
CHAPTER 2

Graph Theory and Concepts

In this chapter, we set the framework and cover terminology for graph algorithms.
The basics of graph theory are explained, with a focus on the concepts that are most
relevant to a practitioner.

We’ll describe how graphs are represented, and then explain the different types of
graphs and their attributes. This will be important later, as our graph’s characteristics
will inform our algorithm choices and help us interpret results. We’ll finish the chap‐
ter with an overview of the types of graph algorithms detailed in this book.

Terminology
The labeled property graph is one of the most popular ways of modeling graph data.

A label marks a node as part of a group. In Figure 2-1, we have two groups of nodes:
Person and Car. (Although in classic graph theory a label applies to a single node, it’s
now commonly used to mean a node group.)

15

Figure 2-1. A labeled property graph model is a flexible and concise way of representing
connected data.

Relationships are classified based on relationship type. Our example includes the rela‐
tionship types of DRIVES, OWNS, LIVES_WITH, and MARRIED_TO.

Properties are synonymous with attributes and can contain a variety of data types,
from numbers and strings to spatial and temporal data. In Figure 2-1 we assigned the
properties as name-value pairs, where the name of the property comes first and then
its value. For example, the Person node on the left has a property name: "Dan", and
the MARRIED_TO relationship has a property of on: Jan 1, 2013.

A subgraph is a graph within a larger graph. Subgraphs are useful as a filters such as
when we need a subset with particular characteristics for focused analysis.

A path is a group of nodes and their connecting relationships. An example of a simple
path, based on Figure 2-1, could contain the nodes Dan, Ann, and Car and the DRIVES
and OWNS relationships.

Graphs vary in type, shape, and size as well the kind of attributes that can be used for
analysis. Next, we’ll describe the kinds of graphs most suited for graph algorithms.
Keep in mind that these explanations apply to graphs as well as subgraphs.

Graph Types and Structures
In classic graph theory, the term graph is equated with a simple (or strict) graph where
nodes only have one relationship between them, as shown on the left side of
Figure 2-2. Most real-world graphs, however, have many relationships between nodes

16 | Chapter 2: Graph Theory and Concepts

and even self-referencing relationships. Today, this term is commonly used for all
three graph types in Figure 2-2, so we also use the term inclusively.

Figure 2-2. In this book, we use the term graph to include any of these classic types of
graphs.

Random, Small-World, Scale-Free Structures
Graphs take on many shapes. Figure 2-3 shows three representative network types:

• Random networks
• Small-world networks
• Scale-free networks

Figure 2-3. Three network structures with distinctive graphs and behaviors

Graph Types and Structures | 17

• In a completely average distribution of connections, a random network is formed
with no hierarchies. This type of shapeless graph is “flat” with no discernible pat‐
terns. All nodes have the same probability of being attached to any other node.

• A small-world network is extremely common in social networks; it shows local‐
ized connections and some hub-and-spoke pattern. The “Six Degrees of Kevin
Bacon” game might be the best-known example of the small-world effect.
Although you associate mostly with a small group of friends, you’re never many
hops away from anyone else—even if they are a famous actor or on the other side
of the planet.

• A scale-free network is produced when there are power-law distributions and a
hub-and-spoke architecture is preserved regardless of scale, such as in the World
Wide Web.

These network types produce graphs with distinctive structures, distributions, and
behaviors. As we work with graph algorithms, we’ll come to recognize similar pat‐
terns in our results.

Flavors of Graphs
To get the most out of graph algorithms, it’s important to familiarize ourselves with
the most characteristic graphs we’ll encounter. Table 2-1 summarizes common graph
attributes. In the following sections we look at the different flavors in more detail.

Table 2-1. Common attributes of graphs

Graph attribute Key factor Algorithm consideration
Connected versus
disconnected

Whether there is a path between any
two nodes in the graph, irrespective of
distance

Islands of nodes can cause unexpected behavior, such as
getting stuck in or failing to process disconnected
components.

Weighted versus
unweighted

Whether there are (domain-specific)
values on relationships or nodes

Many algorithms expect weights, and we’ll see significant
differences in performance and results when they’re
ignored.

Directed versus
undirected

Whether or not relationships explicitly
define a start and end node

This adds rich context to infer additional meaning. In some
algorithms you can explicitly set the use of one, both, or no
direction.

Cyclic versus acyclic Whether paths start and end at the
same node

Cyclic graphs are common but algorithms must be careful
(typically by storing traversal state) or cycles may prevent
termination. Acyclic graphs (or spanning trees) are the basis
for many graph algorithms.

Sparse versus dense Relationship to node ratio Extremely dense or extremely sparsely connected graphs can
cause divergent results. Data modeling may help, assuming
the domain is not inherently dense or sparse.

18 | Chapter 2: Graph Theory and Concepts

Graph attribute Key factor Algorithm consideration
Monopartite,
bipartite, and k-
partite

Whether nodes connect to only one
other node type (e.g., users like movies)
or many other node types (e.g., users
like users who like movies)

Helpful for creating relationships to analyze and projecting
more useful graphs.

Connected Versus Disconnected Graphs
A graph is connected if there is a path between all nodes. If we have islands in our
graph, it’s disconnected. If the nodes in those islands are connected, they are called
components (or sometimes clusters), as shown in Figure 2-4.

Figure 2-4. If we have islands in our graph, it’s a disconnected graph.

Some algorithms struggle with disconnected graphs and can produce misleading
results. If we have unexpected results, checking the structure of our graph is a good
first step.

Unweighted Graphs Versus Weighted Graphs
Unweighted graphs have no weight values assigned to their nodes or relationships.
For weighted graphs, these values can represent a variety of measures such as cost,
time, distance, capacity, or even a domain-specific prioritization. Figure 2-5 visualizes
the difference.

Flavors of Graphs | 19

Figure 2-5. Weighted graphs can hold values on relationships or nodes.

Basic graph algorithms can use weights for processing as a representation for the
strength or value of relationships. Many algorithms compute metrics which can then
be used as weights for follow-up processing. Some algorithms update weight values as
they proceed to find cumulative totals, lowest values, or optimums.

A classic use for weighted graphs is in pathfinding algorithms. Such algorithms
underpin the mapping applications on our phones and compute the shortest/cheap‐
est/fastest transport routes between locations. For example, Figure 2-6 uses two dif‐
ferent methods of computing the shortest route.

Figure 2-6. The shortest paths can vary for otherwise identical unweighted and weighted
graphs.

20 | Chapter 2: Graph Theory and Concepts

Without weights, our shortest route is calculated in terms of the number of relation‐
ships (commonly called hops). A and E have a two-hop shortest path, which indicates
only one node (D) between them. However, the shortest weighted path from A to E
takes us from A to C to D to E. If weights represent a physical distance in kilometers,
the total distance would be 50 km. In this case, the shortest path in terms of the num‐
ber of hops would equate to a longer physical route of 70 km.

Undirected Graphs Versus Directed Graphs
In an undirected graph, relationships are considered bidirectional (for example,
friendships). In a directed graph, relationships have a specific direction. Relationships
pointing to a node are referred to as in-links and, unsurprisingly, out-links are those
originating from a node.

Direction adds another dimension of information. Relationships of the same type but
in opposing directions carry different semantic meaning, expressing a dependency or
indicating a flow. This may then be used as an indicator of credibility or group
strength. Personal preferences and social relations are expressed very well with direc‐
tion.

For example, if we assumed in Figure 2-7 that the directed graph was a network of
students and the relationships were “likes,” then we’d calculate that A and C are more
popular.

Figure 2-7. Many algorithms allow us to compute on the basis of only inbound or out‐
bound connections, both directions, or without direction.

Flavors of Graphs | 21

Road networks illustrate why we might want to use both types of graphs. For exam‐
ple, highways between cities are often traveled in both directions. However, within
cities, some roads are one-way streets. (The same is true for some information flows!)

We get different results running algorithms in an undirected fashion compared to
directed. In an undirected graph, for example for highways or friendships, we would
assume all relationships always go both ways.

If we reimagine Figure 2-7 as a directed road network, you can drive to A from C and
D but you can only leave through C. Furthermore if there were no relationships from
A to C, that would indicate a dead end. Perhaps that’s less likely for a one-way road
network, but not for a process or a web page.

Acyclic Graphs Versus Cyclic Graphs
In graph theory, cycles are paths through relationships and nodes that start and end at
the same node. An acyclic graph has no such cycles. As shown in Figure 2-8, both
directed and undirected graphs can have cycles, but when directed, paths follow the
relationship direction. A directed acyclic graph (DAG), shown in Graph 1, will by defi‐
nition always have dead ends (also called leaf nodes).

Figure 2-8. In acyclic graphs, it’s impossible to start and end on the same node without
retracing our steps.

Graphs 1 and 2 have no cycles, as there’s no way to start and end at the same node
without repeating a relationship. You might remember from Chapter 1 that not
repeating relationships was the Königsberg bridges problem that started graph
theory! Graph 3 in Figure 2-8 shows a simple cycle following A-D-C-A with no
repeated nodes. In Graph 4, the undirected cyclic graph has been made more interest‐
ing by adding a node and relationship. There’s now a closed cycle with a repeated
node (C), following B-F-C-D-A-C-B. There are actually multiple cycles in Graph 4.

22 | Chapter 2: Graph Theory and Concepts

Cycles are common, and we sometimes need to convert cyclic graphs to acyclic
graphs (by cutting relationships) to eliminate processing problems. Directed acyclic
graphs naturally arise in scheduling, genealogy, and version histories.

Trees
In classic graph theory, an acyclic graph that is undirected is called a tree. In com‐
puter science, trees can also be directed. A more inclusive definition would be a graph
where any two nodes are connected by only one path. Trees are significant for under‐
standing graph structures and many algorithms. They play a key role in designing
networks, data structures, and search optimizations to improve categorization or
organizational hierarchies.

Much has been written about trees and their variations. Figure 2-9 illustrates the
common trees that we’re likely to encounter.

Figure 2-9. Of these prototypical tree graphs, spanning trees are most often used for
graph algorithms.

Of these variations, spanning trees are the most relevant for this book. A spanning
tree is a subgraph that includes all the nodes of a larger acyclic graph but not all the
relationships. A minimum spanning tree connects all the nodes of a graph with either
the least number of hops or least weighted paths.

Sparse Graphs Versus Dense Graphs
The sparsity of a graph is based on the number of relationships it has compared to the
maximum possible number of relationships, which would occur if there was a rela‐
tionship between every pair of nodes. A graph where every node has a relationship
with every other node is called a complete graph, or a clique for components. For
instance, if all my friends knew each other, that would be a clique.

Flavors of Graphs | 23

The maximum density of a graph is the number of relationships possible in a com‐
plete graph. It’s calculated with the formula MaxD = N N − 1

2 where N is the number

of nodes. To measure actual density we use the formula D = 2 R
N N − 1 where R is the

number of relationships. In Figure 2-10, we can see three measures of actual density
for undirected graphs.

Figure 2-10. Checking the density of a graph can help you evaluate unexpected results.

Although there is no strict dividing line, any graph with an actual density that
approaches the maximum density is considered dense. Most graphs based on real
networks tend toward sparseness, with an approximately linear correlation of total
nodes to total relationships. This is especially the case where physical elements come
into play, such as the practical limitations to how many wires, pipes, roads, or friend‐
ships you can join at one point.

Some algorithms will return nonsensical results when executed on extremely sparse
or dense graphs. If a graph is too sparse there may not be enough relationships for
algorithms to compute useful results. Alternatively, very densely connected nodes
don’t add much additional information since they are so highly connected. High den‐
sities can also skew some results or add computational complexity. In these situations,
filtering out the relevant subgraph is a practical approach.

Monopartite, Bipartite, and k-Partite Graphs
Most networks contain data with multiple node and relationship types. Graph algo‐
rithms, however, frequently consider only one node type and one relationship type.
Graphs with one node type and relationship type are sometimes referred to as
monopartite.

24 | Chapter 2: Graph Theory and Concepts

A bipartite graph is a graph whose nodes can be divided into two sets, such that rela‐
tionships only connect a node from one set to a node from a different set. Figure 2-11
shows an example of such a graph. It has two sets of nodes: a viewer set and a TV
show set. There are only relationships between the two sets and no intraset connec‐
tions. In other words in Graph 1, TV shows are only related to viewers, not other TV
shows, and viewers are likewise not directly linked to other viewers.

Starting from our bipartite graph of viewers and TV shows, we created two monopar‐
tite projections: Graph 2 of viewer connections based on shows in common, and
Graph 3 of TV shows based on viewers in common. We can also filter based on rela‐
tionship type, such as watched, rated, or reviewed.

Projecting monopartite graphs with inferred connections is an important part of
graph analysis. These types of projections help uncover indirect relationships and
qualities. For example, in Graph 2 in Figure 2-11, Bev and Ann have watched only
one TV show in common whereas Bev and Evan have two shows in common. In
Graph 3 we’ve weighted the relationships between the TV shows by the aggregated
views by viewers in common. This, or other metrics such as similarity, can be used to
infer meaning between activities like watching Battlestar Galactica and Firefly. That
can inform our recommendation for someone similar to Evan who, in Figure 2-11,
just finished watching the last episode of Firefly.

k-partite graphs reference the number of node types our data has (k). For example, if
we have three node types, we’d have a tripartite graph. This just extends bipartite and
monopartite concepts to account for more node types. Many real-world graphs, espe‐
cially knowledge graphs, have a large value for k, as they combine many different
concepts and types of information. An example of using a larger number of node
types is creating new recipes by mapping a recipe set to an ingredient set to a chemi‐
cal compound, and then deducing new mixes that connect popular preferences. We
could also reduce the number of nodes types by generalization, such as treating many
forms of a node, like spinach or collards, as just “leafy greens.”

Now that we’ve reviewed the types of graphs we’re most likely to work with, let’s learn
about the types of graph algorithms we’ll execute on those graphs.

Flavors of Graphs | 25

Figure 2-11. Bipartite graphs are often projected to monopartite graphs for more specific
analysis.

26 | Chapter 2: Graph Theory and Concepts

Types of Graph Algorithms
Let’s look into the three areas of analysis that are at the heart of graph algorithms.
These categories correspond to the chapters on algorithms for pathfinding and
search, centrality computation, and community detection.

Pathfinding
Paths are fundamental to graph analytics and algorithms, so this is where we’ll start
our chapters with specific algorithm examples. Finding shortest paths is probably the
most frequent task performed with graph algorithms and is a precursor for several
different types of analysis. The shortest path is the traversal route with the fewest
hops or lowest weight. If the graph is directed, then it’s the shortest path between two
nodes as allowed by the relationship directions.

Path Types
The average shortest path is used to consider the overall efficiency and resiliency of
networks, such as understanding the average distance between subway stations.
Sometimes we may also want to understand the longest optimized route for situations
such as determining which subway stations are the farthest apart or have the most
number of stops between them even when the best route is chosen. In this case, we’d
use the diameter of a graph to find the longest shortest path between all node pairs.

Centrality
Centrality is all about understanding which nodes are more important in a network.
But what do we mean by importance? There are different types of centrality algo‐
rithms created to measure different things, such as the ability to quickly spread infor‐
mation versus bridging distinct groups. In this book, we’ll focus on how nodes and
relationships are structured.

Community Detection
Connectedness is a core concept of graph theory that enables a sophisticated network
analysis such as finding communities. Most real-world networks exhibit substruc‐
tures (often quasi-fractal) of more or less independent subgraphs.

Connectivity is used to find communities and quantify the quality of groupings. Eval‐
uating different types of communities within a graph can uncover structures, like
hubs and hierarchies, and tendencies of groups to attract or repel others. These tech‐
niques are used to study emergent phenomena such as those that lead to echo cham‐
bers and filter bubble effects.

Types of Graph Algorithms | 27

Summary
Graphs are intuitive. They align with how we think about and draw systems. The pri‐
mary tenets of working with graphs can be quickly assimilated once we’ve unraveled
some of the terminology and layers. In this chapter we’ve explained the ideas and
expressions used later in this book and described flavors of graphs you’ll come across.

Graph Theory References
If you’re excited to learn more about graph theory itself, there are a few introductory
texts we recommend:

• Introduction to Graph Theory, by Richard J. Trudeau (Dover), is a very well writ‐
ten, gentle introduction.

• Introduction to Graph Theory, Fifth Ed., by Robin J. Wilson (Pearson), is a solid
introduction with good illustrations.

• Graph Theory and Its Applications, Third Ed., by Jonathan L. Gross, Jay Yellen,
and Mark Anderson (Chapman and Hall), assumes more mathematics back‐
ground and provides more detail and exercises.

Next, we’ll look at graph processing and types of analysis before diving into how to
use graph algorithms in Apache Spark and Neo4j.

28 | Chapter 2: Graph Theory and Concepts

