
CHAPTER 7

Graph Algorithms in Practice

The approach we take to graph analysis evolves as we become more familiar with the
behavior of different algorithms on specific datasets. In this chapter, we’ll run through
several examples to give you a better feeling for how to tackle large-scale graph data
analysis using datasets from Yelp and the US Department of Transportation. We’ll
walk through Yelp data analysis in Neo4j that includes a general overview of the data,
combining algorithms to make trip recommendations, and mining user and business
data for consulting. In Spark, we’ll look into US airline data to understand traffic pat‐
terns and delays as well as how airports are connected by different airlines.

Because pathfinding algorithms are straightforward, our examples will use these cen‐
trality and community detection algorithms:

• PageRank to find influential Yelp reviewers and then correlate their ratings for
specific hotels

• Betweenness Centrality to uncover reviewers connected to multiple groups and
then extract their preferences

• Label Propagation with a projection to create supercategories of similar Yelp
businesses

• Degree Centrality to quickly identify airport hubs in the US transport dataset
• Strongly Connected Components to look at clusters of airport routes in the US

Analyzing Yelp Data with Neo4j
Yelp helps people find local businesses based on reviews, preferences, and recommen‐
dations. Over 180 million reviews had been written on the platform as of the end of

145

2018. Since 2013, Yelp has run the Yelp Dataset challenge, a competition that encour‐
ages people to explore and research Yelp’s open dataset.

As of Round 12 (conducted in 2018) of the challenge, the open dataset contained:

• Over 7 million reviews plus tips
• Over 1.5 million users and 280,000 pictures
• Over 188,000 businesses with 1.4 million attributes
• 10 metropolitan areas

Since its launch, the dataset has become popular, with hundreds of academic papers
written using this material. The Yelp dataset represents real data that is very well
structured and highly interconnected. It’s a great showcase for graph algorithms that
you can also download and explore.

Yelp Social Network
As well as writing and reading reviews about businesses, users of Yelp form a social
network. Users can send friend requests to other users they’ve come across while
browsing Yelp.com, or they can connect their address books or Facebook graphs.

The Yelp dataset also includes a social network. Figure 7-1 is a screen capture of the
Friends section of Mark’s Yelp profile.

Figure 7-1. Mark’s Yelp profile

Apart from the fact that Mark needs a few more friends, we’re ready to start. To illus‐
trate how we might analyze Yelp data in Neo4j, we’ll use a scenario where we work for
a travel information business. We’ll first explore the Yelp data, and then look at how

146 | Chapter 7: Graph Algorithms in Practice

to help people plan trips with our app. We will walk through finding good recom‐
mendations for places to stay and things to do in major cities like Las Vegas.

Another part of our business scenario will involve consulting to travel-destination
businesses. In one example we’ll help hotels identify influential visitors and then busi‐
nesses that they should target for cross-promotion programs.

Data Import
There are many different methods for importing data into Neo4j, including the
Import tool, the LOAD CSV command that we’ve seen in earlier chapters, and Neo4j
drivers.

For the Yelp dataset we need to do a one-off import of a large amount of data, so the
Import tool is the best choice. See “Neo4j Bulk Data Import and Yelp” on page 225 for
more details.

Graph Model
The Yelp data is represented in a graph model as shown in Figure 7-2.

Figure 7-2. The Yelp graph model

Our graph contains User labeled nodes, which have FRIENDS relationships with other
Users. Users also write Reviews and tips about Businesses. All of the metadata is
stored as properties of nodes, except for business categories, which are represented by
separate Category nodes. For location data we’ve extracted City, Area, and Country
attributes into the subgraph. In other use cases it might make sense to extract other
attributes to nodes such as dates, or collapse nodes to relationships such as reviews.

The Yelp dataset also includes user tips and photos, but we won’t use those in our
example.

Analyzing Yelp Data with Neo4j | 147

A Quick Overview of the Yelp Data
Once we have the data loaded in Neo4j, we’ll execute some exploratory queries. We’ll
ask how many nodes are in each category or what types of relations exist, to get a feel
for the Yelp data. Previously we’ve shown Cypher queries for our Neo4j examples, but
we might be executing these from another programming language. As Python is the
go-to language for data scientists, we’ll use Neo4j’s Python driver in this section when
we want to connect the results to other libraries from the Python ecosystem. If we
just want to show the result of a query we’ll use Cypher directly.

We’ll also show how to combine Neo4j with the popular pandas library, which is
effective for data wrangling outside of the database. We’ll see how to use the tabulate
library to prettify the results we get from pandas, and how to create visual representa‐
tions of data using matplotlib.

We’ll also be using Neo4j’s APOC library of procedures to help us write even more
powerful Cypher queries. There’s more information about APOC in “APOC and
Other Neo4j Tools” on page 228.

Let’s first install the Python libraries:

pip install neo4j-driver tabulate pandas matplotlib

Once we’ve done that we’ll import those libraries:

from neo4j.v1 import GraphDatabase
import pandas as pd
from tabulate import tabulate

Importing matplotlib can be fiddly on macOS, but the following lines should do the
trick:

import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt

If you’re running on another operating system, the middle line may not be required.
Now let’s create an instance of the Neo4j driver pointing at a local Neo4j database:

driver = GraphDatabase.driver("bolt://localhost", auth=("neo4j", "neo"))

You’ll need to update the initialization of the driver to use your
own host and credentials.

To get started, let’s look at some general numbers for nodes and relationships. The
following code calculates the cardinalities of node labels (i.e., counts the number of
nodes for each label) in the database:

148 | Chapter 7: Graph Algorithms in Practice

result = {"label": [], "count": []}
with driver.session() as session:
 labels = [row["label"] for row in session.run("CALL db.labels()")]
 for label in labels:
 query = f"MATCH (:`{label}`) RETURN count(*) as count"
 count = session.run(query).single()["count"]
 result["label"].append(label)
 result["count"].append(count)

df = pd.DataFrame(data=result)
print(tabulate(df.sort_values("count"), headers='keys',
 tablefmt='psql', showindex=False))

If we run that code we’ll see how many nodes we have for each label:

label count
Country 17

Area 54

City 1093

Category 1293

Business 174567

User 1326101

Review 5261669

We could also create a visual representation of the cardinalities, with the following
code:

plt.style.use('fivethirtyeight')

ax = df.plot(kind='bar', x='label', y='count', legend=None)

ax.xaxis.set_label_text("")
plt.yscale("log")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

We can see the chart that gets generated by this code in Figure 7-3. Note that this
chart is using log scale.

Analyzing Yelp Data with Neo4j | 149

Figure 7-3. The number of nodes for each label category

Similarly, we can calculate the cardinalities of relationships:

result = {"relType": [], "count": []}
with driver.session() as session:
 rel_types = [row["relationshipType"] for row in session.run
 ("CALL db.relationshipTypes()")]
 for rel_type in rel_types:
 query = f"MATCH ()-[:`{rel_type}`]->() RETURN count(*) as count"
 count = session.run(query).single()["count"]
 result["relType"].append(rel_type)
 result["count"].append(count)

df = pd.DataFrame(data=result)
print(tabulate(df.sort_values("count"), headers='keys',
 tablefmt='psql', showindex=False))

If we run that code we’ll see the number of each type of relationship:

relType count
IN_COUNTRY 54

IN_AREA 1154

IN_CITY 174566

IN_CATEGORY 667527

WROTE 5261669

REVIEWS 5261669

FRIENDS 10645356

150 | Chapter 7: Graph Algorithms in Practice

We can see a chart of the cardinalities in Figure 7-4. As with the node cardinalities
chart, this chart is using log scale.

Figure 7-4. The number of relationships by relationship type

These queries shouldn’t reveal anything surprising, but they’re useful to get a feel for
what’s in the data. This also serves as a quick check that the data imported correctly.

We assume Yelp has many hotel reviews, but it makes sense to check before we focus
on that sector. We can find out how many hotel businesses are in that data and how
many reviews they have by running the following query:

MATCH (category:Category {name: "Hotels"})
RETURN size((category)<-[:IN_CATEGORY]-()) AS businesses,
 size((:Review)-[:REVIEWS]->(:Business)-[:IN_CATEGORY]->
 (category)) AS reviews

Here’s the result:

businesses reviews
2683 183759

We have many businesses to work with, and a lot of reviews! In the next section we’ll
explore the data further with our business scenario.

Analyzing Yelp Data with Neo4j | 151

Trip Planning App
To add well-liked recommendations to our app, we start by finding the most-rated
hotels as a heuristic for popular choices for reservations. We can add how well they’ve
been rated to understand the actual experience. To see the 10 most-reviewed hotels
and plot their rating distributions, we use the following code:

Find the 10 hotels with the most reviews
query = """
MATCH (review:Review)-[:REVIEWS]->(business:Business),
 (business)-[:IN_CATEGORY]->(category:Category {name: $category}),
 (business)-[:IN_CITY]->(:City {name: $city})
RETURN business.name AS business, collect(review.stars) AS allReviews
ORDER BY size(allReviews) DESC
LIMIT 10
"""

fig = plt.figure()
fig.set_size_inches(10.5, 14.5)
fig.subplots_adjust(hspace=0.4, wspace=0.4)

with driver.session() as session:
 params = { "city": "Las Vegas", "category": "Hotels"}
 result = session.run(query, params)
 for index, row in enumerate(result):
 business = row["business"]
 stars = pd.Series(row["allReviews"])

 total = stars.count()
 average_stars = stars.mean().round(2)

 # Calculate the star distribution
 stars_histogram = stars.value_counts().sort_index()
 stars_histogram /= float(stars_histogram.sum())

 # Plot a bar chart showing the distribution of star ratings
 ax = fig.add_subplot(5, 2, index+1)
 stars_histogram.plot(kind="bar", legend=None, color="darkblue",
 title=f"{business}\nAve:
 {average_stars}, Total: {total}")

plt.tight_layout()
plt.show()

We’ve constrained by city and category to focus on Las Vegas hotels. We run that code
we get the chart in Figure 7-5. Note that the x-axis represents the hotel’s star rating
and the y-axis represents the overall percentage of each rating.

152 | Chapter 7: Graph Algorithms in Practice

Figure 7-5. The 10 most-reviewed hotels, with the number of stars on the x-axis and
their overall rating percentage on the y-axis

Analyzing Yelp Data with Neo4j | 153

These hotels have lots of reviews, far more than anyone would be likely to read. It
would be better to show our users the content from the most relevant reviews and
make them more prominent on our app. To do this analysis, we’ll move from basic
graph exploration to using graph algorithms.

Finding influential hotel reviewers
One way we can decide which reviews to post is by ordering reviews based on the
influence of the reviewer on Yelp. We’ll run the PageRank algorithm over the projected
graph of all users that have reviewed at least three hotels. Remember from earlier
chapters that a projection can help filter out inessential information as well as add
relationship data (sometimes inferred). We’ll use Yelp’s friend graph (introduced in
“Yelp Social Network” on page 146) as the relationships between users. The PageRank
algorithm will uncover those reviewers with more sway over more users, even if they
are not direct friends.

If two people are Yelp friends there are two FRIENDS relationships
between them. For example, if A and B are friends there will be a
FRIENDS relationship from A to B and another from B to A.

We need to write a query that projects a subgraph of users with more than three
reviews and then executes the PageRank algorithm over that projected subgraph.

It’s easier to understand how the subgraph projection works with a small example.
Figure 7-6 shows a graph of three mutual friends—Mark, Arya, and Praveena. Mark
and Praveena have both reviewed three hotels and will be part of the projected graph.
Arya, on the other hand, has only reviewed one hotel and will therefore be excluded
from the projection.

154 | Chapter 7: Graph Algorithms in Practice

Figure 7-6. A sample Yelp graph

Our projected graph will only include Mark and Praveena, as shown in Figure 7-7.

Figure 7-7. Our sample projected graph

Now that we’ve seen how graph projections work, let’s move forward. The following
query executes the PageRank algorithm over our projected graph and stores the
result in the hotelPageRank property on each node:

CALL algo.pageRank(
 'MATCH (u:User)-[:WROTE]->()-[:REVIEWS]->()-[:IN_CATEGORY]->
 (:Category {name: $category})
 WITH u, count(*) AS reviews
 WHERE reviews >= $cutOff
 RETURN id(u) AS id',
 'MATCH (u1:User)-[:WROTE]->()-[:REVIEWS]->()-[:IN_CATEGORY]->
 (:Category {name: $category})
 MATCH (u1)-[:FRIENDS]->(u2)
 RETURN id(u1) AS source, id(u2) AS target',

Analyzing Yelp Data with Neo4j | 155

 {graph: "cypher", write: true, writeProperty: "hotelPageRank",
 params: {category: "Hotels", cutOff: 3}}
)

You might have noticed that we didn’t set the damping factor or maximum iteration
limit discussed in Chapter 5. If not explicitly set, Neo4j defaults to a 0.85 damping
factor with maxIterations set to 20`.

Now let’s look at the distribution of the PageRank values so we’ll know how to filter
our data:

MATCH (u:User)
WHERE exists(u.hotelPageRank)
RETURN count(u.hotelPageRank) AS count,
 avg(u.hotelPageRank) AS ave,
 percentileDisc(u.hotelPageRank, 0.5) AS `50%`,
 percentileDisc(u.hotelPageRank, 0.75) AS `75%`,
 percentileDisc(u.hotelPageRank, 0.90) AS `90%`,
 percentileDisc(u.hotelPageRank, 0.95) AS `95%`,
 percentileDisc(u.hotelPageRank, 0.99) AS `99%`,
 percentileDisc(u.hotelPageRank, 0.999) AS `99.9%`,
 percentileDisc(u.hotelPageRank, 0.9999) AS `99.99%`,
 percentileDisc(u.hotelPageRank, 0.99999) AS `99.999%`,
 percentileDisc(u.hotelPageRank, 1) AS `100%`

If we run that query we’ll get this output:

count ave 50% 75% 90% 95% 99% 99.9% 99.99% 99.999% 100%
1326101 0.1614898 0.15 0.15 0.157497 0.181875 0.330081 1.649511 6.825738 15.27376 22.98046

To interpret this percentile table, the 90% value of 0.157497 means that 90% of users
had a lower PageRank score. 99.99% reflects the influence rank for the top 0.0001%
reviewers and 100% is simply the highest PageRank score.

It’s interesting that 90% of our users have a score of under 0.16, which is close to the
overall average—and only marginally more than the 0.15 that they are initialized with
by the PageRank algorithm. It seems like this data reflects a power-law distribution
with a few very influential reviewers.

Because we’re interested in finding only the most influential users, we’ll write a query
that only finds users with a PageRank score in the top 0.001% of all users. The follow‐
ing query finds reviewers with a PageRank score higher than 1.64951 (notice that’s the
99.9% group):

// Only find users that have a hotelPageRank score in the top 0.001% of users
MATCH (u:User)
WHERE u.hotelPageRank > 1.64951

// Find the top 10 of those users
WITH u ORDER BY u.hotelPageRank DESC

156 | Chapter 7: Graph Algorithms in Practice

LIMIT 10

RETURN u.name AS name,
 u.hotelPageRank AS pageRank,
 size((u)-[:WROTE]->()-[:REVIEWS]->()-[:IN_CATEGORY]->
 (:Category {name: "Hotels"})) AS hotelReviews,
 size((u)-[:WROTE]->()) AS totalReviews,
 size((u)-[:FRIENDS]-()) AS friends

If we run that query we’ll get the results seen here:

name pageRank hotelReviews totalReviews friends
Phil 17.361242 15 134 8154

Philip 16.871013 21 620 9634

Carol 12.416060999999997 6 119 6218

Misti 12.239516000000004 19 730 6230

Joseph 12.003887499999998 5 32 6596

Michael 11.460049 13 51 6572

J 11.431505999999997 103 1322 6498

Abby 11.376136999999998 9 82 7922

Erica 10.993773 6 15 7071

Randy 10.748785999999999 21 125 7846

These results show us that Phil is the most credible reviewer, although he hasn’t
reviewed many hotels. He’s likely connected to some very influential people, but if we
wanted a stream of new reviews, his profile wouldn’t be the best selection. Philip has a
slightly lower score, but has the most friends and has written five times more reviews
than Phil. While J has written the most reviews of all and has a reasonable number of
friends, J’s PageRank score isn’t the highest—but it’s still in the top 10. For our app we
choose to highlight hotel reviews from Phil, Philip, and J to give us the right mix of
influencers and number of reviews.

Now that we’ve improved our in-app recommendations with relevant reviews, let’s
turn to the other side of our business: consulting.

Travel Business Consulting
As part of our consulting service, hotels subscribe to be alerted when an influential
visitor writes about their stay so they can take any necessary action. First, we’ll look at
ratings of the Bellagio, sorted by the most influential reviewers:

query = """\
MATCH (b:Business {name: $hotel})
MATCH (b)<-[:REVIEWS]-(review)<-[:WROTE]-(user)
WHERE exists(user.hotelPageRank)
RETURN user.name AS name,

Analyzing Yelp Data with Neo4j | 157

 user.hotelPageRank AS pageRank,
 review.stars AS stars
"""

with driver.session() as session:
 params = { "hotel": "Bellagio Hotel" }
 df = pd.DataFrame([dict(record) for record in session.run(query, params)])
 df = df.round(2)
 df = df[["name", "pageRank", "stars"]]

top_reviews = df.sort_values(by=["pageRank"], ascending=False).head(10)
print(tabulate(top_reviews, headers='keys', tablefmt='psql', showindex=False))

If we run that code we’ll get this output:

name pageRank stars
Misti 12.239516000000004 5

Michael 11.460049 4

J 11.431505999999997 5

Erica 10.993773 4

Christine 10.740770499999998 4

Jeremy 9.576763499999998 5

Connie 9.118103499999998 5

Joyce 7.621449000000001 4

Henry 7.299146 5

Flora 6.7570075 4

Note that these results are different from our previous table of the best hotel review‐
ers. That’s because here we are only looking at reviewers that have rated the Bellagio.

Things are looking good for the hotel customer service team at the Bellagio—the top
10 influencers all give their hotel good rankings. They may want to encourage these
people to visit again and share their experiences.

Are there any influential guests who haven’t had such a good experience? We can run
the following code to find the guests with the highest PageRank that rated their expe‐
rience with fewer than four stars:

query = """\
MATCH (b:Business {name: $hotel})
MATCH (b)<-[:REVIEWS]-(review)<-[:WROTE]-(user)
WHERE exists(user.hotelPageRank) AND review.stars < $goodRating
RETURN user.name AS name,
 user.hotelPageRank AS pageRank,
 review.stars AS stars
"""

158 | Chapter 7: Graph Algorithms in Practice

with driver.session() as session:
 params = { "hotel": "Bellagio Hotel", "goodRating": 4 }
 df = pd.DataFrame([dict(record) for record in session.run(query, params)])
 df = df.round(2)
 df = df[["name", "pageRank", "stars"]]

top_reviews = df.sort_values(by=["pageRank"], ascending=False).head(10)
print(tabulate(top_reviews, headers='keys', tablefmt='psql', showindex=False))

If we run that code we’ll get the following results:

name pageRank stars
Chris 5.84 3

Lorrie 4.95 2

Dani 3.47 1

Victor 3.35 3

Francine 2.93 3

Rex 2.79 2

Jon 2.55 3

Rachel 2.47 3

Leslie 2.46 2

Benay 2.46 3

Our highest-ranked users giving the Bellagio lower ratings, Chris and Lorrie, are
amongst the top 1,000 most influential users (as per the results of our earlier query),
so perhaps a personal outreach is warranted. Also, because many reviewers write dur‐
ing their stay, real-time alerts about influencers may facilitate even more positive
interactions.

Bellagio cross-promotion
After we helped them find influential reviewers, the Bellagio has now asked us to help
identify other businesses for cross-promotion with help from well-connected cus‐
tomers. In our scenario, we recommend that they increase their customer base by
attracting new guests from different types of communities as a greenfield opportu‐
nity. We can use the Betweenness Centrality algorithm that we discussed earlier to
work out which Bellagio reviewers are not only well connected across the whole Yelp
network, but might also act as a bridge between different groups.

We’re only interested in finding influencers in Las Vegas, so we’ll first tag those users:

MATCH (u:User)
WHERE exists((u)-[:WROTE]->()-[:REVIEWS]->()-[:IN_CITY]->
 (:City {name: "Las Vegas"}))
SET u:LasVegas

Analyzing Yelp Data with Neo4j | 159

It would take a long time to run the Betweenness Centrality algorithm over our Las
Vegas users, so instead we’ll use the the RA-Brandes variant. This algorithm calculates
a betweenness score by sampling nodes and only exploring shortest paths to a certain
depth.

After some experimentation, we improved results with a few parameters set differ‐
ently than the default values. We’ll use shortest paths of up to 4 hops (maxDepth of 4)
and sample 20% of the nodes (probability of 0.2). Note that increasing the number
of hops and nodes will generally increase the accuracy, but at the cost of more time to
compute the results. For any particular problem, the optimal parameters typically
require testing to identify the point of diminishing returns.

The following query will execute the algorithm and store the result in the between
property:

CALL algo.betweenness.sampled('LasVegas', 'FRIENDS',
 {write: true, writeProperty: "between", maxDepth: 4, probability: 0.2}
)

Before we use these scores in our queries, let’s write a quick exploratory query to see
how the scores are distributed:

MATCH (u:User)
WHERE exists(u.between)
RETURN count(u.between) AS count,
 avg(u.between) AS ave,
 toInteger(percentileDisc(u.between, 0.5)) AS `50%`,
 toInteger(percentileDisc(u.between, 0.75)) AS `75%`,
 toInteger(percentileDisc(u.between, 0.90)) AS `90%`,
 toInteger(percentileDisc(u.between, 0.95)) AS `95%`,
 toInteger(percentileDisc(u.between, 0.99)) AS `99%`,
 toInteger(percentileDisc(u.between, 0.999)) AS `99.9%`,
 toInteger(percentileDisc(u.between, 0.9999)) AS `99.99%`,
 toInteger(percentileDisc(u.between, 0.99999)) AS `99.999%`,
 toInteger(percentileDisc(u.between, 1)) AS p100

If we run that query we’ll see the following output:

count ave 50% 75% 90% 95% 99% 99.9% 99.99% 99.999% 100%
506028 320538.6014 0 10005 318944 1001655 4436409 34854988 214080923 621434012 1998032952

Half of our users have a score of 0, meaning they are not well connected at all. The
top 1 percentile (99% column) are on at least 4 million shortest paths between our set
of 500,000 users. Considered together, we know that most of our users are poorly
connected, but a few exert a lot of control over information; this is a classic behavior
of small-world networks.

We can find out who our superconnectors are by running the following query:

160 | Chapter 7: Graph Algorithms in Practice

MATCH(u:User)-[:WROTE]->()-[:REVIEWS]->(:Business {name:"Bellagio Hotel"})
WHERE exists(u.between)
RETURN u.name AS user,
 toInteger(u.between) AS betweenness,
 u.hotelPageRank AS pageRank,
 size((u)-[:WROTE]->()-[:REVIEWS]->()-[:IN_CATEGORY]->
 (:Category {name: "Hotels"}))
 AS hotelReviews
ORDER BY u.between DESC
LIMIT 10

The output is as follows:

user betweenness pageRank hotelReviews
Misti 841707563 12.239516000000004 19

Christine 236269693 10.740770499999998 16

Erica 235806844 10.993773 6

Mike 215534452 NULL 2

J 192155233 11.431505999999997 103

Michael 161335816 5.105143 31

Jeremy 160312436 9.576763499999998 6

Michael 139960910 11.460049 13

Chris 136697785 5.838922499999999 5

Connie 133372418 9.118103499999998 7

We see some of the same people here that we saw earlier in our PageRank query, with
Mike being an interesting exception. He was excluded from that calculation because
he hasn’t reviewed enough hotels (three was the cutoff), but it seems like he’s quite
well connected in the world of Las Vegas Yelp users.

In an effort to reach a wider variety of customers, we’ll look at other preferences these
“connectors” display to see what we should promote. Many of these users have also
reviewed restaurants, so we write the following query to find out which ones they like
best:

// Find the top 50 users who have reviewed the Bellagio
MATCH (u:User)-[:WROTE]->()-[:REVIEWS]->(:Business {name:"Bellagio Hotel"})
WHERE u.between > 4436409
WITH u ORDER BY u.between DESC LIMIT 50

// Find the restaurants those users have reviewed in Las Vegas
MATCH (u)-[:WROTE]->(review)-[:REVIEWS]-(business)
WHERE (business)-[:IN_CATEGORY]->(:Category {name: "Restaurants"})
AND (business)-[:IN_CITY]->(:City {name: "Las Vegas"})

// Only include restaurants that have more than 3 reviews by these users
WITH business, avg(review.stars) AS averageReview, count(*) AS numberOfReviews

Analyzing Yelp Data with Neo4j | 161

WHERE numberOfReviews >= 3

RETURN business.name AS business, averageReview, numberOfReviews
ORDER BY averageReview DESC, numberOfReviews DESC
LIMIT 10

This query finds our top 50 influential connectors, and finds the top 10 Las Vegas res‐
taurants where at least 3of them have rated the restaurant. If we run it, we’ll see the
output shown here:

business averageReview numberOfReviews
Jean Georges Steakhouse 5.0 6

Sushi House Goyemon 5.0 6

Art of Flavors 5.0 4

é by José Andrés 5.0 4

Parma By Chef Marc 5.0 4

Yonaka Modern Japanese 5.0 4

Kabuto 5.0 4

Harvest by Roy Ellamar 5.0 3

Portofino by Chef Michael LaPlaca 5.0 3

Montesano’s Eateria 5.0 3

We can now recommend that the Bellagio run a joint promotion with these restau‐
rants to attract new guests from groups they might not typically reach. Superconnec‐
tors who rate the Bellagio well become our proxy for estimating which restaurants
might catch the eye of new types of target visitors.

Now that we have helped the Bellagio reach new groups, we’re going to see how we
can use community detection to further improve our app.

Finding Similar Categories
While our end users are using the app to find hotels, we want to showcase other busi‐
nesses they might be interested in. The Yelp dataset contains more than 1,000 cate‐
gories, and it seems likely that some of those categories are similar to each other. We’ll
use that similarity to make in-app recommendations for new businesses that our
users will likely find interesting.

Our graph model doesn’t have any relationships between categories, but we can use
the ideas described in “Monopartite, Bipartite, and k-Partite Graphs” on page 24 to
build a category similarity graph based on how businesses categorize themselves.

For example, imagine that only one business categorizes itself under both Hotels and
Historical Tours, as seen in Figure 7-8.

162 | Chapter 7: Graph Algorithms in Practice

Figure 7-8. A business with two categories

This would result in a projected graph that has a link between Hotels and Historical
Tours with a weight of 1, as seen in Figure 7-9.

Figure 7-9. A projected categories graph

In this case, we don’t actually have to create the similarity graph—instead, we can run
a community detection algorithm such as Label Propagation over a projected similar‐
ity graph. Using Label Propagation will effectively cluster businesses around the
supercategory with which they have most in common:

CALL algo.labelPropagation.stream(
 'MATCH (c:Category) RETURN id(c) AS id',
 'MATCH (c1:Category)<-[:IN_CATEGORY]-()-[:IN_CATEGORY]->(c2:Category)
 WHERE id(c1) < id(c2)
 RETURN id(c1) AS source, id(c2) AS target, count(*) AS weight',
 {graph: "cypher"}
)
YIELD nodeId, label
MATCH (c:Category) WHERE id(c) = nodeId
MERGE (sc:SuperCategory {name: "SuperCategory-" + label})
MERGE (c)-[:IN_SUPER_CATEGORY]->(sc)

Let’s give those supercategories a friendlier name—the name of their largest category
works well here:

MATCH (sc:SuperCategory)<-[:IN_SUPER_CATEGORY]-(category)
WITH sc, category, size((category)<-[:IN_CATEGORY]-()) as size
ORDER BY size DESC

Analyzing Yelp Data with Neo4j | 163

WITH sc, collect(category.name)[0] as biggestCategory
SET sc.friendlyName = "SuperCat " + biggestCategory

We can see a sample of categories and supercategories in Figure 7-10.

Figure 7-10. Categories and supercategories

The following query finds the most prevalent similar categories to Hotels in Las
Vegas:

MATCH (hotels:Category {name: "Hotels"}),
 (lasVegas:City {name: "Las Vegas"}),
 (hotels)-[:IN_SUPER_CATEGORY]->()<-[:IN_SUPER_CATEGORY]-
 (otherCategory)
RETURN otherCategory.name AS otherCategory,
 size((otherCategory)<-[:IN_CATEGORY]-(:Business)-
 [:IN_CITY]->(lasVegas)) AS businesses
ORDER BY count DESC
LIMIT 10

If we run that query we’ll see the following output:

otherCategory businesses
Tours 189

Car Rental 160

164 | Chapter 7: Graph Algorithms in Practice

otherCategory businesses
Limos 84

Resorts 73

Airport Shuttles 52

Taxis 35

Vacation Rentals 29

Airports 25

Airlines 23

Motorcycle Rental 19

Do these results seem odd? Obviously taxis and tours aren’t hotels, but remember
that this is based on self-reported categorizations. What the Label Propagation algo‐
rithm is really showing us in this similarity group are adjacent businesses and serv‐
ices.

Now let’s find some businesses with an above-average rating in each of those cate‐
gories:

// Find businesses in Las Vegas that have the same SuperCategory as Hotels
MATCH (hotels:Category {name: "Hotels"}),
 (hotels)-[:IN_SUPER_CATEGORY]->()<-[:IN_SUPER_CATEGORY]-
 (otherCategory),
 (otherCategory)<-[:IN_CATEGORY]-(business)
WHERE (business)-[:IN_CITY]->(:City {name: "Las Vegas"})

// Select 10 random categories and calculate the 90th percentile star rating
WITH otherCategory, count(*) AS count,
 collect(business) AS businesses,
 percentileDisc(business.averageStars, 0.9) AS p90Stars
ORDER BY rand() DESC
LIMIT 10

// Select businesses from each of those categories that have an average rating
// higher than the 90th percentile using a pattern comprehension
WITH otherCategory, [b in businesses where b.averageStars >= p90Stars]
 AS businesses

// Select one business per category
WITH otherCategory, businesses[toInteger(rand() * size(businesses))] AS business

RETURN otherCategory.name AS otherCategory,
 business.name AS business,
 business.averageStars AS averageStars

In this query we use pattern comprehension for the first time. Pattern comprehension
is a syntax construction for creating a list based on pattern matching. It finds a speci‐
fied pattern using a MATCH clause with a WHERE clause for predicates and then yields a

Analyzing Yelp Data with Neo4j | 165

custom projection. This Cypher feature was added based on inspiration from
GraphQL, a query language for APIs.

If we run that query we see the following result:

otherCategory business averageStars
Motorcycle Rental Adrenaline Rush Slingshot Rentals 5.0

Snorkeling Sin City Scuba 5.0

Guest Houses Hotel Del Kacvinsky 5.0

Car Rental The Lead Team 5.0

Food Tours Taste BUZZ Food Tours 5.0

Airports Signature Flight Support 5.0

Public Transportation JetSuiteX 4.6875

Ski Resorts Trikke Las Vegas 4.833333333333332

Town Car Service MW Travel Vegas 4.866666666666665

Campgrounds McWilliams Campground 3.875

We can then make real-time recommendations based on a user’s immediate app
behavior. For example, while users are looking at Las Vegas hotels, we can now high‐
light a variety of adjacent Las Vegas businesses with good ratings. We can generalize
these approaches to any business category, such as restaurants or theaters, in any
location.

Reader Exercises
• Can you plot how the reviews for a city’s hotels vary over time?
• What about for a particular hotel or other business?
• Are there any trends (seasonal or otherwise) in popularity?
• Do the most influential reviewers connect (out-link) to only other influential

reviewers?

Analyzing Airline Flight Data with Apache Spark
In this section, we’ll use a different scenario to illustrate the analysis of US airport
data with Spark. Imagine you’re a data scientist with a considerable travel schedule
and would like to dig into information about airline flights and delays. We’ll first
explore airport and flight information and then look deeper into delays at two specific
airports. Community detection will be used to analyze routes and find the best use of
our frequent flyer points.

166 | Chapter 7: Graph Algorithms in Practice

The US Bureau of Transportation Statistics makes available a significant amount of
transportation information. For our analysis, we’ll use their May 2018 air travel on-
time performance data, which includes flights originating and ending in the United
States in that month. To add more detail about airports, such as location information,
we’ll also load data from a separate source, OpenFlights.

Let’s load the data in Spark. As was the case in previous sections, our data is in CSV
files that are available on the book’s Github repository.

nodes = spark.read.csv("data/airports.csv", header=False)

cleaned_nodes = (nodes.select("_c1", "_c3", "_c4", "_c6", "_c7")
 .filter("_c3 = 'United States'")
 .withColumnRenamed("_c1", "name")
 .withColumnRenamed("_c4", "id")s
 .withColumnRenamed("_c6", "latitude")
 .withColumnRenamed("_c7", "longitude")
 .drop("_c3"))
cleaned_nodes = cleaned_nodes[cleaned_nodes["id"] != "\\N"]

relationships = spark.read.csv("data/188591317_T_ONTIME.csv", header=True)

cleaned_relationships = (relationships
 .select("ORIGIN", "DEST", "FL_DATE", "DEP_DELAY",
 "ARR_DELAY", "DISTANCE", "TAIL_NUM", "FL_NUM",
 "CRS_DEP_TIME", "CRS_ARR_TIME",
 "UNIQUE_CARRIER")
 .withColumnRenamed("ORIGIN", "src")
 .withColumnRenamed("DEST", "dst")
 .withColumnRenamed("DEP_DELAY", "deptDelay")
 .withColumnRenamed("ARR_DELAY", "arrDelay")
 .withColumnRenamed("TAIL_NUM", "tailNumber")
 .withColumnRenamed("FL_NUM", "flightNumber")
 .withColumnRenamed("FL_DATE", "date")
 .withColumnRenamed("CRS_DEP_TIME", "time")
 .withColumnRenamed("CRS_ARR_TIME", "arrivalTime")
 .withColumnRenamed("DISTANCE", "distance")
 .withColumnRenamed("UNIQUE_CARRIER", "airline")
 .withColumn("deptDelay",
 F.col("deptDelay").cast(FloatType()))
 .withColumn("arrDelay",
 F.col("arrDelay").cast(FloatType()))
 .withColumn("time", F.col("time").cast(IntegerType()))
 .withColumn("arrivalTime",
 F.col("arrivalTime").cast(IntegerType()))
)

g = GraphFrame(cleaned_nodes, cleaned_relationships)

We have to do some cleanup on the nodes because some airports don’t have valid air‐
port codes. We’ll give the columns more descriptive names and convert some items

Analyzing Airline Flight Data with Apache Spark | 167

into appropriate numeric types. We also need to make sure that we have columns
named id, dst, and src, as this is expected by Spark’s GraphFrames library.

We’ll also create a separate DataFrame that maps airline codes to airline names. We’ll
use this later in this chapter:

airlines_reference = (spark.read.csv("data/airlines.csv")
 .select("_c1", "_c3")
 .withColumnRenamed("_c1", "name")
 .withColumnRenamed("_c3", "code"))

airlines_reference = airlines_reference[airlines_reference["code"] != "null"]

Exploratory Analysis
Let’s start with some exploratory analysis to see what the data looks like.

First let’s see how many airports we have:

g.vertices.count()

1435

And how many connections do we have between these airports?

g.edges.count()

616529

Popular Airports
Which airports have the most departing flights? We can work out the number of out‐
going flights from an airport using the Degree Centrality algorithm:

airports_degree = g.outDegrees.withColumnRenamed("id", "oId")

full_airports_degree = (airports_degree
 .join(g.vertices, airports_degree.oId == g.vertices.id)
 .sort("outDegree", ascending=False)
 .select("id", "name", "outDegree"))

full_airports_degree.show(n=10, truncate=False)

If we run that code we’ll see the following output:

id name outDegree
ATL Hartsfield Jackson Atlanta International Airport 33837

ORD Chicago O’Hare International Airport 28338

DFW Dallas Fort Worth International Airport 23765

CLT Charlotte Douglas International Airport 20251

DEN Denver International Airport 19836

168 | Chapter 7: Graph Algorithms in Practice

id name outDegree
LAX Los Angeles International Airport 19059

PHX Phoenix Sky Harbor International Airport 15103

SFO San Francisco International Airport 14934

LGA La Guardia Airport 14709

IAH George Bush Intercontinental Houston Airport 14407

Most large US cities show up on this list—Chicago, Atlanta, Los Angeles, and New
York all have popular airports. We can also create a visual representation of the out‐
going flights using the following code:

plt.style.use('fivethirtyeight')

ax = (full_airports_degree
 .toPandas()
 .head(10)
 .plot(kind='bar', x='id', y='outDegree', legend=None))

ax.xaxis.set_label_text("")
plt.xticks(rotation=45)
plt.tight_layout()
plt.show()

The resulting chart can be seen in Figure 7-11.

Figure 7-11. Outgoing flights by airport

Analyzing Airline Flight Data with Apache Spark | 169

It’s quite striking how suddenly the number of flights drops off. Denver International
Airport (DEN), the fifth most popular airport, has just over half as many outgoing
fights as Hartsfield Jackson Atlanta International Airport (ATL), in first place.

Delays from ORD
In our scenario, we frequently travel between the west and east coasts and want to see
delays through a midpoint hub like Chicago O’Hare International Airport (ORD).
This dataset contains flight delay data, so we can dive right in.

The following code finds the average delay of flights departing from ORD grouped by
the destination airport:

delayed_flights = (g.edges
 .filter("src = 'ORD' and deptDelay > 0")
 .groupBy("dst")
 .agg(F.avg("deptDelay"), F.count("deptDelay"))
 .withColumn("averageDelay",
 F.round(F.col("avg(deptDelay)"), 2))
 .withColumn("numberOfDelays",
 F.col("count(deptDelay)")))

(delayed_flights
 .join(g.vertices, delayed_flights.dst == g.vertices.id)
 .sort(F.desc("averageDelay"))
 .select("dst", "name", "averageDelay", "numberOfDelays")
 .show(n=10, truncate=False))

Once we’ve calculated the average delay grouped by destination we join the resulting
Spark DataFrame with a DataFrame containing all vertices, so that we can print the
full name of the destination airport.

Running this code returns the 10 destinations with the worst delays:

dst name averageDelay numberOfDelays
CKB North Central West Virginia Airport 145.08 12

OGG Kahului Airport 119.67 9

MQT Sawyer International Airport 114.75 12

MOB Mobile Regional Airport 102.2 10

TTN Trenton Mercer Airport 101.18 17

AVL Asheville Regional Airport 98.5 28

ISP Long Island Mac Arthur Airport 94.08 13

ANC Ted Stevens Anchorage International Airport 83.74 23

BTV Burlington International Airport 83.2 25

CMX Houghton County Memorial Airport 79.18 17

170 | Chapter 7: Graph Algorithms in Practice

This is interesting, but one data point really stands out: 12 flights from ORD to CKB
have been delayed by more than 2 hours on average! Let’s find the flights between
those airports and see what’s going on:

from_expr = 'id = "ORD"'
to_expr = 'id = "CKB"'
ord_to_ckb = g.bfs(from_expr, to_expr)

ord_to_ckb = ord_to_ckb.select(
 F.col("e0.date"),
 F.col("e0.time"),
 F.col("e0.flightNumber"),
 F.col("e0.deptDelay"))

We can then plot the flights with the following code:

ax = (ord_to_ckb
 .sort("date")
 .toPandas()
 .plot(kind='bar', x='date', y='deptDelay', legend=None))

ax.xaxis.set_label_text("")
plt.tight_layout()
plt.show()

If we run that code we’ll get the chart in Figure 7-12.

Analyzing Airline Flight Data with Apache Spark | 171

Figure 7-12. Flights from ORD to CKB

About half of the flights were delayed, but the delay of more than 14 hours on May 2,
2018, has massively skewed the average.

What if we want to find delays coming into and going out of a coastal airport? Those
airports are often affected by adverse weather conditions, so we might be able to find
some interesting delays.

Bad Day at SFO
Let’s consider delays at an airport known for fog-related “low ceiling” issues: San
Francisco International Airport (SFO). One method for analysis would be to look at
motifs, which are recurrent subgraphs or patterns.

The equivalent to motifs in Neo4j is graph patterns, which are
found using the MATCH clause or with pattern expressions in
Cypher.

172 | Chapter 7: Graph Algorithms in Practice

GraphFrames lets us search for motifs, so we can use the structure of flights as part of
a query. Let’s use motifs to find the most-delayed flights going into and out of SFO on
May 11, 2018. The following code will find these delays:

motifs = (g.find("(a)-[ab]->(b); (b)-[bc]->(c)")
 .filter("""(b.id = 'SFO') and
 (ab.date = '2018-05-11' and bc.date = '2018-05-11') and
 (ab.arrDelay > 30 or bc.deptDelay > 30) and
 (ab.flightNumber = bc.flightNumber) and
 (ab.airline = bc.airline) and
 (ab.time < bc.time)"""))

The motif (a)-[ab]->(b); (b)-[bc]->(c) finds flights coming into and out from
the same airport. We then filter the resulting pattern to find flights with:

• A sequence where the first flight arrives at SFO and the second flight departs
from SFO

• Delays of over 30 minutes when arriving at or departing from SFO
• The same flight number and airline

We can then take the result and select the columns we’re interested in:

result = (motifs.withColumn("delta", motifs.bc.deptDelay - motifs.ab.arrDelay)
 .select("ab", "bc", "delta")
 .sort("delta", ascending=False))

result.select(
 F.col("ab.src").alias("a1"),
 F.col("ab.time").alias("a1DeptTime"),
 F.col("ab.arrDelay"),
 F.col("ab.dst").alias("a2"),
 F.col("bc.time").alias("a2DeptTime"),
 F.col("bc.deptDelay"),
 F.col("bc.dst").alias("a3"),
 F.col("ab.airline"),
 F.col("ab.flightNumber"),
 F.col("delta")
).show()

We’re also calculating the delta between the arriving and departing flights to see
which delays we can truly attribute to SFO.

If we execute this code we’ll get the following result:

airline flightNumber a1 a1DeptTime arrDelay a2 a2DeptTime deptDelay a3 delta
WN 1454 PDX 1130 -18.0 SFO 1350 178.0 BUR 196.0

OO 5700 ACV 1755 -9.0 SFO 2235 64.0 RDM 73.0

UA 753 BWI 700 -3.0 SFO 1125 49.0 IAD 52.0

Analyzing Airline Flight Data with Apache Spark | 173

airline flightNumber a1 a1DeptTime arrDelay a2 a2DeptTime deptDelay a3 delta
UA 1900 ATL 740 40.0 SFO 1110 77.0 SAN 37.0

WN 157 BUR 1405 25.0 SFO 1600 39.0 PDX 14.0

DL 745 DTW 835 34.0 SFO 1135 44.0 DTW 10.0

WN 1783 DEN 1830 25.0 SFO 2045 33.0 BUR 8.0

WN 5789 PDX 1855 119.0 SFO 2120 117.0 DEN -2.0

WN 1585 BUR 2025 31.0 SFO 2230 11.0 PHX -20.0

The worst offender, WN 1454, is shown in the top row; it arrived early but departed
almost three hours late. We can also see that there are some negative values in the
arrDelay column; this means that the flight into SFO was early.

Also notice that some flights, such as WN 5789 and WN 1585, made up time while
on the ground in SFO, as shown with a negative delta.

Interconnected Airports by Airline
Now let’s say we’ve traveled a lot, and those frequent flyer points we’re determined to
use to see as many destinations as efficiently as possible are soon to expire. If we start
from a specific US airport, how many different airports can we visit and come back to
the starting airport using the same airline?

Let’s first identify all the airlines and work out how many flights there are on each of
them:

airlines = (g.edges
 .groupBy("airline")
 .agg(F.count("airline").alias("flights"))
 .sort("flights", ascending=False))

full_name_airlines = (airlines_reference
 .join(airlines, airlines.airline
 == airlines_reference.code)
 .select("code", "name", "flights"))

And now let’s create a bar chart showing our airlines:

ax = (full_name_airlines.toPandas()
 .plot(kind='bar', x='name', y='flights', legend=None))

ax.xaxis.set_label_text("")
plt.tight_layout()
plt.show()

If we run that query we’ll get the output in Figure 7-13.

174 | Chapter 7: Graph Algorithms in Practice

Figure 7-13. The number of flights by airline

Now let’s write a function that uses the Strongly Connected Components algorithm to
find airport groupings for each airline where all the airports have flights to and from
all the other airports in that group:

def find_scc_components(g, airline):
 # Create a subgraph containing only flights on the provided airline
 airline_relationships = g.edges[g.edges.airline == airline]
 airline_graph = GraphFrame(g.vertices, airline_relationships)

 # Calculate the Strongly Connected Components
 scc = airline_graph.stronglyConnectedComponents(maxIter=10)

 # Find the size of the biggest component and return that
 return (scc
 .groupBy("component")
 .agg(F.count("id").alias("size"))
 .sort("size", ascending=False)
 .take(1)[0]["size"])

We can write the following code to create a DataFrame containing each airline and
the number of airports of its largest strongly connected component:

Analyzing Airline Flight Data with Apache Spark | 175

Calculate the largest strongly connected component for each airline
airline_scc = [(airline, find_scc_components(g, airline))
 for airline in airlines.toPandas()["airline"].tolist()]
airline_scc_df = spark.createDataFrame(airline_scc, ['id', 'sccCount'])

Join the SCC DataFrame with the airlines DataFrame so that we can show
the number of flights an airline has alongside the number of
airports reachable in its biggest component
airline_reach = (airline_scc_df
 .join(full_name_airlines, full_name_airlines.code == airline_scc_df.id)
 .select("code", "name", "flights", "sccCount")
 .sort("sccCount", ascending=False))

And now let’s create a bar chart showing our airlines:

ax = (airline_reach.toPandas()
 .plot(kind='bar', x='name', y='sccCount', legend=None))

ax.xaxis.set_label_text("")
plt.tight_layout()
plt.show()

If we run that query we’ll get the output in Figure 7-14.

Figure 7-14. The number of reachable airports by airline

176 | Chapter 7: Graph Algorithms in Practice

SkyWest has the largest community, with over 200 strongly connected airports. This
might partially reflect its business model as an affiliate airline which operates aircraft
used on flights for partner airlines. Southwest, on the other hand, has the highest
number of flights but only connects around 80 airports.

Now let’s say most of the frequent flyer points we have are with Delta Airlines (DL).
Can we find airports that form communities within the network for that particular
airline carrier?

airline_relationships = g.edges.filter("airline = 'DL'")
airline_graph = GraphFrame(g.vertices, airline_relationships)

clusters = airline_graph.labelPropagation(maxIter=10)
(clusters
 .sort("label")
 .groupby("label")
 .agg(F.collect_list("id").alias("airports"),
 F.count("id").alias("count"))
 .sort("count", ascending=False)
 .show(truncate=70, n=10))

If we run that query we’ll see the following output:

label airports count
1606317768706 [IND, ORF, ATW, RIC, TRI, XNA, ECP, AVL, JAX, SYR, BHM, GSO, MEM, C… 89

1219770712067 [GEG, SLC, DTW, LAS, SEA, BOS, MSN, SNA, JFK, TVC, LIH, JAC, FLL, M… 53

17179869187 [RHV] 1

25769803777 [CWT] 1

25769803776 [CDW] 1

25769803782 [KNW] 1

25769803778 [DRT] 1

25769803779 [FOK] 1

25769803781 [HVR] 1

42949672962 [GTF] 1

Most of the airports DL uses have clustered into two groups; let’s drill down into
those. There are too many airports to show here, so we’ll just show the airports with
the biggest degree (ingoing and outgoing flights). We can write the following code to
calculate airport degree:

all_flights = g.degrees.withColumnRenamed("id", "aId")

We’ll then combine this with the airports that belong to the largest cluster:

(clusters
 .filter("label=1606317768706")
 .join(all_flights, all_flights.aId == result.id)

Analyzing Airline Flight Data with Apache Spark | 177

 .sort("degree", ascending=False)
 .select("id", "name", "degree")
 .show(truncate=False))

If we run that query we’ll get this output:

id name degree
DFW Dallas Fort Worth International Airport 47514

CLT Charlotte Douglas International Airport 40495

IAH George Bush Intercontinental Houston Airport 28814

EWR Newark Liberty International Airport 25131

PHL Philadelphia International Airport 20804

BWI Baltimore/Washington International Thurgood Marshall Airport 18989

MDW Chicago Midway International Airport 15178

BNA Nashville International Airport 12455

DAL Dallas Love Field 12084

IAD Washington Dulles International Airport 11566

STL Lambert St Louis International Airport 11439

HOU William P Hobby Airport 9742

IND Indianapolis International Airport 8543

PIT Pittsburgh International Airport 8410

CLE Cleveland Hopkins International Airport 8238

CMH Port Columbus International Airport 7640

SAT San Antonio International Airport 6532

JAX Jacksonville International Airport 5495

BDL Bradley International Airport 4866

RSW Southwest Florida International Airport 4569

In Figure 7-15 we can see that this cluster is actually focused on the East Coast to the
Midwest of the United States.

178 | Chapter 7: Graph Algorithms in Practice

Figure 7-15. Cluster 1606317768706 airports

And now let’s do the same thing with the second-largest cluster:

(clusters
 .filter("label=1219770712067")
 .join(all_flights, all_flights.aId == result.id)
 .sort("degree", ascending=False)
 .select("id", "name", "degree")
 .show(truncate=False))

If we run that query we get this output:

id name degree
ATL Hartsfield Jackson Atlanta International Airport 67672

ORD Chicago O’Hare International Airport 56681

DEN Denver International Airport 39671

LAX Los Angeles International Airport 38116

PHX Phoenix Sky Harbor International Airport 30206

SFO San Francisco International Airport 29865

LGA La Guardia Airport 29416

LAS McCarran International Airport 27801

DTW Detroit Metropolitan Wayne County Airport 27477

MSP Minneapolis-St Paul International/Wold-Chamberlain Airport 27163

BOS General Edward Lawrence Logan International Airport 26214

Analyzing Airline Flight Data with Apache Spark | 179

id name degree
SEA Seattle Tacoma International Airport 24098

MCO Orlando International Airport 23442

JFK John F Kennedy International Airport 22294

DCA Ronald Reagan Washington National Airport 22244

SLC Salt Lake City International Airport 18661

FLL Fort Lauderdale Hollywood International Airport 16364

SAN San Diego International Airport 15401

MIA Miami International Airport 14869

TPA Tampa International Airport 12509

In Figure 7-16 we can see that this cluster is apparently more hub-focused, with some
additional northwestern stops along the way.

Figure 7-16. Cluster 1219770712067 airports

The code we used to generate these maps is available in the book’s GitHub repository.

When checking the DL website for frequent flyer programs, we notice a use-two-get-
one-free promotion. If we use our points for two flights, we get another for free—but

180 | Chapter 7: Graph Algorithms in Practice

only if we fly within one of the two clusters! Perhaps it’s a better use of our time, and
certainly our points, to stay in a cluster.

Reader Exercises
• Use a Shortest Path algorithm to evaluate the number of flights from your home

to the Bozeman Yellowstone International Airport (BZN).
• Are there any differences if you use relationship weights?

Summary
In the last few chapters we’ve provided details on how key graph algorithms for path‐
finding, centrality, and community detection work in Apache Spark and Neo4j. In
this chapter we walked through workflows that included using several algorithms in
context with other tasks and analysis. We used a travel business scenario to analyze
Yelp data in Neo4j and a personal air travel scenario to evaluate US airline data in
Spark.

Next, we’ll look at a use for graph algorithms that’s becoming increasingly important:
graph-enhanced machine learning.

Analyzing Airline Flight Data with Apache Spark | 181

