hops or weight. Weights can be anything measured, such as time, dis‐
tance, capacity, or cost.

48 | Chapter 4: Pathfinding and Graph Search Algorithms

Two Special Paths/Cycles
There are two special paths in graph analysis that are worth noting. First, an Eulerian
path is one where every relationship is visited exactly once. Second, a Hamiltonian
path is one where every node is visited exactly once. A path can be both Eulerian and
Hamiltonian, and if you start and finish at the same node it’s considered a cycle or
tour. A visual comparison is shown in Figure 4-5.

Figure 4-5. Eulerian and Hamiltonian cycles have a special historical significance.

The Königsberg bridges problem from Chapter 1 was searching for an Eulerian cycle.
It’s easy to see how this applies to routing scenarios such as directing snowplows and
mail delivery. However, Eulerian paths are also used by other algorithms in process‐
ing data in tree structures and are simpler mathematically to study than other cycles.

The Hamiltonian cycle is best known from its relation to the Traveling Salesman Prob‐
lem (TSP), which asks, “What’s the shortest possible route for a salesperson to visit
each of their assigned cities and return to the origin city?” Although seemingly simi‐
lar to an Eulerian tour, the TSP is computationally more intensive with approxima‐
tion alternatives. It’s used in a wide variety of planning, logistics, and optimization
problems.

Shortest Path
The Shortest Path algorithm calculates the shortest (weighted) path between a pair of
nodes. It’s useful for user interactions and dynamic workflows because it works in real
time.

Shortest Path | 49

Pathfinding has a history dating back to the 19th century and is considered to be a
classic graph problem. It gained prominence in the early 1950s in the context of alter‐
nate routing; that is, finding the second-shortest route if the shortest route is blocked.
In 1956, Edsger Dijkstra created the best-known of these algorithms.

Dijkstra’s Shortest Path algorithm operates by first finding the lowest-weight relation‐
ship from the start node to directly connected nodes. It keeps track of those weights
and moves to the “closest” node. It then performs the same calculation, but now as a
cumulative total from the start node. The algorithm continues to do this, evaluating a
“wave” of cumulative weights and always choosing the lowest weighted cumulative
path to advance along, until it reaches the destination node.

You’ll notice in graph analytics the use of the terms weight, cost,
distance, and hop when describing relationships and paths.
“Weight” is the numeric value of a particular property of a relation‐
ship. “Cost” is used similarly, but we’ll see it more often when con‐
sidering the total weight of a path.
“Distance” is often used within an algorithm as the name of the
relationship property that indicates the cost of traversing between a
pair of nodes. It’s not required that this be an actual physical meas‐
ure of distance. “Hop” is commonly used to express the number of
relationships between two nodes. You may see some of these terms
combined, as in “It’s a five-hop distance to London” or “That’s the
lowest cost for the distance.”

When Should I Use Shortest Path?
Use Shortest Path to find optimal routes between a pair of nodes, based on either the
number of hops or any weighted relationship value. For example, it can provide real-
time answers about degrees of separation, the shortest distance between points, or the
least expensive route. You can also use this algorithm to simply explore the connec‐
tions between particular nodes.

Example use cases include:

• Finding directions between locations. Web-mapping tools such as Google Maps
use the Shortest Path algorithm, or a close variant, to provide driving directions.

• Finding the degrees of separation between people in social networks. For exam‐
ple, when you view someone’s profile on LinkedIn, it will indicate how many
people separate you in the graph, as well as listing your mutual connections.

• Finding the number of degrees of separation between an actor and Kevin Bacon
based on the movies they’ve appeared in (the Bacon Number). An example of this
can be seen on the Oracle of Bacon website. The Erdös Number Project provides

50 | Chapter 4: Pathfinding and Graph Search Algorithms

a similar graph analysis based on collaboration with Paul Erdös, one of the most
prolific mathematicians of the twentieth century.

Dijkstra’s algorithm does not support negative weights. The algo‐
rithm assumes that adding a relationship to a path can never make
a path shorter—an invariant that would be violated with negative
weights.

Shortest Path with Neo4j
The Neo4j Graph Algorithms library has a built-in procedure that we can use to com‐
pute both unweighted and weighted shortest paths. Let’s first learn how to compute
unweighted shortest paths.

All of Neo4j’s Shortest Path algorithms assume that the underlying
graph is undirected. You can override this by passing in the param‐
eter direction: "OUTGOING" or direction: "INCOMING".

To have Neo4j’s Shortest Path algorithm ignore weights we need to pass null as the
third parameter to the procedure, which indicates that we don’t want to consider a
weight property when executing the algorithm. The algorithm will then assume a
default weight of 1.0 for each relationship:

MATCH (source:Place {id: "Amsterdam"}),
 (destination:Place {id: "London"})
CALL algo.shortestPath.stream(source, destination, null)
YIELD nodeId, cost
RETURN algo.getNodeById(nodeId).id AS place, cost

This query returns the following output:

place cost
Amsterdam 0.0

Immingham 1.0

Doncaster 2.0

London 3.0

Here the cost is the cumulative total for relationships (or hops). This is the same path
as we see using Breadth First Search in Spark.

Shortest Path | 51

We could even work out the total distance of following this path by writing a bit of
postprocessing Cypher. The following procedure calculates the shortest unweighted
path and then works out what the actual cost of that path would be:

MATCH (source:Place {id: "Amsterdam"}),
 (destination:Place {id: "London"})
CALL algo.shortestPath.stream(source, destination, null)
YIELD nodeId, cost

WITH collect(algo.getNodeById(nodeId)) AS path
UNWIND range(0, size(path)-1) AS index
WITH path[index] AS current, path[index+1] AS next
WITH current, next, [(current)-[r:EROAD]-(next) | r.distance][0] AS distance

WITH collect({current: current, next:next, distance: distance}) AS stops
UNWIND range(0, size(stops)-1) AS index
WITH stops[index] AS location, stops, index
RETURN location.current.id AS place,
 reduce(acc=0.0,
 distance in [stop in stops[0..index] | stop.distance] |
 acc + distance) AS cost

If the previous code feels a bit unwieldy, notice that the tricky part is figuring out how
to massage the data to include the cost over the whole journey. This is helpful to keep
in mind when we need the cumulative path cost.

The query returns the following result:

place cost
Amsterdam 0.0

Immingham 369.0

Doncaster 443.0

London 720.0

Figure 4-6 shows the unweighted shortest path from Amsterdam to London, routing
us through the fewest number of cities. It has a total cost of 720 km.

52 | Chapter 4: Pathfinding and Graph Search Algorithms

Figure 4-6. The unweighted shortest path between Amsterdam and London

Choosing a route with the fewest number of nodes visited might be very useful in sit‐
uations such as subway systems, where less stops are highly desirable. However, in a
driving scenario, we’re probably more interested in the total cost using the shortest
weighted path.

Shortest Path (Weighted) with Neo4j
We can execute the Weighted Shortest Path algorithm to find the shortest path
between Amsterdam and London like this:

MATCH (source:Place {id: "Amsterdam"}),
 (destination:Place {id: "London"})
CALL algo.shortestPath.stream(source, destination, "distance")
YIELD nodeId, cost
RETURN algo.getNodeById(nodeId).id AS place, cost

The parameters passed to this algorithm are:

source

The node where our shortest path search begins

destination

The node where our shortest path ends

distance

The name of the relationship property that indicates the cost of traversing
between a pair of nodes

The cost is the number of kilometers between two locations. The query returns the
following result:

place cost
Amsterdam 0.0

Shortest Path | 53

place cost
Den Haag 59.0

Hoek van Holland 86.0

Felixstowe 293.0

Ipswich 315.0

Colchester 347.0

London 453.0

The quickest route takes us via Den Haag, Hoek van Holland, Felixstowe, Ipswich,
and Colchester! The cost shown is the cumulative total as we progress through the
cities. First we go from Amsterdam to Den Haag, at a cost of 59. Then we go from
Den Haag to Hoek van Holland, at a cumulative cost of 86—and so on. Finally, we
arrive in London, from Colchester, for a total cost of 453 km.

Remember that the unweighted shortest path had a total cost of 720 km, so we’ve
been able to save 267 km by taking weights into account when computing the shortest
path.

Shortest Path (Weighted) with Apache Spark
In the Breadth First Search with Apache Spark section we learned how to find the
shortest path between two nodes. That shortest path was based on hops and therefore
isn’t the same as the shortest weighted path, which would tell us the shortest total dis‐
tance between cities.

If we want to find the shortest weighted path (in this case, distance) we need to use
the cost property, which is used for various types of weighting. This option is not
available out of the box with GraphFrames, so we need to write our own version of
Weighted Shortest Path using its aggregateMessages framework. Most of our algo‐
rithm examples for Spark use the simpler process of calling on algorithms from the
library, but we have the option of writing our own functions. More information on
aggregateMessages can be found in the “Message passing via AggregateMessages”
section of the GraphFrames user guide.

When available, we recommend leveraging preexisting, tested
libraries. Writing our own functions, especially for more compli‐
cated algorithms, requires a deeper understanding of our data and
calculations.
The following example should be treated as a reference implemen‐
tation, and would need to be optimized before running on a larger
dataset. Those that aren’t interested in writing their own functions
can skip this example.

54 | Chapter 4: Pathfinding and Graph Search Algorithms

Before we create our function, we’ll import some libraries that we’ll use:

from graphframes.lib import AggregateMessages as AM
from pyspark.sql import functions as F

The Aggregate_Messages module is part of the GraphFrames library and contains
some useful helper functions.

Now let’s write our function. We first create a user-defined function that we’ll use to
build the paths between our source and destination:

add_path_udf = F.udf(lambda path, id: path + [id], ArrayType(StringType()))

And now for the main function, which calculates the shortest path starting from an
origin and returns as soon as the destination has been visited:

def shortest_path(g, origin, destination, column_name="cost"):
 if g.vertices.filter(g.vertices.id == destination).count() == 0:
 return (spark.createDataFrame(sc.emptyRDD(), g.vertices.schema)
 .withColumn("path", F.array()))

 vertices = (g.vertices.withColumn("visited", F.lit(False))
 .withColumn("distance", F.when(g.vertices["id"] == origin, 0)
 .otherwise(float("inf")))
 .withColumn("path", F.array()))
 cached_vertices = AM.getCachedDataFrame(vertices)
 g2 = GraphFrame(cached_vertices, g.edges)

 while g2.vertices.filter('visited == False').first():
 current_node_id = g2.vertices.filter('visited == False').sort
 ("distance").first().id

 msg_distance = AM.edge[column_name] + AM.src['distance']
 msg_path = add_path_udf(AM.src["path"], AM.src["id"])
 msg_for_dst = F.when(AM.src['id'] == current_node_id,
 F.struct(msg_distance, msg_path))
 new_distances = g2.aggregateMessages(F.min(AM.msg).alias("aggMess"),
 sendToDst=msg_for_dst)

 new_visited_col = F.when(
 g2.vertices.visited | (g2.vertices.id == current_node_id),
 True).otherwise(False)
 new_distance_col = F.when(new_distances["aggMess"].isNotNull() &
 (new_distances.aggMess["col1"]
 < g2.vertices.distance),
 new_distances.aggMess["col1"])
 .otherwise(g2.vertices.distance)
 new_path_col = F.when(new_distances["aggMess"].isNotNull() &
 (new_distances.aggMess["col1"]
 < g2.vertices.distance), new_distances.aggMess["col2"]
 .cast("array<string>")).otherwise(g2.vertices.path)

 new_vertices = (g2.vertices.join(new_distances, on="id",

Shortest Path | 55

 how="left_outer")
 .drop(new_distances["id"])
 .withColumn("visited", new_visited_col)
 .withColumn("newDistance", new_distance_col)
 .withColumn("newPath", new_path_col)
 .drop("aggMess", "distance", "path")
 .withColumnRenamed('newDistance', 'distance')
 .withColumnRenamed('newPath', 'path'))
 cached_new_vertices = AM.getCachedDataFrame(new_vertices)
 g2 = GraphFrame(cached_new_vertices, g2.edges)
 if g2.vertices.filter(g2.vertices.id == destination).first().visited:
 return (g2.vertices.filter(g2.vertices.id == destination)
 .withColumn("newPath", add_path_udf("path", "id"))
 .drop("visited", "path")
 .withColumnRenamed("newPath", "path"))
 return (spark.createDataFrame(sc.emptyRDD(), g.vertices.schema)
 .withColumn("path", F.array()))

If we store references to any DataFrames in our functions, we need
to cache them using the AM.getCachedDataFrame function or we’ll
encounter a memory leak during execution. In the shortest_path
function we use this function to cache the vertices and new_verti
ces DataFrames.

If we wanted to find the shortest path between Amsterdam and Colchester we could
call that function like so:

result = shortest_path(g, "Amsterdam", "Colchester", "cost")
result.select("id", "distance", "path").show(truncate=False)

which would return the following result:

id distance path
Colchester 347.0 [Amsterdam, Den Haag, Hoek van Holland, Felixstowe, Ipswich, Colchester]

The total distance of the shortest path between Amsterdam and Colchester is 347 km
and takes us via Den Haag, Hoek van Holland, Felixstowe, and Ipswich. By contrast,
the shortest path in terms of number of relationships between the locations, which we
worked out with the Breadth First Search algorithm (refer back to Figure 4-4), would
take us via Immingham, Doncaster, and London.

Shortest Path Variation: A*
The A* Shortest Path algorithm improves on Dijkstra’s by finding shortest paths more
quickly. It does this by allowing the inclusion of extra information that the algorithm
can use, as part of a heuristic function, when determining which paths to explore
next.

56 | Chapter 4: Pathfinding and Graph Search Algorithms

The algorithm was invented by Peter Hart, Nils Nilsson, and Bertram Raphael and
described in their 1968 paper “A Formal Basis for the Heuristic Determination of
Minimum Cost Paths”.

The A* algorithm operates by determining which of its partial paths to expand at
each iteration of its main loop. It does so based on an estimate of the cost (heuristic)
still left to reach the goal node.

Be thoughtful in the heuristic employed to estimate path costs.
Underestimating path costs may unnecessarily include some paths
that could have been eliminated, but the results will still be accu‐
rate. However, if the heuristic overestimates path costs, it may skip
over actual shorter paths (incorrectly estimated to be longer) that
should have been evaluated, which can lead to inaccurate results.

A* selects the path that minimizes the following function:

`f(n) = g(n) + h(n)`

where:

• g(n) is the cost of the path from the starting point to node n.
• h(n) is the estimated cost of the path from node n to the destination node, as

computed by a heuristic.

In Neo4j’s implementation, geospatial distance is used as the heu‐
ristic. In our example transportation dataset we use the latitude and
longitude of each location as part of the heuristic function.

A* with Neo4j
The following query executes the A* algorithm to find the shortest path between Den
Haag and London:

MATCH (source:Place {id: "Den Haag"}),
 (destination:Place {id: "London"})
CALL algo.shortestPath.astar.stream(source,
 destination, "distance", "latitude", "longitude")
YIELD nodeId, cost
RETURN algo.getNodeById(nodeId).id AS place, cost

The parameters passed to this algorithm are:

source

The node where our shortest path search begins.

Shortest Path | 57

destination

The node where our shortest path search ends.

distance

The name of the relationship property that indicates the cost of traversing
between a pair of nodes. The cost is the number of kilometers between two loca‐
tions.

latitude

The name of the node property used to represent the latitude of each node as part
of the geospatial heuristic calculation.

longitude

The name of the node property used to represent the longitude of each node as
part of the geospatial heuristic calculation.

Running this procedure gives the following result:

place cost
Den Haag 0.0

Hoek van Holland 27.0

Felixstowe 234.0

Ipswich 256.0

Colchester 288.0

London 394.0

We’d get the same result using the Shortest Path algorithm, but on more complex
datasets the A* algorithm will be faster as it evaluates fewer paths.

Shortest Path Variation: Yen’s k-Shortest Paths
Yen’s k-Shortest Paths algorithm is similar to the Shortest Path algorithm, but rather
than finding just the shortest path between two pairs of nodes, it also calculates the
second shortest path, third shortest path, and so on up to k-1 deviations of shortest
paths.

Jin Y. Yen invented the algorithm in 1971 and described it in “Finding the K Shortest
Loopless Paths in a Network”. This algorithm is useful for getting alternative paths
when finding the absolute shortest path isn’t our only goal. It can be particularly help‐
ful when we need more than one backup plan!

Yen’s with Neo4j
The following query executes Yen’s algorithm to find the shortest paths between
Gouda and Felixstowe:

58 | Chapter 4: Pathfinding and Graph Search Algorithms

MATCH (start:Place {id:"Gouda"}),
 (end:Place {id:"Felixstowe"})
CALL algo.kShortestPaths.stream(start, end, 5, "distance")
YIELD index, nodeIds, path, costs
RETURN index,
 [node in algo.getNodesById(nodeIds[1..-1]) | node.id] AS via,
 reduce(acc=0.0, cost in costs | acc + cost) AS totalCost

The parameters passed to this algorithm are:

start

The node where our shortest path search begins.

end

The node where our shortest path search ends.

5

The maximum number of shortest paths to find.

distance

The name of the relationship property that indicates the cost of traversing
between a pair of nodes. The cost is the number of kilometers between two loca‐
tions.

After we get back the shortest paths we look up the associated node for each node ID,
and then we filter out the start and end nodes from the collection.

Running this procedure gives the following result:

index via totalCost
0 [Rotterdam, Hoek van Holland] 265.0

1 [Den Haag, Hoek van Holland] 266.0

2 [Rotterdam, Den Haag, Hoek van Holland] 285.0

3 [Den Haag, Rotterdam, Hoek van Holland] 298.0

4 [Utrecht, Amsterdam, Den Haag, Hoek van Holland] 374.0

Figure 4-7 shows the shortest path between Gouda and Felixstowe.

Figure 4-7. The shortest path between Gouda and Felixstowe

Shortest Path | 59

The shortest path in Figure 4-7 is interesting in comparison to the results ordered by
total cost. It illustrates that sometimes you may want to consider several shortest
paths or other parameters. In this example, the second-shortest route is only 1 km
longer than the shortest one. If we prefer the scenery, we might choose the slightly
longer route.

All Pairs Shortest Path
The All Pairs Shortest Path (APSP) algorithm calculates the shortest (weighted) path
between all pairs of nodes. It’s more efficient than running the Single Source Shortest
Path algorithm for every pair of nodes in the graph.

APSP optimizes operations by keeping track of the distances calculated so far and
running on nodes in parallel. Those known distances can then be reused when calcu‐
lating the shortest path to an unseen node. You can follow the example in the next
section to get a better understanding of how the algorithm works.

Some pairs of nodes might not be reachable from each other, which
means that there is no shortest path between these nodes. The algo‐
rithm doesn’t return distances for these pairs of nodes.

A Closer Look at All Pairs Shortest Path
The calculation for APSP is easiest to understand when you follow a sequence of
operations. The diagram in Figure 4-8 walks through the steps for node A.

60 | Chapter 4: Pathfinding and Graph Search Algorithms

Figure 4-8. The steps to calculate the shortest path from node A to all other nodes, with
updates shaded.

Initially the algorithm assumes an infinite distance to all nodes. When a start node is
selected, then the distance to that node is set to 0. The calculation then proceeds as
follows:

1. From start node A we evaluate the cost of moving to the nodes we can reach and
update those values. Looking for the smallest value, we have a choice of B (cost of
3) or C (cost of 1). C is selected for the next phase of traversal.

2. Now from node C, the algorithm updates the cumulative distances from A to
nodes that can be reached directly from C. Values are only updated when a lower
cost has been found:

A=0, B=3, C=1, D=8, E=∞

3. Then B is selected as the next closest node that hasn’t already been visited. It has
relationships to nodes A, D, and E. The algorithm works out the distance to those
nodes by summing the distance from A to B with the distance from B to each of
those nodes. Note that the lowest cost from the start node A to the current node
is always preserved as a sunk cost. The distance (d) calculation results:

d(A,A) = d(A,B) + d(B,A) = 3 + 3 = 6
d(A,D) = d(A,B) + d(B,D) = 3 + 3 = 6
d(A,E) = d(A,B) + d(B,E) = 3 + 1 = 4

All Pairs Shortest Path | 61

• In this step the distance from node A to B and back to A, shown as d(A,A) = 6,
is greater than the shortest distance already computed (0), so its value is not
updated.

• The distances for nodes D (6) and E (4) are less than the previously calculated
distances, so their values are updated.

4. E is selected next. Only the cumulative total for reaching D (5) is now lower, and
therefore it is the only one updated.

5. When D is finally evaluated, there are no new minimum path weights; nothing is
updated, and the algorithm terminates.

Even though the All Pairs Shortest Path algorithm is optimized to
run calculations in parallel for each node, this can still add up for a
very large graph. Consider using a subgraph if you only need to
evaluate paths between a subcategory of nodes.

When Should I Use All Pairs Shortest Path?
All Pairs Shortest Path is commonly used for understanding alternate routing when
the shortest route is blocked or becomes suboptimal. For example, this algorithm is
used in logical route planning to ensure the best multiple paths for diversity routing.
Use All Pairs Shortest Path when you need to consider all possible routes between all
or most of your nodes.

Example use cases include:

• Optimizing the location of urban facilities and the distribution of goods. One
example of this is determining the traffic load expected on different segments of a
transportation grid. For more information, see R. C. Larson and A. R. Odoni’s
book, Urban Operations Research (Prentice-Hall).

• Finding a network with maximum bandwidth and minimal latency as part of a
data center design algorithm. There are more details about this approach in the
paper “REWIRE: An Optimization-Based Framework for Data Center Network
Design”, by A. R. Curtis et al.

All Pairs Shortest Path with Apache Spark
Spark’s shortestPaths function is designed for finding the shortest paths from all
nodes to a set of nodes called landmarks. If we wanted to find the shortest path from
every location to Colchester, Immingham, and Hoek van Holland, we would write the
following query:

62 | Chapter 4: Pathfinding and Graph Search Algorithms

result = g.shortestPaths(["Colchester", "Immingham", "Hoek van Holland"])
result.sort(["id"]).select("id", "distances").show(truncate=False)

If we run that code in pyspark we’ll see this output:

id distances
Amsterdam [Immingham → 1, Hoek van Holland → 2, Colchester → 4]

Colchester [Colchester → 0, Hoek van Holland → 3, Immingham → 3]

Den Haag [Hoek van Holland → 1, Immingham → 2, Colchester → 4]

Doncaster [Immingham → 1, Colchester → 2, Hoek van Holland → 4]

Felixstowe [Hoek van Holland → 1, Colchester → 2, Immingham → 4]

Gouda [Hoek van Holland → 2, Immingham → 3, Colchester → 5]

Hoek van Holland [Hoek van Holland → 0, Immingham → 3, Colchester → 3]

Immingham [Immingham → 0, Colchester → 3, Hoek van Holland → 3]

Ipswich [Colchester → 1, Hoek van Holland → 2, Immingham → 4]

London [Colchester → 1, Immingham → 2, Hoek van Holland → 4]

Rotterdam [Hoek van Holland → 1, Immingham → 3, Colchester → 4]

Utrecht [Immingham → 2, Hoek van Holland → 3, Colchester → 5]

The number next to each location in the distances column is the number of rela‐
tionships (roads) between cities we need to traverse to get there from the source
node. In our example, Colchester is one of our destination cities and you can see it
has 0 nodes to traverse to get to itself but 3 hops to make from Immingham and Hoek
van Holland. If we were planning a trip, we could use this information to help maxi‐
mize our time at our chosen destinations.

All Pairs Shortest Path with Neo4j
Neo4j has a parallel implementation of the All Pairs Shortest Path algorithm, which
returns the distance between every pair of nodes.

The first parameter to this procedure is the property to use to work out the shortest
weighted path. If we set this to null then the algorithm will calculate the unweighted
shortest paths between all pairs of nodes.

The following query does this:

CALL algo.allShortestPaths.stream(null)
YIELD sourceNodeId, targetNodeId, distance
WHERE sourceNodeId < targetNodeId
RETURN algo.getNodeById(sourceNodeId).id AS source,
 algo.getNodeById(targetNodeId).id AS target,
 distance
ORDER BY distance DESC
LIMIT 10

All Pairs Shortest Path | 63

This algorithm returns the shortest path between every pair of nodes twice—once
with each of the nodes as the source node. This would be helpful if you were evaluat‐
ing a directed graph of one-way streets. However, we don’t need to see each path
twice, so we filter the results to only keep one of them by using the sourceNodeId <
targetNodeId predicate.

The query returns the following results:

source target distance
Colchester Utrecht 5.0

London Rotterdam 5.0

London Gouda 5.0

Ipswich Utrecht 5.0

Colchester Gouda 5.0

Colchester Den Haag 4.0

London Utrecht 4.0

London Den Haag 4.0

Colchester Amsterdam 4.0

Ipswich Gouda 4.0

This output shows the 10 pairs of locations that have the most relationships between
them because we asked for results in descending order (DESC).

If we want to calculate the shortest weighted paths, rather than passing in null as the
first parameter, we can pass in the property name that contains the cost to be used in
the shortest path calculation. This property will then be evaluated to work out the
shortest weighted path between each pair of nodes.

The following query does this:

CALL algo.allShortestPaths.stream("distance")
YIELD sourceNodeId, targetNodeId, distance
WHERE sourceNodeId < targetNodeId
RETURN algo.getNodeById(sourceNodeId).id AS source,
 algo.getNodeById(targetNodeId).id AS target,
 distance
ORDER BY distance DESC
LIMIT 10

The query returns the following result:

source target distance
Doncaster Hoek van Holland 529.0

Rotterdam Doncaster 528.0

Gouda Doncaster 524.0

64 | Chapter 4: Pathfinding and Graph Search Algorithms

source target distance
Felixstowe Immingham 511.0

Den Haag Doncaster 502.0

Ipswich Immingham 489.0

Utrecht Doncaster 489.0

London Utrecht 460.0

Colchester Immingham 457.0

Immingham Hoek van Holland 455.0

Now we’re seeing the 10 pairs of locations furthest from each other in terms of the
total distance between them. Notice that Doncaster shows up frequently along with
several cities in the Netherlands. It looks like it would be a long drive if we wanted to
take a road trip between those areas.

Single Source Shortest Path
The Single Source Shortest Path (SSSP) algorithm, which came into prominence at
around the same time as Dijkstra’s Shortest Path algorithm, acts as an implementation
for both problems.

The SSSP algorithm calculates the shortest (weighted) path from a root node to all
other nodes in the graph, as demonstrated in Figure 4-9.

Single Source Shortest Path | 65

Figure 4-9. The steps of the Single Source Shortest Path algorithm

It proceeds as follows:

1. It begins with a root node from which all paths will be measured. In Figure 4-9
we’ve selected node A as the root.

2. The relationship with the smallest weight coming from that root node is selected
and added to the tree, along with its connected node. In this case, that’s
d(A,D)=1.

3. The next relationship with the smallest cumulative weight from our root node to
any unvisited node is selected and added to the tree in the same way. Our choices
in Figure 4-9 are d(A,B)=8, d(A,C)=5 directly or 4 via A-D-C, and d(A,E)=5. So,
the route via A-D-C is chosen and C is added to our tree.

4. The process continues until there are no more nodes to add and we have our sin‐
gle source shortest path.

66 | Chapter 4: Pathfinding and Graph Search Algorithms

When Should I Use Single Source Shortest Path?
Use Single Source Shortest Path when you need to evaluate the optimal route from a
fixed start point to all other individual nodes. Because the route is chosen based on
the total path weight from the root, it’s useful for finding the best path to each node,
but not necessarily when all nodes need to be visited in a single trip.

For example, SSSP is helpful for identifying the main routes to use for emergency
services where you don’t visit every location on each incident, but not for finding a
single route for garbage collection where you need to visit each house in one trip. (In
the latter case, you’d use the Minimum Spanning Tree algorithm, covered later.)

Example use cases include:

• Detecting changes in topology, such as link failures, and suggesting a new rout‐
ing structure in seconds

• Using Dijkstra as an IP routing protocol for use in autonomous systems such as a
local area network (LAN)

Single Source Shortest Path with Apache Spark
We can adapt the shortest_path function that we wrote to calculate the shortest path
between two locations to instead return us the shortest path from one location to all
others. Note that we’re using Spark’s aggregateMessages framework again to custom‐
ize our function.

We’ll first import the same libraries as before:

from graphframes.lib import AggregateMessages as AM
from pyspark.sql import functions as F

And we’ll use the same user-defined function to construct paths:

add_path_udf = F.udf(lambda path, id: path + [id], ArrayType(StringType()))

Now for the main function, which calculates the shortest path starting from an origin:

def sssp(g, origin, column_name="cost"):
 vertices = g.vertices \
 .withColumn("visited", F.lit(False)) \
 .withColumn("distance",
 F.when(g.vertices["id"] == origin, 0).otherwise(float("inf"))) \
 .withColumn("path", F.array())
 cached_vertices = AM.getCachedDataFrame(vertices)
 g2 = GraphFrame(cached_vertices, g.edges)

 while g2.vertices.filter('visited == False').first():
 current_node_id = g2.vertices.filter('visited == False')
 .sort("distance").first().id

Single Source Shortest Path | 67

 msg_distance = AM.edge[column_name] + AM.src['distance']
 msg_path = add_path_udf(AM.src["path"], AM.src["id"])
 msg_for_dst = F.when(AM.src['id'] == current_node_id,
 F.struct(msg_distance, msg_path))
 new_distances = g2.aggregateMessages(
 F.min(AM.msg).alias("aggMess"), sendToDst=msg_for_dst)

 new_visited_col = F.when(
 g2.vertices.visited | (g2.vertices.id == current_node_id),
 True).otherwise(False)
 new_distance_col = F.when(new_distances["aggMess"].isNotNull() &
 (new_distances.aggMess["col1"] <
 g2.vertices.distance),
 new_distances.aggMess["col1"]) \
 .otherwise(g2.vertices.distance)
 new_path_col = F.when(new_distances["aggMess"].isNotNull() &
 (new_distances.aggMess["col1"] <
 g2.vertices.distance),
 new_distances.aggMess["col2"]
 .cast("array<string>")) \
 .otherwise(g2.vertices.path)

 new_vertices = g2.vertices.join(new_distances, on="id",
 how="left_outer") \
 .drop(new_distances["id"]) \
 .withColumn("visited", new_visited_col) \
 .withColumn("newDistance", new_distance_col) \
 .withColumn("newPath", new_path_col) \
 .drop("aggMess", "distance", "path") \
 .withColumnRenamed('newDistance', 'distance') \
 .withColumnRenamed('newPath', 'path')
 cached_new_vertices = AM.getCachedDataFrame(new_vertices)
 g2 = GraphFrame(cached_new_vertices, g2.edges)

 return g2.vertices \
 .withColumn("newPath", add_path_udf("path", "id")) \
 .drop("visited", "path") \
 .withColumnRenamed("newPath", "path")

If we want to find the shortest path from Amsterdam to all other locations we can call
the function like this:

via_udf = F.udf(lambda path: path[1:-1], ArrayType(StringType()))

result = sssp(g, "Amsterdam", "cost")
(result
 .withColumn("via", via_udf("path"))
 .select("id", "distance", "via")
 .sort("distance")
 .show(truncate=False))

68 | Chapter 4: Pathfinding and Graph Search Algorithms

We define another user-defined function to filter out the start and end nodes from
the resulting path. If we run that code we’ll see the following output:

id distance via
Amsterdam 0.0 []

Utrecht 46.0 []

Den Haag 59.0 []

Gouda 81.0 [Utrecht]

Rotterdam 85.0 [Den Haag]

Hoek van Holland 86.0 [Den Haag]

Felixstowe 293.0 [Den Haag, Hoek van Holland]

Ipswich 315.0 [Den Haag, Hoek van Holland, Felixstowe]

Colchester 347.0 [Den Haag, Hoek van Holland, Felixstowe, Ipswich]

Immingham 369.0 []

Doncaster 443.0 [Immingham]

London 453.0 [Den Haag, Hoek van Holland, Felixstowe, Ipswich, Colchester]

In these results we see the physical distances in kilometers from the root node,
Amsterdam, to all other cities in the graph, ordered by shortest distance.

Single Source Shortest Path with Neo4j
Neo4j implements a variation of SSSP, called the Delta-Stepping algorithm that
divides Dijkstra’s algorithm into a number of phases that can be executed in parallel.

The following query executes the Delta-Stepping algorithm:

MATCH (n:Place {id:"London"})
CALL algo.shortestPath.deltaStepping.stream(n, "distance", 1.0)
YIELD nodeId, distance
WHERE algo.isFinite(distance)
RETURN algo.getNodeById(nodeId).id AS destination, distance
ORDER BY distance

The query returns the following output:

destination distance
London 0.0

Colchester 106.0

Ipswich 138.0

Felixstowe 160.0

Doncaster 277.0

Immingham 351.0

Single Source Shortest Path | 69

destination distance
Hoek van Holland 367.0

Den Haag 394.0

Rotterdam 400.0

Gouda 425.0

Amsterdam 453.0

Utrecht 460.0

In these results we see the physical distances in kilometers from the root node, Lon‐
don, to all other cities in the graph, ordered by shortest distance.

Minimum Spanning Tree
The Minimum (Weight) Spanning Tree algorithm starts from a given node and finds
all its reachable nodes and the set of relationships that connect the nodes together
with the minimum possible weight. It traverses to the next unvisited node with the
lowest weight from any visited node, avoiding cycles.

The first known Minimum Weight Spanning Tree algorithm was developed by the
Czech scientist Otakar Borůvka in 1926. Prim’s algorithm, invented in 1957, is the
simplest and best known.

Prim’s algorithm is similar to Dijkstra’s Shortest Path algorithm, but rather than mini‐
mizing the total length of a path ending at each relationship, it minimizes the length
of each relationship individually. Unlike Dijkstra’s algorithm, it tolerates negative-
weight relationships.

The Minimum Spanning Tree algorithm operates as demonstrated in Figure 4-10.

Figure 4-10. The steps of the Minimum Spanning Tree algorithm

The steps are as follows:

1. It begins with a tree containing only one node. In Figure 4-10 we start with node
A.

2. The relationship with smallest weight coming from that node is selected and
added to the tree (along with its connected node). In this case, A-D.

70 | Chapter 4: Pathfinding and Graph Search Algorithms

3. This process is repeated, always choosing the minimal-weight relationship that
joins any node not already in the tree.
a. If you compare our example here to the SSSP example in Figure 4-9 you’ll

notice that in the fourth graph the paths become different. This is because
SSSP evaluates the shortest path based on cumulative totals from the root,
whereas Minimum Spanning Tree only looks at the cost of the next step.

4. When there are no more nodes to add, the tree is a minimum spanning tree.

There are also variants of this algorithm that find the maximum-weight spanning tree
(highest-cost tree) and the k-spanning tree (tree size limited.)

When Should I Use Minimum Spanning Tree?
Use Minimum Spanning Tree when you need the best route to visit all nodes. Because
the route is chosen based on the cost of each next step, it’s useful when you must visit
all nodes in a single walk. (Review the previous section on “Single Source Shortest
Path” on page 65 if you don’t need a path for a single trip.)

You can use this algorithm for optimizing paths for connected systems like water
pipes and circuit design. It’s also employed to approximate some problems with
unknown compute times, such as the Traveling Salesman Problem and certain types
of rounding problems. Although it may not always find the absolute optimal solution,
this algorithm makes potentially complicated and compute-intensive analysis much
more approachable.

Example use cases include:

• Minimizing the travel cost of exploring a country. “An Application of Minimum
Spanning Trees to Travel Planning” describes how the algorithm analyzed airline
and sea connections to do this.

• Visualizing correlations between currency returns. This is described in “Mini‐
mum Spanning Tree Application in the Currency Market”.

• Tracing the history of infection transmission in an outbreak. For more informa‐
tion, see “Use of the Minimum Spanning Tree Model for Molecular Epidemiolog‐
ical Investigation of a Nosocomial Outbreak of Hepatitis C Virus Infection”.

The Minimum Spanning Tree algorithm only gives meaningful
results when run on a graph where the relationships have different
weights. If the graph has no weights, or all relationships have the
same weight, then any spanning tree is a minimum spanning tree.

Minimum Spanning Tree | 71

Minimum Spanning Tree with Neo4j
Let’s see the Minimum Spanning Tree algorithm in action. The following query finds
a spanning tree starting from Amsterdam:

MATCH (n:Place {id:"Amsterdam"})
CALL algo.spanningTree.minimum("Place", "EROAD", "distance", id(n),
 {write:true, writeProperty:"MINST"})
YIELD loadMillis, computeMillis, writeMillis, effectiveNodeCount
RETURN loadMillis, computeMillis, writeMillis, effectiveNodeCount

The parameters passed to this algorithm are:

Place

The node labels to consider when computing the spanning tree

EROAD

The relationship types to consider when computing the spanning tree

distance

The name of the relationship property that indicates the cost of traversing
between a pair of nodes

id(n)

The internal node id of the node from which the spanning tree should begin

This query stores its results in the graph. If we want to return the minimum weight
spanning tree we can run the following query:

MATCH path = (n:Place {id:"Amsterdam"})-[:MINST*]-()
WITH relationships(path) AS rels
UNWIND rels AS rel
WITH DISTINCT rel AS rel
RETURN startNode(rel).id AS source, endNode(rel).id AS destination,
 rel.distance AS cost

And this is the output of the query:

source destination cost
Amsterdam Utrecht 46.0

Utrecht Gouda 35.0

Gouda Rotterdam 25.0

Rotterdam Den Haag 26.0

Den Haag Hoek van Holland 27.0

Hoek van Holland Felixstowe 207.0

Felixstowe Ipswich 22.0

Ipswich Colchester 32.0

Colchester London 106.0

72 | Chapter 4: Pathfinding and Graph Search Algorithms

source destination cost
London Doncaster 277.0

Doncaster Immingham 74.0

Figure 4-11. A minimum weight spanning tree from Amsterdam

If we were in Amsterdam and wanted to visit every other place in our dataset during
the same trip, Figure 4-11 demonstrates the shortest continuous route to do so.

Random Walk
The Random Walk algorithm provides a set of nodes on a random path in a graph.
The term was first mentioned by Karl Pearson in 1905 in a letter to Nature magazine
titled “The Problem of the Random Walk”. Although the concept goes back even fur‐
ther, it’s only more recently that random walks have been applied to network science.

Random Walk | 73

A random walk, in general, is sometimes described as being similar to how a drunk
person traverses a city. They know what direction or end point they want to reach but
may take a very circuitous route to get there.

The algorithm starts at one node and somewhat randomly follows one of the relation‐
ships forward or backward to a neighbor node. It then does the same from that node
and so on, until it reaches the set path length. (We say somewhat randomly because
the number of relationships a node has, and its neighbors have, influences the proba‐
bility a node will be walked through.)

When Should I Use Random Walk?
Use the Random Walk algorithm as part of other algorithms or data pipelines when
you need to generate a mostly random set of connected nodes.

Example use cases include:

• As part of the node2vec and graph2vec algorithms, that create node embeddings.
These node embeddings could then be used as the input to a neural network.

• As part of the Walktrap and Infomap community detection. If a random walk
returns a small set of nodes repeatedly, then it indicates that node set may have a
community structure.

• As part of the training process of machine learning models. This is described fur‐
ther in David Mack’s article “Review Prediction with Neo4j and TensorFlow”.

You can read about more use cases in a paper by N. Masuda, M. A. Porter, and R.
Lambiotte, “Random Walks and Diffusion on Networks”.

Random Walk with Neo4j
Neo4j has an implementation of the Random Walk algorithm. It supports two modes
for choosing the next relationship to follow at each stage of the algorithm:

random

Randomly chooses a relationship to follow

node2vec

Chooses relationship to follow based on computing a probability distribution of
the previous neighbors

The following query does this:

MATCH (source:Place {id: "London"})
CALL algo.randomWalk.stream(id(source), 5, 1)
YIELD nodeIds
UNWIND algo.getNodesById(nodeIds) AS place
RETURN place.id AS place

74 | Chapter 4: Pathfinding and Graph Search Algorithms

The parameters passed to this algorithm are:

id(source)

The internal node id of the starting point for our random walk

5

The number of hops our random walk should take

1

The number of random walks we want to compute

It returns the following result:

place
London

Doncaster

Immingham

Amsterdam

Utrecht

Amsterdam

At each stage of the random walk the next relationship is chosen randomly. This
means that if we rerun the algorithm, even with the same parameters, we likely won’t
get the same result. It’s also possible for a walk to go back on itself, as we can see in
Figure 4-12 where we go from Amsterdam to Den Haag and back.

Figure 4-12. A random walk starting from London

Summary
Pathfinding algorithms are useful for understanding the way that our data is connec‐
ted. In this chapter we started out with the fundamental Breadth and Depth First
algorithms, before moving onto Dijkstra and other shortest path algorithms. We also
looked at variants of the shortest path algorithms optimized for finding the shortest
path from one node to all other nodes or between all pairs of nodes in a graph. We
finished with the Random Walk algorithm, which can be used to find arbitrary sets of
paths.

Summary | 75

Next we’ll learn about Centrality algorithms that can be used to find influential nodes
in a graph.

Algorithm Resource
There are many algorithm books, but one stands out for its coverage of fundamental
concepts and graph algorithms: The Algorithm Design Manual, by Steven S. Skiena
(Springer). We highly recommend this textbook to those seeking a comprehensive
resource on classic algorithms and design techniques, or who simply want to dig
deeper into how various algorithms operate.

76 | Chapter 4: Pathfinding and Graph Search Algorithms

