
CHAPTER 1

Introduction

Graphs are one of the unifying themes of computer science—an abstract representation that
describes the organization of transportation systems, human interactions, and telecommuni‐
cation networks. That so many different structures can be modeled using a single formalism
is a source of great power to the educated programmer.

—The Algorithm Design Manual, by Steven S. Skiena (Springer), Distinguished Teach‐
ing Professor of Computer Science at Stony Brook University

Today’s most pressing data challenges center around relationships, not just tabulating
discrete data. Graph technologies and analytics provide powerful tools for connected
data that are used in research, social initiatives, and business solutions such as:

• Modeling dynamic environments from financial markets to IT services
• Forecasting the spread of epidemics as well as rippling service delays and outages
• Finding predictive features for machine learning to combat financial crimes
• Uncovering patterns for personalized experiences and recommendations

As data becomes increasingly interconnected and systems increasingly sophisticated,
it’s essential to make use of the rich and evolving relationships within our data.

This chapter provides an introduction to graph analysis and graph algorithms. We’ll
start with a brief refresher about the origin of graphs before introducing graph algo‐
rithms and explaining the difference between graph databases and graph processing.
We’ll explore the nature of modern data itself, and how the information contained in
connections is far more sophisticated than what we can uncover with basic statistical
methods. The chapter will conclude with a look at use cases where graph algorithms
can be employed.
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What Are Graphs?
Graphs have a history dating back to 1736, when Leonhard Euler solved the “Seven
Bridges of Königsberg” problem. The problem asked whether it was possible to visit
all four areas of a city connected by seven bridges, while only crossing each bridge
once. It wasn’t.

With the insight that only the connections themselves were relevant, Euler set the
groundwork for graph theory and its mathematics. Figure 1-1 depicts Euler’s progres‐
sion with one of his original sketches, from the paper “Solutio problematis ad geome‐
triam situs pertinentis”.

Figure 1-1. The origins of graph theory. The city of Königsberg included two large islands
connected to each other and the two mainland portions of the city by seven bridges. The
puzzle was to create a walk through the city, crossing each bridge once and only once.

While graphs originated in mathematics, they are also a pragmatic and high fidelity
way of modeling and analyzing data. The objects that make up a graph are called
nodes or vertices and the links between them are known as relationships, links, or
edges. We use the terms nodes and relationships in this book: you can think of nodes
as the nouns in sentences, and relationships as verbs giving context to the nodes. To
avoid any confusion, the graphs we talk about in this book have nothing to do with
graphing equations or charts as in Figure 1-2.
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Figure 1-2. A graph is a representation of a network, often illustrated with circles to rep‐
resent entities which we call nodes, and lines to represent relationships.

Looking at the person graph in Figure 1-2, we can easily construct several sentences
which describe it. For example, person A lives with person B who owns a car, and
person A drives a car that person B owns. This modeling approach is compelling
because it maps easily to the real world and is very “whiteboard friendly.” This helps
align data modeling and analysis.

But modeling graphs is only half the story. We might also want to process them to
reveal insight that isn’t immediately obvious. This is the domain of graph algorithms.

What Are Graph Analytics and Algorithms?
Graph algorithms are a subset of tools for graph analytics. Graph analytics is some‐
thing we do—it’s the use of any graph-based approach to analyze connected data.
There are various methods we could use: we might query the graph data, use basic
statistics, visually explore the graphs, or incorporate graphs into our machine learn‐
ing tasks. Graph pattern–based querying is often used for local data analysis, whereas
graph computational algorithms usually refer to more global and iterative analysis.
Although there is overlap in how these types of analysis can be employed, we use the
term graph algorithms to refer to the latter, more computational analytics and data
science uses.
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Graph algorithms provide one of the most potent approaches to analyzing connected
data because their mathematical calculations are specifically built to operate on rela‐
tionships. They describe steps to be taken to process a graph to discover its general
qualities or specific quantities. Based on the mathematics of graph theory, graph algo‐
rithms use the relationships between nodes to infer the organization and dynamics of
complex systems. Network scientists use these algorithms to uncover hidden infor‐
mation, test hypotheses, and make predictions about behavior.

Network Science
Network science is an academic field strongly rooted in graph theory that is concerned
with mathematical models of the relationships between objects. Network scientists
rely on graph algorithms and database management systems because of the size, con‐
nectedness, and complexity of their data.

There are many fantastic resources for complexity and network science. Here are a
few references for you to explore.

• Network Science, by Albert-László Barabási, is an introductory ebook
• Complexity Explorer offers online courses
• The New England Complex Systems Institute provides various resources and

papers

Graph algorithms have widespread potential, from preventing fraud and optimizing
call routing to predicting the spread of the flu. For instance, we might want to score
particular nodes that could correspond to overload conditions in a power system. Or
we might like to discover groupings in the graph which correspond to congestion in a
transport system.

In fact, in 2010 US air travel systems experienced two serious events involving multi‐
ple congested airports that were later studied using graph analytics. Network scien‐
tists P. Fleurquin, J. J. Ramasco, and V. M. Eguíluz used graph algorithms to confirm
the events as part of systematic cascading delays and use this information for correc‐
tive advice, as described in their paper, “Systemic Delay Propagation in the US Air‐
port Network”.

To visualize the network underpinning air transportation Figure 1-3 was created by
Martin Grandjean for his article, “Connected World: Untangling the Air Traffic Net‐
work”. This illustration clearly shows the highly connected structure of air transpor‐
tation clusters. Many transportation systems exhibit a concentrated distribution of
links with clear hub-and-spoke patterns that influence delays.
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Figure 1-3. Air transportation networks illustrate hub-and-spoke structures that evolve
over multiple scales. These structures contribute to how travel flows. 

Graphs also help uncover how very small interactions and dynamics lead to global
mutations. They tie together the micro and macro scales by representing exactly
which things are interacting within global structures. These associations are used to
forecast behavior and determine missing links. Figure 1-4 is a foodweb of grassland
species interactions that used graph analysis to evaluate the hierarchical organization
and species interactions and then predict missing relationships, as detailed in the
paper by A. Clauset, C. Moore, and M. E. J. Newman, “Hierarchical Structure and the
Prediction of Missing Links in Network”.
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Figure 1-4. This foodweb of grassland species uses graphs to correlate small-scale interac‐
tions to larger structure formation.

Graph Processing, Databases, Queries, and Algorithms
Graph processing includes the methods by which graph workloads and tasks are car‐
ried out. Most graph queries consider specific parts of the graph (e.g., a starting
node), and the work is usually focused in the surrounding subgraph. We term this
type of work graph local, and it implies declaratively querying a graph’s structure, as
explained in the book Graph Databases, by Ian Robinson, Jim Webber, and Emil
Eifrem (O’Reilly). This type of graph-local processing is often utilized for real-time
transactions and pattern-based queries.

When speaking about graph algorithms, we are typically looking for global patterns
and structures. The input to the algorithm is usually the whole graph, and the output
can be an enriched graph or some aggregate value such as a score. We categorize such
processing as graph global, and it implies processing a graph’s structure using compu‐
tational algorithms (often iteratively). This approach sheds light on the overall nature
of a network through its connections. Organizations tend to use graph algorithms to
model systems and predict behavior based on how things disseminate, important
components, group identification, and the overall robustness of the system.

There may be some overlap in these definitions—sometimes we can use processing of
an algorithm to answer a local query, or vice versa—but simplistically speaking
whole-graph operations are processed by computational algorithms and subgraph
operations are queried in databases.

Traditionally, transaction processing and analysis have been siloed. This was an
unnatural split based on technology limitations. Our view is that graph analytics
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drives smarter transactions, which creates new data and opportunities for further
analysis. More recently there’s been a trend to integrate these silos for more real-time
decision making.

OLTP and OLAP
Online transaction processing (OLTP) operations are typically short activities like
booking a ticket, crediting an account, booking a sale, and so forth. OLTP implies
voluminous low-latency query processing and high data integrity. Although OLTP
may involve only a small number of records per transaction, systems process many
transactions concurrently.

Online analytical processing (OLAP) facilitates more complex queries and analysis
over historical data. These analyses may include multiple data sources, formats, and
types. Detecting trends, conducting “what-if ” scenarios, making predictions, and
uncovering structural patterns are typical OLAP use cases. Compared to OLTP,
OLAP systems process fewer but longer-running transactions over many records.
OLAP systems are biased toward faster reading without the expectation of transac‐
tional updates found in OLTP, and batch-oriented operation is common.

Recently, however, the line between OLTP and OLAP has begun to blur. Modern
data-intensive applications now combine real-time transactional operations with ana‐
lytics. This merging of processing has been spurred by several advances in software,
such as more scalable transaction management and incremental stream processing,
and by lower-cost, large-memory hardware.

Bringing together analytics and transactions enables continual analysis as a natural
part of regular operations. As data is gathered—from point-of-sale (POS) machines,
manufacturing systems, or internet of things (IoT) devices—analytics now supports
the ability to make real-time recommendations and decisions while processing. This
trend was observed several years ago, and terms to describe this merging include 
translytics and hybrid transactional and analytical processing (HTAP). Figure 1-5 illus‐
trates how read-only replicas can be used to bring together these different types of
processing.
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Figure 1-5. A hybrid platform supports the low latency query processing and high data
integrity required for transactions while integrating complex analytics over large
amounts of data.

According to Gartner:
[HTAP] could potentially redefine the way some business processes are executed, as
real-time advanced analytics (for example, planning, forecasting and what-if analysis)
becomes an integral part of the process itself, rather than a separate activity performed
after the fact. This would enable new forms of real-time business-driven decision-
making process. Ultimately, HTAP will become a key enabling architecture for intelli‐
gent business operations.

As OLTP and OLAP become more integrated and begin to support functionality pre‐
viously offered in only one silo, it’s no longer necessary to use different data products
or systems for these workloads—we can simplify our architecture by using the same
platform for both. This means our analytical queries can take advantage of real-time
data and we can streamline the iterative process of analysis.

Why Should We Care About Graph Algorithms?
Graph algorithms are used to help make sense of connected data. We see relation‐
ships within real-world systems from protein interactions to social networks, from
communication systems to power grids, and from retail experiences to Mars mission
planning. Understanding networks and the connections within them offers incredible
potential for insight and innovation.

Graph algorithms are uniquely suited to understanding structures and revealing pat‐
terns in datasets that are highly connected. Nowhere is the connectivity and interac‐
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tivity so apparent than in big data. The amount of information that has been brought
together, commingled, and dynamically updated is impressive. This is where graph
algorithms can help make sense of our volumes of data, with more sophisticated ana‐
lytics that leverage relationships and enhance artificial intelligence contextual infor‐
mation.

As our data becomes more connected, it’s increasingly important to understand its
relationships and interdependencies. Scientists that study the growth of networks
have noted that connectivity increases over time, but not uniformly. Preferential
attachment is one theory on how the dynamics of growth impact structure. This idea,
illustrated in Figure 1-6, describes the tendency of a node to link to other nodes that
already have a lot of connections.

Figure 1-6. Preferential attachment is the phenomenon where the more connected a
node is, the more likely it is to receive new links. This leads to uneven concentrations and
hubs.

In his book, Sync: How Order Emerges from Chaos in the Universe, Nature, and Daily
Life (Hachette), Steven Strogatz provides examples and explains different ways that
real-life systems self-organize. Regardless of the underlying causes, many researchers
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believe that how networks grow is inseparable from their resulting shapes and hierar‐
chies. Highly dense groups and lumpy data networks tend to develop, with complex‐
ity growing along with data size. We see this clustering of relationships in most real-
world networks today, from the internet to social networks like the gaming
community shown in Figure 1-7.

Figure 1-7. This gaming community analysis shows a concentration of connections
around just 5 of 382 communities.

The network analysis shown in Figure 1-7 was created by Francesco D’Orazio of Pul‐
sar to help predict the virality of content and inform distribution strategies. D’Orazio
found a correlation between the concentration of a community’s distribution and the
speed of diffusion of a piece of content.

This is significantly different than what an average distribution model would predict,
where most nodes would have the same number of connections. For instance, if the
World Wide Web had an average distribution of connections, all pages would have
about the same number of links coming in and going out. Average distribution mod‐
els assert that most nodes are equally connected, but many types of graphs and many
real networks exhibit concentrations. The web, in common with graphs like travel
and social networks, has a power-law distribution with a few nodes being highly con‐
nected and most nodes being modestly connected.
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Power Law
A power law (also called a scaling law) describes the relationship between two quanti‐
ties where one quantity varies as a power of another. For instance, the area of a cube is
related to the length of its sides by a power of 3. A well-known example is the Pareto
distribution or “80/20 rule,” originally used to describe the situation where 20% of a
population controlled 80% of the wealth. We see various power laws in the natural
world and networks.

Trying to “average out” a network generally won’t work well for investigating relation‐
ships or forecasting, because real-world networks have uneven distributions of nodes
and relationships. We can readily see in Figure 1-8 how using an average of character‐
istics for data that is uneven would lead to incorrect results.

Figure 1-8. Real-world networks have uneven distributions of nodes and relationships
represented in the extreme by a power-law distribution. An average distribution assumes
most nodes have the same number of relationships and results in a random network.

Because highly connected data does not adhere to an average distribution, network
scientists use graph analytics to search for and interpret structures and relationship
distributions in real-world data.

There is no network in nature that we know of that would be described by the random
network model.
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—Albert-László Barabási, Director, Center for Complex Network Research, North‐
eastern University, and author of numerous network science books

The challenge for most users is that densely and unevenly connected data is trouble‐
some to analyze with traditional analytical tools. There might be a structure there, but
it’s hard to find. It’s tempting to take an averages approach to messy data, but doing so
will conceal patterns and ensure our results are not representing any real groups. For
instance, if you average the demographic information of all your customers and offer
an experience based solely on averages, you’ll be guaranteed to miss most communi‐
ties: communities tend to cluster around related factors like age and occupation or
marital status and location.

Furthermore, dynamic behavior, particularly around sudden events and bursts, can’t
be seen with a snapshot. To illustrate, if you imagine a social group with increasing
relationships, you’d also expect more communications. This could lead to a tipping
point of coordination and a subsequent coalition or, alternatively, subgroup forma‐
tion and polarization in, for example, elections. Sophisticated methods are required
to forecast a network’s evolution over time, but we can infer behavior if we under‐
stand the structures and interactions within our data. Graph analytics is used to pre‐
dict group resiliency because of the focus on relationships.

Graph Analytics Use Cases
At the most abstract level, graph analytics is applied to forecast behavior and pre‐
scribe action for dynamic groups. Doing this requires understanding the relation‐
ships and structure within the group. Graph algorithms accomplish this by
examining the overall nature of networks through their connections. With this
approach, you can understand the topology of connected systems and model their
processes.

There are three general buckets of questions that indicate whether graph analytics
and algorithms are warranted, as shown in Figure 1-9.
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Figure 1-9. The types of questions graph analytics answer

Here are a few types of challenges where graph algorithms are employed. Are your
challenges similar?

• Investigate the route of a disease or a cascading transport failure.
• Uncover the most vulnerable, or damaging, components in a network attack.
• Identify the least costly or fastest way to route information or resources.
• Predict missing links in your data.
• Locate direct and indirect influence in a complex system.
• Discover unseen hierarchies and dependencies.
• Forecast whether groups will merge or break apart.
• Find bottlenecks or who has the power to deny/provide more resources.
• Reveal communities based on behavior for personalized recommendations.
• Reduce false positives in fraud and anomaly detection.
• Extract more predictive features for machine learning.
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Conclusion
In this chapter, we’ve looked at how data today is extremely connected, and the impli‐
cations of this. Robust scientific practices exist for analysis of group dynamics and
relationships, yet those tools are not always commonplace in businesses. As we evalu‐
ate advanced analytics techniques, we should consider the nature of our data and
whether we need to understand community attributes or predict complex behavior. If
our data represents a network, we should avoid the temptation to reduce factors to an
average. Instead, we should use tools that match our data and the insights we’re seek‐
ing.

In the next chapter, we’ll cover graph concepts and terminology.
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