
CHAPTER 6

Community Detection Algorithms

Community formation is common in all types of networks, and identifying them is
essential for evaluating group behavior and emergent phenomena. The general prin‐
ciple in finding communities is that its members will have more relationships within
the group than with nodes outside their group. Identifying these related sets reveals
clusters of nodes, isolated groups, and network structure. This information helps
infer similar behavior or preferences of peer groups, estimate resiliency, find nested
relationships, and prepare data for other analyses. Community detection algorithms
are also commonly used to produce network visualization for general inspection.

We’ll provide details on the most representative community detection algorithms:

• Triangle Count and Clustering Coefficient for overall relationship density
• Strongly Connected Components and Connected Components for finding con‐

nected clusters
• Label Propagation for quickly inferring groups based on node labels
• Louvain Modularity for looking at grouping quality and hierarchies

We’ll explain how the algorithms work and show examples in Apache Spark and
Neo4j. In cases where an algorithm is only available in one platform, we’ll provide
just one example. We use weighted relationships for these algorithms because they’re
typically used to capture the significance of different relationships.

Figure 6-1 gives an overview of the differences between the community detection
algorithms covered here, and Table 6-1 provides a quick reference as to what each
algorithm calculates with example uses.

109

Figure 6-1. Representative community detection algorithms

We use the terms set, partition, cluster, group, and community inter‐
changeably. These terms are different ways to indicate that similar
nodes can be grouped. Community detection algorithms are also
called clustering and partitioning algorithms. In each section, we
use the terms that are most prominent in the literature for a partic‐
ular algorithm.

110 | Chapter 6: Community Detection Algorithms

Table 6-1. Overview of community detection algorithms

Algorithm type What it does Example use Spark
example

Neo4j
example

Triangle Count and
Clustering Coefficient

Measures how many nodes form
triangles and the degree to
which nodes tend to cluster
together

Estimating group stability and
whether the network might
exhibit “small-world” behaviors
seen in graphs with tightly knit
clusters

Yes Yes

Strongly Connected
Components

Finds groups where each node is
reachable from every other node
in that same group following the
direction of relationships

Making product
recommendations based on group
affiliation or similar items

Yes Yes

Connected Components Finds groups where each node is
reachable from every other node
in that same group, regardless of
the direction of relationships

Performing fast grouping for
other algorithms and identify
islands

Yes Yes

Label Propagation Infers clusters by spreading
labels based on neighborhood
majorities

Understanding consensus in social
communities or finding
dangerous combinations of
possible co-prescribed drugs

Yes Yes

Louvain Modularity Maximizes the presumed
accuracy of groupings by
comparing relationship weights
and densities to a defined
estimate or average

In fraud analysis, evaluating
whether a group has just a few
discrete bad behaviors or is acting
as a fraud ring

No Yes

First, we’ll describe the data for our examples and walk through importing the data
into Spark and Neo4j. The algorithms are covered in the order listed in Table 6-1. For
each, you’ll find a short description and advice on when to use it. Most sections also
include guidance on when to use related algorithms. We demonstrate example code
using sample data at the end of each algorithm section.

When using community detection algorithms, be conscious of the
density of the relationships.
If the graph is very dense, you may end up with all nodes congre‐
gating in one or just a few clusters. You can counteract this by fil‐
tering by degree, relationship weights, or similarity metrics.
On the other hand, if the graph is too sparse with few connected
nodes, you may end up with each node in its own cluster. In this
case, try to incorporate additional relationship types that carry
more relevant information.

Community Detection Algorithms | 111

Example Graph Data: The Software Dependency Graph
Dependency graphs are particularly well suited for demonstrating the sometimes
subtle differences between community detection algorithms because they tend to be
more connected and hierarchical. The examples in this chapter are run against a
graph containing dependencies between Python libraries, although dependency
graphs are used in various fields, from software to energy grids. This kind of software
dependency graph is used by developers to keep track of transitive interdependencies
and conflicts in software projects. You can download the nodes and files from the
book’s GitHub repository.

Table 6-2. sw-nodes.csv

id
six

pandas

numpy

python-dateutil

pytz

pyspark

matplotlib

spacy

py4j

jupyter

jpy-console

nbconvert

ipykernel

jpy-client

jpy-core

Table 6-3. sw-relationships.csv

src dst relationship
pandas numpy DEPENDS_ON

pandas pytz DEPENDS_ON

pandas python-dateutil DEPENDS_ON

python-dateutil six DEPENDS_ON

pyspark py4j DEPENDS_ON

matplotlib numpy DEPENDS_ON

matplotlib python-dateutil DEPENDS_ON

matplotlib six DEPENDS_ON

112 | Chapter 6: Community Detection Algorithms

src dst relationship
matplotlib pytz DEPENDS_ON

spacy six DEPENDS_ON

spacy numpy DEPENDS_ON

jupyter nbconvert DEPENDS_ON

jupyter ipykernel DEPENDS_ON

jupyter jpy-console DEPENDS_ON

jpy-console jpy-client DEPENDS_ON

jpy-console ipykernel DEPENDS_ON

jpy-client jpy-core DEPENDS_ON

nbconvert jpy-core DEPENDS_ON

Figure 6-2 shows the graph that we want to construct. Looking at this graph, we see
that there are three clusters of libraries. We can use visualizations on smaller datasets
as a tool to help validate the clusters derived by community detection algorithms.

Figure 6-2. The graph model

Example Graph Data: The Software Dependency Graph | 113

Let’s create graphs in Spark and Neo4j from the example CSV files.

Importing the Data into Apache Spark
We’ll first import the packages we need from Apache Spark and the GraphFrames
package:

from graphframes import *

The following function creates a GraphFrame from the example CSV files:

def create_software_graph():
 nodes = spark.read.csv("data/sw-nodes.csv", header=True)
 relationships = spark.read.csv("data/sw-relationships.csv", header=True)
 return GraphFrame(nodes, relationships)

Now let’s call that function:

g = create_software_graph()

Importing the Data into Neo4j
Next we’ll do the same for Neo4j. The following query imports the nodes:

WITH "https://github.com/neo4j-graph-analytics/book/raw/master/data/" AS base
WITH base + "sw-nodes.csv" AS uri
LOAD CSV WITH HEADERS FROM uri AS row
MERGE (:Library {id: row.id})

And this imports the relationships:

WITH "https://github.com/neo4j-graph-analytics/book/raw/master/data/" AS base
WITH base + "sw-relationships.csv" AS uri
LOAD CSV WITH HEADERS FROM uri AS row
MATCH (source:Library {id: row.src})
MATCH (destination:Library {id: row.dst})
MERGE (source)-[:DEPENDS_ON]->(destination)

Now that we’ve got our graphs loaded it’s on to the algorithms!

Triangle Count and Clustering Coefficient
The Triangle Count and Clustering Coefficient algorithms are presented together
because they are so often used together. Triangle Count determines the number of tri‐
angles passing through each node in the graph. A triangle is a set of three nodes,
where each node has a relationship to all other nodes. Triangle Count can also be run
globally for evaluating our overall dataset.

114 | Chapter 6: Community Detection Algorithms

Networks with a high number of triangles are more likely to exhibit
small-world structures and behaviors.

The goal of the Clustering Coefficient algorithm is to measure how tightly a group is
clustered compared to how tightly it could be clustered. The algorithm uses Triangle
Count in its calculations, which provides a ratio of existing triangles to possible rela‐
tionships. A maximum value of 1 indicates a clique where every node is connected to
every other node.

There are two types of clustering coefficients: local clustering and global clustering.

Local Clustering Coefficient
The local clustering coefficient of a node is the likelihood that its neighbors are also
connected. The computation of this score involves triangle counting.

The clustering coefficient of a node can be found by multiplying the number of trian‐
gles passing through the node by two and then diving that by the maximum number
of relationships in the group, which is always the degree of that node, minus one.
Examples of different triangles and clustering coefficients for a node with five rela‐
tionships are portrayed in Figure 6-3.

Figure 6-3. Triangle counts and clustering coefficients for node u

Note in Figure 6-3, we use a node with five relationships which makes it appear that
the clustering coefficient will always equate to 10% of the number of triangles. We can
see this is not the case when we alter the number of relationships. If we change the
second example to have four relationships (and the same two triangles) then the coef‐
ficient is 0.33.

The clustering coefficient for a node uses the formula:

Triangle Count and Clustering Coefficient | 115

CC u =
2Ru

ku ku − 1

where:

• u is a node.
• R(u) is the number of relationships through the neighbors of u (this can be

obtained by using the number of triangles passing through u).
• k(u) is the degree of u.

Global Clustering Coefficient
The global clustering coefficient is the normalized sum of the local clustering coeffi‐
cients.

Clustering coefficients give us an effective means to find obvious groups like cliques,
where every node has a relationship with all other nodes, but we can also specify
thresholds to set levels (say, where nodes are 40% connected).

When Should I Use Triangle Count and Clustering Coefficient?
Use Triangle Count when you need to determine the stability of a group or as part of
calculating other network measures such as the clustering coefficient. Triangle count‐
ing is popular in social network analysis, where it is used to detect communities.

Clustering Coefficient can provide the probability that randomly chosen nodes will
be connected. You can also use it to quickly evaluate the cohesiveness of a specific
group or your overall network. Together these algorithms are used to estimate resil‐
iency and look for network structures.

Example use cases include:

• Identifying features for classifying a given website as spam content. This is
described in “Efficient Semi-Streaming Algorithms for Local Triangle Counting
in Massive Graphs”, a paper by L. Becchetti et al.

• Investigating the community structure of Facebook’s social graph, where
researchers found dense neighborhoods of users in an otherwise sparse global
graph. Find this study in the paper “The Anatomy of the Facebook Social Graph”,
by J. Ugander et al.

• Exploring the thematic structure of the web and detecting communities of pages
with common topics based on the reciprocal links between them. For more infor‐
mation, see “Curvature of Co-Links Uncovers Hidden Thematic Layers in the
World Wide Web”, by J.-P. Eckmann and E. Moses.

116 | Chapter 6: Community Detection Algorithms

Triangle Count with Apache Spark
Now we’re ready to execute the Triangle Count algorithm. We can use the following
code to do this:

result = g.triangleCount()
(result.sort("count", ascending=False)
 .filter('count > 0')
 .show())

If we run that code in pyspark we’ll see this output:

count id
1 jupyter

1 python-dateutil

1 six

1 ipykernel

1 matplotlib

1 jpy-console

A triangle in this graph would indicate that two of a node’s neighbors are also neigh‐
bors. Six of our libraries participate in such triangles.

What if we want to know which nodes are in those triangles? That’s where a triangle
stream comes in. For this, we need Neo4j.

Triangles with Neo4j
Getting a stream of the triangles isn’t available using Spark, but we can return it using
Neo4j:

CALL algo.triangle.stream("Library","DEPENDS_ON")
YIELD nodeA, nodeB, nodeC
RETURN algo.getNodeById(nodeA).id AS nodeA,
 algo.getNodeById(nodeB).id AS nodeB,
 algo.getNodeById(nodeC).id AS nodeC

Running this procedure gives the following result:

nodeA nodeB nodeC
matplotlib six python-dateutil

jupyter jpy-console ipykernel

We see the same six libraries as we did before, but now we know how they’re connec‐
ted. matplotlib, six, and python-dateutil form one triangle. jupyter, jpy-console, and
ipykernel form the other.

Triangle Count and Clustering Coefficient | 117

We can see these triangles visually in Figure 6-4.

Figure 6-4. Triangles in the software dependency graph

Local Clustering Coefficient with Neo4j
We can also work out the local clustering coefficient. The following query will calcu‐
late this for each node:

CALL algo.triangleCount.stream('Library', 'DEPENDS_ON')
YIELD nodeId, triangles, coefficient
WHERE coefficient > 0
RETURN algo.getNodeById(nodeId).id AS library, coefficient
ORDER BY coefficient DESC

Running this procedure gives the following result:

library coefficient
ipykernel 1.0

jupyter 0.3333333333333333

jpy-console 0.3333333333333333

six 0.3333333333333333

python-dateutil 0.3333333333333333

118 | Chapter 6: Community Detection Algorithms

library coefficient
matplotlib 0.16666666666666666

ipykernel has a score of 1, which means that all ipykernel’s neighbors are neighbors of
each other. We can clearly see that in Figure 6-4. This tells us that the community
directly around ipykernel is very cohesive.

We’ve filtered out nodes with a coefficient score of 0 in this code sample, but nodes
with low coefficients may also be interesting. A low score can be an indicator that a
node is a structural hole—a node that is well connected to nodes in different com‐
munities that aren’t otherwise connected to each other. This is a method for finding
potential bridges that we discussed in Chapter 5.

Strongly Connected Components
The Strongly Connected Components (SCC) algorithm is one of the earliest graph
algorithms. SCC finds sets of connected nodes in a directed graph where each node is
reachable in both directions from any other node in the same set. Its runtime opera‐
tions scale well, proportional to the number of nodes. In Figure 6-5 you can see that
the nodes in an SCC group don’t need to be immediate neighbors, but there must be
directional paths between all nodes in the set.

Figure 6-5. Strongly connected components

Strongly Connected Components | 119

Decomposing a directed graph into its strongly connected compo‐
nents is a classic application of the Depth First Search algorithm.
Neo4j uses DFS under the hood as part of its implementation of the
SCC algorithm.

When Should I Use Strongly Connected Components?
Use Strongly Connected Components as an early step in graph analysis to see how a
graph is structured or to identify tight clusters that may warrant independent investi‐
gation. A component that is strongly connected can be used to profile similar behav‐
ior or inclinations in a group for applications such as recommendation engines.

Many community detection algorithms like SCC are used to find and collapse clusters
into single nodes for further intercluster analysis. You can also use SCC to visualize
cycles for analyses like finding processes that might deadlock because each subpro‐
cess is waiting for another member to take action.

Example use cases include:

• Finding the set of firms in which every member directly and/or indirectly owns
shares in every other member, as in “The Network of Global Corporate Control”,
an analysis of powerful transnational corporations by S. Vitali, J. B. Glattfelder,
and S. Battiston.

• Computing the connectivity of different network configurations when measuring
routing performance in multihop wireless networks. Read more in “Routing Per‐
formance in the Presence of Unidirectional Links in Multihop Wireless Net‐
works”, by M. K. Marina and S. R. Das.

• Acting as the first step in many graph algorithms that work only on strongly con‐
nected graphs. In social networks we find many strongly connected groups. In
these sets people often have similar preferences, and the SCC algorithm is used to
find such groups and suggest pages to like or products to purchase to the people
in the group who have not yet done so.

Some algorithms have strategies for escaping infinite loops, but if
we’re writing our own algorithms or finding nonterminating pro‐
cesses, we can use SCC to check for cycles.

Strongly Connected Components with Apache Spark
Starting with Apache Spark, we’ll first import the packages we need from Spark and
the GraphFrames package:

120 | Chapter 6: Community Detection Algorithms

from graphframes import *
from pyspark.sql import functions as F

Now we’re ready to execute the Strongly Connected Components algorithm. We’ll use
it to work out whether there are any circular dependencies in our graph.

Two nodes can only be in the same strongly connected component
if there are paths between them in both directions.

We write the following code to do this:

result = g.stronglyConnectedComponents(maxIter=10)
(result.sort("component")
 .groupby("component")
 .agg(F.collect_list("id").alias("libraries"))
 .show(truncate=False))

If we run that code in pyspark we’ll see this output:

component libraries
180388626432 [jpy-core]

223338299392 [spacy]

498216206336 [numpy]

523986010112 [six]

549755813888 [pandas]

558345748480 [nbconvert]

661424963584 [ipykernel]

721554505728 [jupyter]

764504178688 [jpy-client]

833223655424 [pytz]

910533066752 [python-dateutil]

936302870528 [pyspark]

944892805120 [matplotlib]

1099511627776 [jpy-console]

1279900254208 [py4j]

You might notice that every library node is assigned to a unique component. This is
the partition or subgroup it belongs to, and as we (hopefully!) expected, every node is
in its own partition. This means our software project has no circular dependencies
amongst these libraries.

Strongly Connected Components | 121

Strongly Connected Components with Neo4j
Let’s run the same algorithm using Neo4j. Execute the following query to run the
algorithm:

CALL algo.scc.stream("Library", "DEPENDS_ON")
YIELD nodeId, partition
RETURN partition, collect(algo.getNodeById(nodeId)) AS libraries
ORDER BY size(libraries) DESC

The parameters passed to this algorithm are:

Library

The node label to load from the graph

DEPENDS_ON

The relationship type to load from the graph

This is the output we’ll see when we run the query:

partition libraries
8 [ipykernel]

11 [six]

2 [matplotlib]

5 [jupyter]

14 [python-dateutil]

13 [numpy]

4 [py4j]

7 [nbconvert]

1 [pyspark]

10 [jpy-core]

9 [jpy-client]

3 [spacy]

12 [pandas]

6 [jpy-console]

0 [pytz]

As with the Spark example, every node is in its own partition.

So far the algorithm has only revealed that our Python libraries are very well behaved,
but let’s create a circular dependency in the graph to make things more interesting.
This should mean that we’ll end up with some nodes in the same partition.

The following query adds an extra library that creates a circular dependency between
py4j and pyspark:

122 | Chapter 6: Community Detection Algorithms

MATCH (py4j:Library {id: "py4j"})
MATCH (pyspark:Library {id: "pyspark"})
MERGE (extra:Library {id: "extra"})
MERGE (py4j)-[:DEPENDS_ON]->(extra)
MERGE (extra)-[:DEPENDS_ON]->(pyspark)

We can clearly see the circular dependency that got created in Figure 6-6.

Figure 6-6. A circular dependency between pyspark, py4j, and extra

Now if we run the SCC algorithm again we’ll see a slightly different result:

partition libraries
1 [pyspark, py4j, extra]

8 [ipykernel]

11 [six]

2 [matplotlib]

5 [jupyter]

14 [numpy]

13 [pandas]

7 [nbconvert]

10 [jpy-core]

9 [jpy-client]

3 [spacy]

15 [python-dateutil]

6 [jpy-console]

0 [pytz]

pyspark, py4j, and extra are all part of the same partition, and SCCs helped us find
the circular dependency!

Strongly Connected Components | 123

Before we move on to the next algorithm we’ll delete the extra library and its relation‐
ships from the graph:

MATCH (extra:Library {id: "extra"})
DETACH DELETE extra

Connected Components
The Connected Components algorithm (sometimes called Union Find or Weakly
Connected Components) finds sets of connected nodes in an undirected graph where
each node is reachable from any other node in the same set. It differs from the SCC
algorithm because it only needs a path to exist between pairs of nodes in one direc‐
tion, whereas SCC needs a path to exist in both directions. Bernard A. Galler and
Michael J. Fischer first described this algorithm in their 1964 paper, “An Improved
Equivalence Algorithm”.

When Should I Use Connected Components?
As with SCC, Connected Components is often used early in an analysis to understand
a graph’s structure. Because it scales efficiently, consider this algorithm for graphs
requiring frequent updates. It can quickly show new nodes in common between
groups, which is useful for analysis such as fraud detection.

Make it a habit to run Connected Components to test whether a graph is connected
as a preparatory step for general graph analysis. Performing this quick test can avoid
accidentally running algorithms on only one disconnected component of a graph and
getting incorrect results.

Example use cases include:

• Keeping track of clusters of database records, as part of the deduplication pro‐
cess. Deduplication is an important task in master data management applica‐
tions; the approach is described in more detail in “An Efficient Domain-
Independent Algorithm for Detecting Approximately Duplicate Database
Records”, by A. Monge and C. Elkan.

• Analyzing citation networks. One study uses Connected Components to work
out how well connected a network is, and then to see whether the connectivity
remains if “hub” or “authority” nodes are moved from the graph. This use case is
explained further in “Characterizing and Mining Citation Graph of Computer
Science Literature”, a paper by Y. An, J. C. M. Janssen, and E. E. Milios.

124 | Chapter 6: Community Detection Algorithms

Connected Components with Apache Spark
Starting with Apache Spark, we’ll first import the packages we need from Spark and
the GraphFrames package:

from pyspark.sql import functions as F

Now we’re ready to execute the Connected Components algorithm.

Two nodes can be in the same connected component if there is a
path between them in either direction.

We write the following code to do this:

result = g.connectedComponents()
(result.sort("component")
 .groupby("component")
 .agg(F.collect_list("id").alias("libraries"))
 .show(truncate=False))

If we run that code in pyspark we’ll see this output:

component libraries
180388626432 [jpy-core, nbconvert, ipykernel, jupyter, jpy-client, jpy-console]

223338299392 [spacy, numpy, six, pandas, pytz, python-dateutil, matplotlib]

936302870528 [pyspark, py4j]

The results show three clusters of nodes, which can also be seen in Figure 6-7.

Connected Components | 125

Figure 6-7. Clusters found by the Connected Components algorithm

In this example it’s very easy to see that there are three components just by visual
inspection. This algorithm shows its value more on larger graphs, where visual
inspection isn’t possible or is very time-consuming.

Connected Components with Neo4j
We can also execute this algorithm in Neo4j by running the following query:

CALL algo.unionFind.stream("Library", "DEPENDS_ON")
YIELD nodeId,setId
RETURN setId, collect(algo.getNodeById(nodeId)) AS libraries
ORDER BY size(libraries) DESC

The parameters passed to this algorithm are:

Library

The node label to load from the graph

DEPENDS_ON

The relationship type to load from the graph

Here’s the output:

126 | Chapter 6: Community Detection Algorithms

setId libraries
2 [pytz, matplotlib, spacy, six, pandas, numpy, python-dateutil]

5 [jupyter, jpy-console, nbconvert, ipykernel, jpy-client, jpy-core]

1 [pyspark, py4j]

As expected, we get exactly the same results as we did with Spark.

Both of the community detection algorithms that we’ve covered so far are determinis‐
tic: they return the same results each time we run them. Our next two algorithms are
examples of nondeterministic algorithms, where we may see different results if we
run them multiple times, even on the same data.

Label Propagation
The Label Propagation algorithm (LPA) is a fast algorithm for finding communities
in a graph. In LPA, nodes select their group based on their direct neighbors. This pro‐
cess is well suited to networks where groupings are less clear and weights can be used
to help a node determine which community to place itself within. It also lends itself
well to semisupervised learning because you can seed the process with preassigned,
indicative node labels.

The intuition behind this algorithm is that a single label can quickly become domi‐
nant in a densely connected group of nodes, but it will have trouble crossing a
sparsely connected region. Labels get trapped inside a densely connected group of
nodes, and nodes that end up with the same label when the algorithm finishes are
considered part of the same community. The algorithm resolves overlaps, where
nodes are potentially part of multiple clusters, by assigning membership to the label
neighborhood with the highest combined relationship and node weight.

LPA is a relatively new algorithm proposed in 2007 by U. N. Raghavan, R. Albert, and
S. Kumara, in a paper titled “Near Linear Time Algorithm to Detect Community
Structures in Large-Scale Networks”.

Figure 6-8 depicts two variations of Label Propagation, a simple push method and the
more typical pull method that relies on relationship weights. The pull method lends
itself well to parallelization.

Label Propagation | 127

Figure 6-8. Two variations of Label Propagation

The steps often used for the Label Propagation pull method are:

1. Every node is initialized with a unique label (an identifier), and, optionally pre‐
liminary “seed” labels can be used.

2. These labels propagate through the network.
3. At every propagation iteration, each node updates its label to match the one with

the maximum weight, which is calculated based on the weights of neighbor nodes
and their relationships. Ties are broken uniformly and randomly.

4. LPA reaches convergence when each node has the majority label of its neighbors.

128 | Chapter 6: Community Detection Algorithms

As labels propagate, densely connected groups of nodes quickly reach a consensus on
a unique label. At the end of the propagation, only a few labels will remain, and nodes
that have the same label belong to the same community.

Semi-Supervised Learning and Seed Labels
In contrast to other algorithms, Label Propagation can return different community
structures when run multiple times on the same graph. The order in which LPA eval‐
uates nodes can have an influence on the final communities it returns.

The range of solutions is narrowed when some nodes are given preliminary labels
(i.e., seed labels), while others are unlabeled. Unlabeled nodes are more likely to
adopt the preliminary labels.

This use of Label Propagation can be considered a semi-supervised learning method to
find communities. Semi-supervised learning is a class of machine learning tasks and
techniques that operate on a small amount of labeled data, along with a larger amount
of unlabeled data. We can also run the algorithm repeatedly on graphs as they evolve.

Finally, LPA sometimes doesn’t converge on a single solution. In this situation, our
community results will continually flip between a few remarkably similar communi‐
ties and the algorithm would never complete. Seed labels help guide it toward a solu‐
tion. Spark and Neo4j use a set maximum number of iterations to avoid never-ending
execution. You should test the iteration setting for your data to balance accuracy and
execution time.

When Should I Use Label Propagation?
Use Label Propagation in large-scale networks for initial community detection, espe‐
cially when weights are available. This algorithm can be parallelized and is therefore
extremely fast at graph partitioning.

Example use cases include:

• Assigning polarity of tweets as a part of semantic analysis. In this scenario, posi‐
tive and negative seed labels from a classifier are used in combination with the
Twitter follower graph. For more information, see “Twitter Polarity Classification
with Label Propagation over Lexical Links and the Follower Graph”, by M. Sper‐
iosu et al.

• Finding potentially dangerous combinations of possible co-prescribed drugs,
based on the chemical similarity and side effect profiles. See “Label Propagation
Prediction of Drug–Drug Interactions Based on Clinical Side Effects”, a paper by
P. Zhang et al.

Label Propagation | 129

• Inferring dialogue features and user intention for a machine learning model. For
more information, see “Feature Inference Based on Label Propagation on Wiki‐
data Graph for DST”, a paper by Y. Murase et al.

Label Propagation with Apache Spark
Starting with Apache Spark, we’ll first import the packages we need from Spark and
the GraphFrames package:

from pyspark.sql import functions as F

Now we’re ready to execute the Label Propagation algorithm. We write the following
code to do this:

result = g.labelPropagation(maxIter=10)
(result
.sort("label")
.groupby("label")
.agg(F.collect_list("id"))
.show(truncate=False))

If we run that code in pyspark we’ll see this output:

label collect_list(id)
180388626432 [jpy-core, jpy-console, jupyter]

223338299392 [matplotlib, spacy]

498216206336 [python-dateutil, numpy, six, pytz]

549755813888 [pandas]

558345748480 [nbconvert, ipykernel, jpy-client]

936302870528 [pyspark]

1279900254208 [py4j]

Compared to Connected Components, we have more clusters of libraries in this
example. LPA is less strict than Connected Components with respect to how it deter‐
mines clusters. Two neighbors (directly connected nodes) may be found to be in dif‐
ferent clusters using Label Propagation. However, using Connected Components a
node would always be in the same cluster as its neighbors because that algorithm
bases grouping strictly on relationships.

In our example, the most obvious difference is that the Jupyter libraries have been
split into two communities—one containing the core parts of the library and the
other the client-facing tools.

130 | Chapter 6: Community Detection Algorithms

Label Propagation with Neo4j
Now let’s try the same algorithm with Neo4j. We can execute LPA by running the fol‐
lowing query:

CALL algo.labelPropagation.stream("Library", "DEPENDS_ON",
 { iterations: 10 })
YIELD nodeId, label
RETURN label,
 collect(algo.getNodeById(nodeId).id) AS libraries
ORDER BY size(libraries) DESC

The parameters passed to this algorithm are:

Library

The node label to load from the graph

DEPENDS_ON

The relationship type to load from the graph

iterations: 10

The maximum number of iterations to run

These are the results we’d see:

label libraries
11 [matplotlib, spacy, six, pandas, python-dateutil]

10 [jupyter, jpy-console, nbconvert, jpy-client, jpy-core]

4 [pyspark, py4j]

8 [ipykernel]

13 [numpy]

0 [pytz]

The results, which can also be seen visually in Figure 6-9, are fairly similar to those
we got with Apache Spark.

Label Propagation | 131

Figure 6-9. Clusters found by the Label Propagation algorithm

We can also run the algorithm assuming that the graph is undirected, which means
that nodes will try to adopt labels from the libraries they depend on as well as ones
that depend on them.

To do this, we pass the DIRECTION:BOTH parameter to the algorithm:

CALL algo.labelPropagation.stream("Library", "DEPENDS_ON",
 { iterations: 10, direction: "BOTH" })
YIELD nodeId, label
RETURN label,
 collect(algo.getNodeById(nodeId).id) AS libraries
ORDER BY size(libraries) DESC

If we run that, we’ll get the following output:

label libraries
11 [pytz, matplotlib, spacy, six, pandas, numpy, python-dateutil]

10 [nbconvert, jpy-client, jpy-core]

6 [jupyter, jpy-console, ipykernel]

4 [pyspark, py4j]

132 | Chapter 6: Community Detection Algorithms

The number of clusters has reduced from six to four, and all the nodes in the matplot‐
lib part of the graph are now grouped together. This can be seen more clearly in
Figure 6-10.

Figure 6-10. Clusters found by the Label Propagation algorithm, when ignoring relation‐
ship direction

Although the results of running Label Propagation on this data are similar for undir‐
ected and directed calculation, on complicated graphs you will see more significant
differences. This is because ignoring direction causes nodes to try and adopt more
labels, regardless of the relationship source.

Louvain Modularity
The Louvain Modularity algorithm finds clusters by comparing community density
as it assigns nodes to different groups. You can think of this as a “what if ” analysis to
try various groupings with the goal of reaching a global optimum.

Proposed in 2008, the Louvain algorithm is one of the fastest modularity-based algo‐
rithms. As well as detecting communities, it also reveals a hierarchy of communities

Louvain Modularity | 133

at different scales. This is useful for understanding the structure of a network at dif‐
ferent levels of granularity.

Louvain quantifies how well a node is assigned to a group by looking at the density of
connections within a cluster in comparison to an average or random sample. This
measure of community assignment is called modularity.

Quality-based grouping via modularity
Modularity is a technique for uncovering communities by partitioning a graph into
more coarse-grained modules (or clusters) and then measuring the strength of the
groupings. As opposed to just looking at the concentration of connections within a
cluster, this method compares relationship densities in given clusters to densities
between clusters. The measure of the quality of those groupings is called modularity.

Modularity algorithms optimize communities locally and then globally, using multi‐
ple iterations to test different groupings and increasing coarseness. This strategy
identifies community hierarchies and provides a broad understanding of the overall
structure. However, all modularity algorithms suffer from two drawbacks:

• They merge smaller communities into larger ones.
• A plateau can occur where several partition options are present with similar

modularity, forming local maxima and preventing progress.

For more information, see the paper “The Performance of Modularity Maximization
in Practical Contexts”, by B. H. Good, Y.-A. de Montjoye, and A. Clauset.

Calculating Modularity
A simple calculation of modularity is based on the fraction of the relationships within
the given groups minus the expected fraction if relationships were distributed at ran‐
dom between all nodes. The value is always between 1 and –1, with positive values
indicating more relationship density than you’d expect by chance and negative values
indicating less density. Figure 6-11 illustrates several different modularity scores
based on node groupings.

134 | Chapter 6: Community Detection Algorithms

Figure 6-11. Four modularity scores based on different partitioning choices

The formula for the modularity of a group is:

M = ∑
c = 1

nc Lc
L −

kc
2L

2

where:

• L is the number of relationships in the entire group.
• Lc is the number of relationships in a partition.

• kc is the total degree of nodes in a partition.

The calculation for the optimal partition at the top of Figure 6-11 is as follows:

• The dark partition is 7
13 − 15

2 13
2

= 0 . 205

• The light partition is 5
13 − 11

2 13
2

= 0 . 206

• These are added together for M = 0 . 205 + 0 . 206 = 0 . 41

Louvain Modularity | 135

Initially the Louvain Modularity algorithm optimizes modularity locally on all nodes,
which finds small communities; then each small community is grouped into a larger
conglomerate node and the first step is repeated until we reach a global optimum.

The algorithm consists of repeated application of two steps, as illustrated in
Figure 6-12.

Figure 6-12. The Louvain algorithm process

The Louvain algorithm’s steps include:

1. A “greedy” assignment of nodes to communities, favoring local optimizations of
modularity.

136 | Chapter 6: Community Detection Algorithms

2. The definition of a more coarse-grained network based on the communities
found in the first step. This coarse-grained network will be used in the next itera‐
tion of the algorithm.

These two steps are repeated until no further modularity-increasing reassignments of
communities are possible.

Part of the first optimization step is evaluating the modularity of a group. Louvain
uses the following formula to accomplish this:

Q = 1
2m ∑u, v Auv −

kukv
2m δ cu, cv

where:

• u and v are nodes.
• m is the total relationship weight across the entire graph (2m is a common nor‐

malization value in modularity formulas).

• Auv −
kukv
2m is the strength of the relationship between u and v compared to what

we would expect with a random assignment (tends toward averages) of those
nodes in the network.
— Auv is the weight of the relationship between u and v.

— ku is the sum of relationship weights for u.

— kv is the sum of relationship weights for v.

• δ cu, cv is equal to 1 if u and v are assigned to the same community, and 0 if they
are not.

Another part of that first step evaluates the change in modularity if a node is moved
to another group. Louvain uses a more complicated variation of this formula and
then determines the best group assignment.

When Should I Use Louvain?
Use Louvain Modularity to find communities in vast networks. This algorithm
applies a heuristic, as opposed to exact, modularity, which is computationally expen‐
sive. Louvain can therefore be used on large graphs where standard modularity algo‐
rithms may struggle.

Louvain is also very helpful for evaluating the structure of complex networks, in par‐
ticular uncovering many levels of hierarchies–such as what you might find in a crimi‐
nal organization. The algorithm can provide results where you can zoom in on
different levels of granularity and find subcommunities within subcommunities
within subcommunities.

Louvain Modularity | 137

Example use cases include:

• Detecting cyberattacks. The Louvain algorithm was used in a 2016 study by S. V.
Shanbhaq of fast community detection in large-scale cybernetworks for cyberse‐
curity applications. Once these communities have been detected they can be used
to detect cyberattacks.

• Extracting topics from online social platforms, like Twitter and YouTube, based
on the co-occurence of terms in documents as part of the topic modeling process.
This approach is described in a paper by G. S. Kido, R. A. Igawa, and S. Barbon
Jr., “Topic Modeling Based on Louvain Method in Online Social Networks”.

• Finding hierarchical community structures within the brain’s functional network,
as described in “Hierarchical Modularity in Human Brain Functional Networks”
by D. Meunier et al.

Modularity optimization algorithms, including Louvain, suffer
from two issues. First, the algorithms can overlook small commun‐
ities within large networks. You can overcome this problem by
reviewing the intermediate consolidation steps. Second, in large
graphs with overlapping communities, modularity optimizers may
not correctly determine the global maxima. In the latter case, we
recommend using any modularity algorithm as a guide for gross
estimation but not complete accuracy.

Louvain with Neo4j
Let’s see the Louvain algorithm in action. We can execute the following query to run
the algorithm over our graph:

CALL algo.louvain.stream("Library", "DEPENDS_ON")
YIELD nodeId, communities
RETURN algo.getNodeById(nodeId).id AS libraries, communities

The parameters passed to this algorithm are:

Library

The node label to load from the graph

DEPENDS_ON

The relationship type to load from the graph

These are the results:

libraries communities
pytz [0, 0]

138 | Chapter 6: Community Detection Algorithms

libraries communities
pyspark [1, 1]

matplotlib [2, 0]

spacy [2, 0]

py4j [1, 1]

jupyter [3, 2]

jpy-console [3, 2]

nbconvert [4, 2]

ipykernel [3, 2]

jpy-client [4, 2]

jpy-core [4, 2]

six [2, 0]

pandas [0, 0]

numpy [2, 0]

python-dateutil [2, 0]

The communities column describes the community that nodes fall into at two levels.
The last value in the array is the final community and the other one is an intermedi‐
ate community.

The numbers assigned to the intermediate and final communities are simply labels
with no measurable meaning. Treat these as labels that indicate which community
nodes belong to such as “belongs to a community labeled 0”, “a community labeled 4”,
and so forth.

For example, matplotlib has a result of [2,0]. This means that matplotlib’s final com‐
munity is labeled 0 and its intermediate community is labeled 2.

It’s easier to see how this works if we store these communities using the write version
of the algorithm and then query it afterwards. The following query will run the Lou‐
vain algorithm and store the result in the communities property on each node:

CALL algo.louvain("Library", "DEPENDS_ON")

We could also store the resulting communities using the streaming version of the
algorithm, followed by calling the SET clause to store the result. The following query
shows how we could do this:

CALL algo.louvain.stream("Library", "DEPENDS_ON")
YIELD nodeId, communities
WITH algo.getNodeById(nodeId) AS node, communities
SET node.communities = communities

Once we’ve run either of those queries, we can write the following query to find the
final clusters:

Louvain Modularity | 139

MATCH (l:Library)
RETURN l.communities[-1] AS community, collect(l.id) AS libraries
ORDER BY size(libraries) DESC

l.communities[-1] returns the last item from the underlying array that this property
stores.

Running the query yields this output:

community libraries
0 [pytz, matplotlib, spacy, six, pandas, numpy, python-dateutil]

2 [jupyter, jpy-console, nbconvert, ipykernel, jpy-client, jpy-core]

1 [pyspark, py4j]

This clustering is the same as we saw with the connected components algorithm.

matplotlib is in a community with pytz, spacy, six, pandas, numpy, and python-
dateutil. We can see this more clearly in Figure 6-13.

140 | Chapter 6: Community Detection Algorithms

Figure 6-13. Clusters found by the Louvain algorithm

An additional feature of the Louvain algorithm is that we can see the intermediate
clustering as well. This will show us finer-grained clusters than the final layer did:

MATCH (l:Library)
RETURN l.communities[0] AS community, collect(l.id) AS libraries
ORDER BY size(libraries) DESC

Running that query gives this output:

community libraries
2 [matplotlib, spacy, six, python-dateutil]

4 [nbconvert, jpy-client, jpy-core]

Louvain Modularity | 141

community libraries
3 [jupyter, jpy-console, ipykernel]

1 [pyspark, py4j]

0 [pytz, pandas]

5 [numpy]

The libraries in the matplotlib community have now broken down into three smaller
communities:

• matplotlib, spacy, six, and python-dateutil
• pytz and pandas
• numpy

We can see this breakdown visually in Figure 6-14.

Figure 6-14. Intermediate clusters found by the Louvain algorithm

142 | Chapter 6: Community Detection Algorithms

Although this graph only showed two layers of hierarchy, if we ran this algorithm on
a larger graph we would see a more complex hierarchy. The intermediate clusters that
Louvain reveals can be very useful for detecting fine-grained communities that may
not be detected by other community detection algorithms.

Validating Communities
Community detection algorithms generally have the same goal: to identify groups.
However, because different algorithms begin with different assumptions, they may
uncover different communities. This makes choosing the right algorithm for a partic‐
ular problem more challenging and a bit of an exploration.

Most community detection algorithms do reasonably well when relationship density
is high within groups compared to their surroundings, but real-world networks are
often less distinct. We can validate the accuracy of the communities found by com‐
paring our results to a benchmark based on data with known communities.

Two of the best-known benchmarks are the Girvan-Newman (GN) and Lancichi‐
netti–Fortunato–Radicchi (LFR) algorithms. The reference networks that these algo‐
rithms generate are quite different: GN generates a random network which is more
homogeneous, whereas LFR creates a more heterogeneous graph where node degrees
and community size are distributed according to a power law.

Since the accuracy of our testing depends on the benchmark used, it’s important to
match our benchmark to our dataset. As much as possible, look for similar densities,
relationship distributions, community definitions, and related domains.

Summary
Community detection algorithms are useful for understanding the way that nodes are
grouped together in a graph.

In this chapter, we started by learning about the Triangle Count and Clustering Coef‐
ficient algorithms. We then moved on to two deterministic community detection
algorithms: Strongly Connected Components and Connected Components. These
algorithms have strict definitions of what constitutes a community and are very use‐
ful for getting a feel for the graph structure early in the graph analytics pipeline.

We finished with Label Propagation and Louvain, two nondeterministic algorithms
which are better able to detect finer-grained communities. Louvain also showed us a
hierarchy of communities at different scales.

In the next chapter, we’ll take a much larger dataset and learn how to combine the
algorithms together to gain even more insight into our connected data.

Validating Communities | 143

