
CHAPTER 8

Using Graph Algorithms to Enhance
Machine Learning

We’ve covered several algorithms that learn and update state at each iteration, such as
Label Propagation; however, up until this point, we’ve emphasized graph algorithms
for general analytics. Because there’s increasing application of graphs in machine
learning (ML), we’ll now look at how graph algorithms can be used to enhance ML
workflows.

In this chapter, we focus on the most practical way to start improving ML predictions
using graph algorithms: connected feature extraction and its use in predicting rela‐
tionships. First, we’ll cover some basic ML concepts and the importance of contextual
data for better predictions. Then there’s a quick survey of ways graph features are
applied, including uses for spammer fraud, detection, and link prediction.

We’ll demonstrate how to create a machine learning pipeline and then train and eval‐
uate a model for link prediction, integrating Neo4j and Spark in our workflow. Our
example will be based on the Citation Network Dataset, which contains authors,
papers, author relationships, and citation relationships. We’ll use several models to
predict whether research authors are likely to collaborate in the future, and show how
graph algorithms improve the results.

Machine Learning and the Importance of Context
Machine learning is not artificial intelligence (AI), but a method for achieving AI. ML
uses algorithms to train software through specific examples and progressive improve‐
ments based on expected outcome—without explicit programming of how to accom‐
plish these better results. Training involves providing a lot of data to a model and
enabling it to learn how to process and incorporate that information.
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In this sense, learning means that algorithms iterate, continually making changes to
get closer to an objective goal, such as reducing classification errors in comparison to
the training data. ML is also dynamic, with the ability to modify and optimize itself
when presented with more data. This can take place in pre-usage training on many
batches or as online learning during usage.

Recent successes in ML predictions, accessibility of large datasets, and parallel com‐
pute power have made ML more practical for those developing probabilistic models
for AI applications. As machine learning becomes more widespread, it’s important to
remember its fundamental goal: making choices similarly to the way humans do. If
we forget that goal, we may end up with just another version of highly targeted, rules-
based software.

In order to increase machine learning accuracy while also making solutions more
broadly applicable, we need to incorporate a lot of contextual information—just as
people should use context for better decisions. Humans use their surrounding con‐
text, not just direct data points, to figure out what’s essential in a situation, estimate
missing information, and determine how to apply lessons to new situations. Context
helps us improve predictions.

Graphs, Context, and Accuracy
Without peripheral and related information, solutions that attempt to predict behav‐
ior or make recommendations for varying circumstances require more exhaustive
training and prescriptive rules. This is partly why AI is good at specific, well-defined
tasks, but struggles with ambiguity. Graph-enhanced ML can help fill in that missing
contextual information that is so important for better decisions.

We know from graph theory and from real life that relationships are often the stron‐
gest predictors of behavior. For example, if one person votes, there’s an increased like‐
lihood that their friends, family, and even coworkers will vote. Figure 8-1 illustrates a
ripple effect based on reported voting and Facebook friends from the 2012 research
paper “A 61-Million-Person Experiment in Social Influence and Political Mobiliza‐
tion”, by R. Bond et al.
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Figure 8-1. People are influenced to vote by their social networks. In this example,
friends two hops away had more total impact than direct relationships.

The authors found that friends reporting voting influenced an additional 1.4% of
users to also claim they’d voted and, interestingly, friends of friends added another
1.7%. Small percentages can have a significant impact, and we can see in Figure 8-1
that people at two hops out had in total more impact than the direct friends alone.
Voting and other examples of how our social networks impact us are covered in the
book Connected, by Nicholas Christakis and James Fowler (Little, Brown and Com‐
pany).

Adding graph features and context improves predictions, especially in situations
where connections matter. For example, retail companies personalize product recom‐
mendations with not only historical data but also contextual data about customer
similarities and online behavior. Amazon’s Alexa uses several layers of contextual
models that demonstrate improved accuracy. In 2018, Amazon also introduced “con‐
text carryover” to incorporate previous references in a conversation when answering
new questions.

Unfortunately, many machine learning approaches today miss a lot of rich contextual
information. This stems from ML’s reliance on input data built from tuples, leaving
out a lot of predictive relationships and network data. Furthermore, contextual infor‐
mation is not always readily available or is too difficult to access and process. Even
finding connections that are four or more hops away can be a challenge at scale for
traditional methods. Using graphs, we can more easily reach and incorporate connec‐
ted data.

Connected Feature Extraction and Selection
Feature extraction and selection helps us take raw data and create a suitable subset
and format for training our machine learning models. It’s a foundational step that,
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when well executed, leads to ML that produces more consistently accurate predic‐
tions.

Feature Extraction and Selection
Feature extraction is a way to distill large volumes of data and attributes down to a set
of representative descriptive attributes. The process derives numerical values (fea‐
tures) for distinctive characteristics or patterns in input data so that we can differenti‐
ate categories in other data. It’s used when data is difficult for a model to analyze
directly—perhaps because of size, format, or the need for incidental comparisons.

Feature selection is the process of determining the subset of extracted features that are
most important or influential to a target goal. It’s used to surface predictive impor‐
tance as well as for efficiency. For example, if we have 20 features and 13 of them
together explain 92% of what we need to predict, we can eliminate 7 features in our
model.

Putting together the right mix of features can increase accuracy because it fundamen‐
tally influences how our models learn. Because even modest improvements can make
a significant difference, our focus in this chapter is on connected features. Connected
features are features extracted from the structure of the data. These features can be
derived from graph-local queries based on parts of the graph surrounding a node, or
graph-global queries that use graph algorithms to identify predictive elements within
data based on relationships for connected feature extraction.

And it’s not only important to get the right combination of features, but also to elimi‐
nate unnecessary features to reduce the likelihood that our models will be hypertarge‐
ted. This keeps us from creating models that only work well on our training data
(known as overfitting) and significantly expands applicability. We can also use graph
algorithms to evaluate those features and determine which ones are most influential
to our model for connected feature selection. For example, we can map features to
nodes in a graph, create relationships based on similar features, and then compute the
centrality of features. Feature relationships can be defined by the ability to preserve
cluster densities of data points. This method is described using datasets with high
dimension and low sample size in “Unsupervised Graph-Based Feature Selection Via
Subspace and PageRank Centrality”, by K. Henniab, N. Mezghani, and C. Gouin-
Vallerand.

Graph Embedding
Graph embedding is the representation of the nodes and relationships in a graph as
feature vectors. These are merely collections of features that have dimensional map‐
pings, such as the (x,y,z) coordinates shown in Figure 8-2.
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Figure 8-2. Graph embedding maps graph data into feature vectors that can be visual‐
ized as multidimensional coordinates.

Graph embedding uses graph data slightly differently than in connected feature
extraction. It enables us to represent entire graphs, or subsets of graph data, in a
numerical format ready for machine learning tasks. This is especially useful for unsu‐
pervised learning, where the data is not categorized because it pulls in more contex‐
tual information through relationships. Graph embedding is also useful for data
exploration, computing similarity between entities, and reducing dimensionality to
aid in statistical analysis.

This is a quickly evolving space with several options, including node2vec, struc2vec,
GraphSAGE, DeepWalk, and DeepGL.

Now let’s look at some of the types of connected features and how they are used.

Graphy Features
Graphy features include any number of connection-related metrics about our graph,
such as the number of relationships going into or out of nodes, a count of potential
triangles, and neighbors in common. In our example, we’ll start with these measures
because they are simple to gather and a good test of early hypotheses.

In addition, when we know precisely what we’re looking for, we can use feature engi‐
neering. For instance, if we want to know how many people have a fraudulent
account at up to four hops out. This approach uses graph traversal to very efficiently
find deep paths of relationships, looking at things such as labels, attributes, counts,
and inferred relationships.

We can also easily automate these processes and deliver those predictive graphy fea‐
tures into our existing pipeline. For example, we could abstract a count of fraudster
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relationships and add that number as a node attribute to be used for other machine
learning tasks.

Graph Algorithm Features
We can also use graph algorithms to find features where we know the general struc‐
ture we’re looking for but not the exact pattern. As an illustration, let’s say we know
certain types of community groupings are indicative of fraud; perhaps there’s a proto‐
typical density or hierarchy of relationships. In this case, we don’t want a rigid feature
of an exact organization but rather a flexible and globally relevant structure. We’ll use
community detection algorithms to extract connected features in our example, but
centrality algorithms, like PageRank, are also frequently applied.

Furthermore, approaches that combine several types of connected features seem to
outperform sticking to one single method. For example, we could combine connected
features to predict fraud with indicators based on communities found via the Louvain
algorithm, influential nodes using PageRank, and the measure of known fraudsters at
three hops out.

A combined approach is demonstrated in Figure 8-3, where the authors combine
graph algorithms like PageRank and Coloring with graphy measure such as in-degree
and out-degree. This diagram is taken from the paper “Collective Spammer Detection
in Evolving Multi-Relational Social Networks”, by S. Fakhraei et al.

The Graph Structure section illustrates connected feature extraction using several
graph algorithms. Interestingly, the authors found extracting connected features from
multiple types of relationships even more predictive than simply adding more fea‐
tures. The Report Subgraph section shows how graph features are converted into fea‐
tures that the ML model can use. By combining multiple methods in a graph-
enhanced ML workflow, the authors were able to improve prior detection methods
and classify 70% of spammers that had previously required manual labeling, with
90% accuracy.

Even once we have extracted connected features, we can improve our training by
using graph algorithms like PageRank to prioritize the features with the most influ‐
ence. This enables us to adequately represent our data while eliminating noisy vari‐
ables that could degrade results or slow processing. With this type of information, we
can also identify features with high co-occurrence for further model tuning via fea‐
ture reduction. This method is outlined in the research paper “Using PageRank in
Feature Selection”, by D. Ienco, R. Meo, and M. Botta.
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Figure 8-3. Connected feature extraction can be combined with other predictive methods
to improve results. AUPR refers to the area under the precision-recall curve, with higher
numbers preferred.

We’ve discussed how connected features are applied to scenarios involving fraud and
spammer detection. In these situations, activities are often hidden in multiple layers
of obfuscation and network relationships. Traditional feature extraction and selection
methods may be unable to detect that behavior without the contextual information
that graphs bring.

Another area where connected features enhance machine learning (and the focus of
the rest of this chapter) is link prediction. Link prediction is a way to estimate how
likely a relationship is to form in the future, or whether it should already be in our
graph but is missing due to incomplete data. Since networks are dynamic and can
grow fairly quickly, being able to predict links that will soon be added has broad
applicability, from product recommendations to drug retargeting and even inferring
criminal relationships.

Connected features from graphs are often used to improve link prediction using basic
graphy features as well as features extracted from centrality and community algo‐
rithms. Link prediction based on node proximity or similarity is also standard; in the
paper “The Link Prediction Problem for Social Networks” D. Liben-Nowell and J.
Kleinberg suggest that the network structure alone may contain enough latent infor‐
mation to detect node proximity and outperform more direct measures.

Now that we’ve looked at ways connected features can enhance machine learning, let’s
dive into our link prediction example and see how we can apply graph algorithms to
improve our predictions.
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Graphs and Machine Learning in Practice: Link Prediction
The rest of the chapter will demonstrate a hands-on example, based on the Citation
Network Dataset, a research dataset extracted from DBLP, ACM, and MAG. The
dataset is described in the paper “ArnetMiner: Extraction and Mining of Academic
Social Networks”, by J. Tang et al. The latest version contains 3,079,007 papers,
1,766,547 authors, 9,437,718 author relationships, and 25,166,994 citation relation‐
ships.

We’ll be working with a subset focused on articles that appeared in the following pub‐
lications:

• Lecture Notes in Computer Science
• Communications of the ACM
• International Conference on Software Engineering
• Advances in Computing and Communications

Our resulting dataset contains 51,956 papers, 80,299 authors, 140,575 author relation‐
ships, and 28,706 citation relationships. We’ll create a coauthors graph based on
authors who have collaborated on papers and then predict future collaborations
between pairs of authors. We’re only interested in collaborations between authors
who haven’t collaborated before—we’re not concerned with multiple collaborations
between pairs of authors.

In the remainder of the chapter, we’ll set up the required tools and import the data
into Neo4j. Then we’ll cover how to properly balance data and split samples into
Spark DataFrames for training and testing. After that, we explain our hypothesis and
methods for link prediction before creating a machine learning pipeline in Spark.
Finally, we’ll walk through training and evaluating various prediction models, starting
with basic graphy features and adding more graph algorithm features extracted using
Neo4j.

Tools and Data
Let’s get started by setting up our tools and data. Then we’ll explore our dataset and
create a machine learning pipeline.

Before we do anything else, let’s set up the libraries used in this chapter:

py2neo
A Neo4j Python library that integrates well with the Python data science ecosys‐
tem
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pandas
A high-performance library for data wrangling outside of a database with easy-
to-use data structures and data analysis tools

Spark MLlib
Spark’s machine learning library

We use MLlib as an example of a machine learning library. The
approach shown in this chapter could be used in combination with
other ML libraries, such as scikit-learn.

All the code shown will be run within the pyspark REPL. We can launch the REPL by
running the following command:

export SPARK_VERSION="spark-2.4.0-bin-hadoop2.7"
./${SPARK_VERSION}/bin/pyspark \
  --driver-memory 2g \
  --executor-memory 6g \
  --packages julioasotodv:spark-tree-plotting:0.2

This is similar to the command we used to launch the REPL in Chapter 3, but instead
of GraphFrames, we’re loading the spark-tree-plotting package. At the time of
writing the latest released version of Spark is spark-2.4.0-bin-hadoop2.7, but as that
may have changed by the time you read this, be sure to change the SPARK_VERSION
environment variable appropriately.

Once we’ve launched that we’ll import the following libraries that we’ll be using:

from py2neo import Graph
import pandas as pd
from numpy.random import randint

from pyspark.ml import Pipeline
from pyspark.ml.classification import RandomForestClassifier
from pyspark.ml.feature import StringIndexer, VectorAssembler
from pyspark.ml.evaluation import BinaryClassificationEvaluator

from pyspark.sql.types import *
from pyspark.sql import functions as F

from sklearn.metrics import roc_curve, auc
from collections import Counter

from cycler import cycler
import matplotlib
matplotlib.use('TkAgg')
import matplotlib.pyplot as plt
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And now let’s create a connection to our Neo4j database:

graph = Graph("bolt://localhost:7687", auth=("neo4j", "neo"))

Importing the Data into Neo4j
Now we’re ready to load the data into Neo4j and create a balanced split for our train‐
ing and testing. We need to download the ZIP file of Version 10 of the dataset, unzip
it, and place the contents in our import folder. We should have the following files:

• dblp-ref-0.json
• dblp-ref-1.json
• dblp-ref-2.json
• dblp-ref-3.json

Once we have those files in the import folder, we need to add the following property
to our Neo4j settings file so that we can process them using the APOC library:

apoc.import.file.enabled=true
apoc.import.file.use_neo4j_config=true

First we’ll create constraints to ensure we don’t create duplicate articles or authors:

CREATE CONSTRAINT ON (article:Article)
ASSERT article.index IS UNIQUE;

CREATE CONSTRAINT ON (author:Author)
ASSERT author.name IS UNIQUE;

Now we can run the following query to import the data from the JSON files:

CALL apoc.periodic.iterate(
  'UNWIND ["dblp-ref-0.json","dblp-ref-1.json",
           "dblp-ref-2.json","dblp-ref-3.json"] AS file
   CALL apoc.load.json("file:///" + file)
   YIELD value
   WHERE value.venue IN ["Lecture Notes in Computer Science",
                         "Communications of The ACM",
                         "international conference on software engineering",
                         "advances in computing and communications"]
   return value',
  'MERGE (a:Article {index:value.id})
   ON CREATE SET a += apoc.map.clean(value,["id","authors","references"],[0])
   WITH a,value.authors as authors
   UNWIND authors as author
   MERGE (b:Author{name:author})
   MERGE (b)<-[:AUTHOR]-(a)'
, {batchSize: 10000, iterateList: true});

This results in the graph schema seen in Figure 8-4.
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Figure 8-4. The citation graph

This is a simple graph that connects articles and authors, so we’ll add more informa‐
tion we can infer from relationships to help with predictions.

The Coauthorship Graph
We want to predict future collaborations between authors, so we’ll start by creating a
coauthorship graph. The following Neo4j Cypher query will create a CO_AUTHOR rela‐
tionship between every pair of authors that have collaborated on a paper:

MATCH (a1)<-[:AUTHOR]-(paper)-[:AUTHOR]->(a2:Author)
WITH a1, a2, paper
ORDER BY a1, paper.year
WITH a1, a2, collect(paper)[0].year AS year, count(*) AS collaborations
MERGE (a1)-[coauthor:CO_AUTHOR {year: year}]-(a2)
SET coauthor.collaborations = collaborations;

The year property that we set on the CO_AUTHOR relationship in the query is the earli‐
est year when those two authors collaborated. We’re only interested in the first time
that a pair of authors have collaborated—subsequent collaborations aren’t relevant.

Figure 8-5 is in an example of part of the graph that gets created. We can already see
some interesting community structures.
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Figure 8-5. The coauthor graph

Each circle in this diagram represents one author and the lines between them are
CO_AUTHOR relationships, so we have four authors that have all collaborated with each
other on the left, and then on the right two examples of three authors who have colla‐
borated. Now that we have our data loaded and a basic graph, let’s create the two data‐
sets we’ll need for training and testing.

Creating Balanced Training and Testing Datasets
With link prediction problems we want to try and predict the future creation of links.
This dataset works well for that because we have dates on the articles that we can use
to split our data. We need to work out which year we’ll use to define our training/test
split. We’ll train our model on everything before that year and then test it on the links
created after that date.

Let’s start by finding out when the articles were published. We can write the following
query to get a count of the number of articles, grouped by year:

query = """
MATCH (article:Article)
RETURN article.year AS year, count(*) AS count
ORDER BY year
"""

by_year = graph.run(query).to_data_frame()
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Let’s visualize this as a bar chart, with the following code:

plt.style.use('fivethirtyeight')
ax = by_year.plot(kind='bar', x='year', y='count', legend=None, figsize=(15,8))
ax.xaxis.set_label_text("")
plt.tight_layout()
plt.show()

We can see the chart generated by executing this code in Figure 8-6.

Figure 8-6. Articles by year

Very few articles were published before 1997, and then there were a lot published
between 2001 and 2006, before a dip and then a gradual climb since 2011 (excluding
2013). It looks like 2006 could be a good year to split our data for training our model
and making predictions. Let’s check how many papers were published before that
year and how many during and after. We can write the following query to compute
this:

MATCH (article:Article)
RETURN article.year < 2006 AS training, count(*) AS count

The result of this is as follows, where true means a paper was published before 2006:

training count
false 21059

true 30897

Not bad! 60% of the papers were published before 2006 and 40% during or after 2006.
This is a fairly balanced split of data for our training and testing.
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So now that we have a good split of papers, let’s use the same 2006 split for coauthor‐
ship. We’ll create a CO_AUTHOR_EARLY relationship between pairs of authors whose
first collaboration was before 2006:

MATCH (a1)<-[:AUTHOR]-(paper)-[:AUTHOR]->(a2:Author)
WITH a1, a2, paper
ORDER BY a1, paper.year
WITH a1, a2, collect(paper)[0].year AS year, count(*) AS collaborations
WHERE year < 2006
MERGE (a1)-[coauthor:CO_AUTHOR_EARLY {year: year}]-(a2)
SET coauthor.collaborations = collaborations;

And then we’ll create a CO_AUTHOR_LATE relationship between pairs of authors whose
first collaboration was during or after 2006:

MATCH (a1)<-[:AUTHOR]-(paper)-[:AUTHOR]->(a2:Author)
WITH a1, a2, paper
ORDER BY a1, paper.year
WITH a1, a2, collect(paper)[0].year AS year, count(*) AS collaborations
WHERE year >= 2006
MERGE (a1)-[coauthor:CO_AUTHOR_LATE {year: year}]-(a2)
SET coauthor.collaborations = collaborations;

Before we build our training and test sets, let’s check how many pairs of nodes we
have that have links between them. The following query will find the number of
CO_AUTHOR_EARLY pairs:

MATCH ()-[:CO_AUTHOR_EARLY]->()
RETURN count(*) AS count

Running that query will return the result shown here:

count
81096

And this query will find the number of CO_AUTHOR_LATE pairs:

MATCH ()-[:CO_AUTHOR_LATE]->()
RETURN count(*) AS count

 

Running that query returns this result:

count
74128

Now we’re ready to build our training and test datasets.
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Balancing and splitting data

The pairs of nodes with CO_AUTHOR_EARLY and CO_AUTHOR_LATE relationships
between them will act as our positive examples, but we’ll also need to create some
negative examples. Most real-world networks are sparse, with concentrations of rela‐
tionships, and this graph is no different. The number of examples where two nodes
do not have a relationship is much larger than the number that do have a relationship.

If we query our CO_AUTHOR_EARLY data, we’ll find there are 45,018 authors with that
type of relationship but only 81,096 relationships between authors. That might not
sound imbalanced, but it is: the potential maximum number of relationships that our
graph could have is (45018 * 45017) / 2 = 1,013,287,653, which means there are a lot
of negative examples (no links). If we used all the negative examples to train our
model, we’d have a severe class imbalance problem. A model could achieve extremely
high accuracy by predicting that every pair of nodes doesn’t have a relationship.

In their paper “New Perspectives and Methods in Link Prediction”, R. Lichtenwalter,
J. Lussier, and N. Chawla describe several methods to address this challenge. One of
these approaches is to build negative examples by finding nodes within our neighbor‐
hood that we aren’t currently connected to.

We will build our negative examples by finding pairs of nodes that are a mix of
between two and three hops away from each other, excluding those pairs that already
have a relationship. We’ll then downsample those pairs of nodes so that we have an
equal number of positive and negative examples.

We have 314,248 pairs of nodes that don’t have a relationship
between each other at a distance of two hops. If we increase the dis‐
tance to three hops, we have 967,677 pairs of nodes.

The following function will be used to downsample the negative examples:

def down_sample(df):
    copy = df.copy()
    zero = Counter(copy.label.values)[0]
    un = Counter(copy.label.values)[1]
    n = zero - un
    copy = copy.drop(copy[copy.label == 0].sample(n=n, random_state=1).index)
    return copy.sample(frac=1)

This function works out the difference between the number of positive and negative
examples, and then samples the negative examples so that there are equal numbers.
We can then run the following code to build a training set with balanced positive and
negative examples:
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train_existing_links = graph.run("""
MATCH (author:Author)-[:CO_AUTHOR_EARLY]->(other:Author)
RETURN id(author) AS node1, id(other) AS node2, 1 AS label
""").to_data_frame()

train_missing_links = graph.run("""
MATCH (author:Author)
WHERE (author)-[:CO_AUTHOR_EARLY]-()
MATCH (author)-[:CO_AUTHOR_EARLY*2..3]-(other)
WHERE not((author)-[:CO_AUTHOR_EARLY]-(other))
RETURN id(author) AS node1, id(other) AS node2, 0 AS label
""").to_data_frame()

train_missing_links = train_missing_links.drop_duplicates()
training_df = train_missing_links.append(train_existing_links, ignore_index=True)
training_df['label'] = training_df['label'].astype('category')
training_df = down_sample(training_df)
training_data = spark.createDataFrame(training_df)

We’ve now coerced the label column to be a category, where 1 indicates that there is
a link between a pair of nodes, and 0 indicates that there is not a link. We can look at
the data in our DataFrame by running the following code:

training_data.show(n=5)

node1 node2 label
10019 28091 1

10170 51476 1

10259 17140 0

10259 26047 1

10293 71349 1

The results show us a list of node pairs and whether they have a coauthor relation‐
ship; for example, nodes 10019 and 28091 have a 1 label, indicating a collaboration.

Now let’s execute the following code to check the summary of contents for the Data‐
Frame:

training_data.groupby("label").count().show()

Here’s the result:

label count
0 81096

1 81096
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We’ve created our training set with the same number of positive and negative sam‐
ples. Now we need to do the same for the test set. The following code will build a test
set with balanced positive and negative examples:

test_existing_links = graph.run("""
MATCH (author:Author)-[:CO_AUTHOR_LATE]->(other:Author)
RETURN id(author) AS node1, id(other) AS node2, 1 AS label
""").to_data_frame()

test_missing_links = graph.run("""
MATCH (author:Author)
WHERE (author)-[:CO_AUTHOR_LATE]-()
MATCH (author)-[:CO_AUTHOR*2..3]-(other)
WHERE not((author)-[:CO_AUTHOR]-(other))
RETURN id(author) AS node1, id(other) AS node2, 0 AS label
""").to_data_frame()

test_missing_links = test_missing_links.drop_duplicates()
test_df = test_missing_links.append(test_existing_links, ignore_index=True)
test_df['label'] = test_df['label'].astype('category')
test_df = down_sample(test_df)
test_data = spark.createDataFrame(test_df)

We can execute the following code to check the contents of the DataFrame:

test_data.groupby("label").count().show()

Which gives the following result:

label count
0 74128

1 74128

Now that we have balanced training and test datasets, let’s look at our methods for
predicting links.

How We Predict Missing Links
We need to start with some basic assumptions about what elements in our data might
predict whether two authors will become coauthors at a later date. Our hypothesis
would vary by domain and problem, but in this case, we believe the most predictive
features will be related to communities. We’ll begin with the assumption that the fol‐
lowing elements increase the probability that authors become coauthors:

• More coauthors in common
• Potential triadic relationships between authors
• Authors with more relationships
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• Authors in the same community
• Authors in the same, tighter community

We’ll build graph features based on our assumptions and use those to train a binary
classifier. Binary classification is a type of ML with the task of predicting which of two
predefined groups an element belongs to based on a rule. We’re using the classifier for
the task of predicting whether a pair of authors will have a link or not, based on a
classification rule. For our examples, a value of 1 means there is a link (coauthorship),
and a value of 0 means there isn’t a link (no coauthorship).

We’ll implement our binary classifier as a random forest in Spark. A random forest is
an ensemble learning method for classification, regression, and other tasks, as illus‐
trated in Figure 8-7.

Figure 8-7. A random forest builds a collection of decision trees and then aggregates
results for a majority vote (for classification) or an average value (for regression).

Our random forest classifier will take the results from the multiple decision trees we
train and then use voting to predict a classification—in our example, whether there is
a link (coauthorship) or not.

Now let’s create our workflow.

Creating a Machine Learning Pipeline
We’ll create our machine learning pipeline based on a random forest classifier in
Spark. This method is well suited as our dataset will be comprised of a mix of strong
and weak features. While the weak features will sometimes be helpful, the random
forest method will ensure we don’t create a model that only fits our training data.
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To create our ML pipeline, we’ll pass in a list of features as the fields variable—these
are the features that our classifier will use. The classifier expects to receive those fea‐
tures as a single column called features, so we use the VectorAssembler to trans‐
form the data into the required format.

The following code creates a machine learning pipeline and sets up our parameters
using MLlib:

def create_pipeline(fields):
    assembler = VectorAssembler(inputCols=fields, outputCol="features")
    rf = RandomForestClassifier(labelCol="label", featuresCol="features",
                                numTrees=30, maxDepth=10)
    return Pipeline(stages=[assembler, rf])

The RandomForestClassifier uses these parameters:

labelCol

The name of the field containing the variable we want to predict; i.e., whether a
pair of nodes have a link

featuresCol

The name of the field containing the variables that will be used to predict
whether a pair of nodes have a link

numTrees

The number of decision trees that form the random forest

maxDepth

The maximum depth of the decision trees

We chose the number of decision trees and their depth based on experimentation. We
can think about hyperparameters like the settings of an algorithm that can be adjus‐
ted to optimize performance. The best hyperparameters are often difficult to deter‐
mine ahead of time, and tuning a model usually requires some trial and error.

We’ve covered the basics and set up our pipeline, so let’s dive into creating our model
and evaluating how well it performs.

Predicting Links: Basic Graph Features
We’ll start by creating a simple model that tries to predict whether two authors will
have a future collaboration based on features extracted from common authors, pref‐
erential attachment, and the total union of neighbors:

Common authors
Finds the number of potential triangles between two authors. This captures the
idea that two authors who have coauthors in common may be introduced and
collaborate in the future.
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Preferential attachment
Produces a score for each pair of authors by multiplying the number of coauthors
each has. The intuition is that authors are more likely to collaborate with some‐
one who already coauthors a lot of papers.

Total union of neighbors
Finds the total number of coauthors that each author has, minus the duplicates.

In Neo4j, we can compute these values using Cypher queries. The following function
will compute these measures for the training set:

def apply_graphy_training_features(data):
    query = """
    UNWIND $pairs AS pair
    MATCH (p1) WHERE id(p1) = pair.node1
    MATCH (p2) WHERE id(p2) = pair.node2
    RETURN pair.node1 AS node1,
           pair.node2 AS node2,
           size([(p1)-[:CO_AUTHOR_EARLY]-(a)-
                      [:CO_AUTHOR_EARLY]-(p2) | a]) AS commonAuthors,
           size((p1)-[:CO_AUTHOR_EARLY]-()) * size((p2)-
                     [:CO_AUTHOR_EARLY]-()) AS prefAttachment,
           size(apoc.coll.toSet(
             [(p1)-[:CO_AUTHOR_EARLY]-(a) | id(a)] +
                   [(p2)-[:CO_AUTHOR_EARLY]-(a) | id(a)]
           )) AS totalNeighbors
    """
    pairs = [{"node1": row["node1"], "node2": row["node2"]}
                                 for row in data.collect()]
    features = spark.createDataFrame(graph.run(query,
                                 {"pairs": pairs}).to_data_frame())
    return data.join(features, ["node1", "node2"])

And the following function will compute them for the test set:

def apply_graphy_test_features(data):
    query = """
    UNWIND $pairs AS pair
    MATCH (p1) WHERE id(p1) = pair.node1
    MATCH (p2) WHERE id(p2) = pair.node2
    RETURN pair.node1 AS node1,
           pair.node2 AS node2,
           size([(p1)-[:CO_AUTHOR]-(a)-[:CO_AUTHOR]-(p2) | a]) AS commonAuthors,
           size((p1)-[:CO_AUTHOR]-()) * size((p2)-[:CO_AUTHOR]-())
                                   AS prefAttachment,
           size(apoc.coll.toSet(
             [(p1)-[:CO_AUTHOR]-(a) | id(a)] + [(p2)-[:CO_AUTHOR]-(a) | id(a)]
           )) AS totalNeighbors
    """
    pairs = [{"node1": row["node1"], "node2": row["node2"]}
                       for row in data.collect()]
    features = spark.createDataFrame(graph.run(query,
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                       {"pairs": pairs}).to_data_frame())
    return data.join(features, ["node1", "node2"])

Both of these functions take in a DataFrame that contains pairs of nodes in the col‐
umns node1 and node2. We then build an array of maps containing these pairs and
compute each of the measures for each pair of nodes.

The UNWIND clause is particularly useful in this chapter for taking a
large collection of node pairs and returning all their features in one
query.

We can apply these functions in Spark to our training and test DataFrames with the
following code:

training_data = apply_graphy_training_features(training_data)
test_data = apply_graphy_test_features(test_data)

Let’s explore the data in our training set. The following code will plot a histogram of
the frequency of commonAuthors:

plt.style.use('fivethirtyeight')
fig, axs = plt.subplots(1, 2, figsize=(18, 7), sharey=True)
charts = [(1, "have collaborated"), (0, "haven't collaborated")]

for index, chart in enumerate(charts):
    label, title = chart
    filtered = training_data.filter(training_data["label"] == label)
    common_authors = filtered.toPandas()["commonAuthors"]
    histogram = common_authors.value_counts().sort_index()
    histogram /= float(histogram.sum())
    histogram.plot(kind="bar", x='Common Authors', color="darkblue",
                   ax=axs[index], title=f"Authors who {title} (label={label})")
    axs[index].xaxis.set_label_text("Common Authors")

plt.tight_layout()
plt.show()

We can see the chart generated in Figure 8-8.
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Figure 8-8. Frequency of commonAuthors

On the left we see the frequency of commonAuthors when authors have collaborated,
and on the right we see the frequency of commonAuthors when they haven’t. For those
who haven’t collaborated (right side) the maximum number of common authors is 9,
but 95% of the values are 1 or 0. It’s not surprising that of the people who have not
collaborated on a paper, most also do not have many other coauthors in common. For
those who have collaborated (left side), 70% have less than five coauthors in com‐
mon, with a spike between one and two other coauthors.

Now we want to train a model to predict missing links. The following function does
this:

def train_model(fields, training_data):
    pipeline = create_pipeline(fields)
    model = pipeline.fit(training_data)
    return model

We’ll start by creating a basic model that only uses commonAuthors. We can create that
model by running this code:

basic_model = train_model(["commonAuthors"], training_data)

With our model trained, let’s check how it performs against some dummy data. The
following code evaluates the code against different values for commonAuthors:

eval_df = spark.createDataFrame(
    [(0,), (1,), (2,), (10,), (100,)],
    ['commonAuthors'])

(basic_model.transform(eval_df)
 .select("commonAuthors", "probability", "prediction")
 .show(truncate=False))

Running that code will give the following result:
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commonAuthors probability prediction
0 [0.7540494940434322,0.24595050595656787] 0.0

1 [0.7540494940434322,0.24595050595656787] 0.0

2 [0.0536835525078107,0.9463164474921892] 1.0

10 [0.0536835525078107,0.9463164474921892] 1.0

If we have a commonAuthors value of less than 2 there’s a 75% probability that there
won’t be a relationship between the authors, so our model predicts 0. If we have a
commonAuthors value of 2 or more there’s a 94% probability that there will be a rela‐
tionship between the authors, so our model predicts 1.

Let’s now evaluate our model against the test set. Although there are several ways to
evaluate how well a model performs, most are derived from a few baseline predictive
metrics, as outlined in Table 8-1:

Table 8-1. Predictive metrics

Measure Formula Description

Accuracy TruePositives + TrueNegatives
TotalPredictions

The fraction of predictions our model gets right, or the total number of
correct predictions divided by the total number of predictions. Note
that accuracy alone can be misleading, especially when our data is
unbalanced. For example, if we have a dataset containing 95 cats and 5
dogs and our model predicts that every image is a cat we’ll have a 95%
accuracy score despite correctly identifying none of the dogs.

Precision TruePositives
TruePositives + FalsePositives

The proportion of positive identifications that are correct. A low
precision score indicates more false positives. A model that produces no
false positives has a precision of 1.0.

Recall (true
positive rate)

TruePositives
TruePositives + FalseNegatives

The proportion of actual positives that are identified correctly. A low
recall score indicates more false negatives. A model that produces no
false negatives has a recall of 1.0.

False positive
rate

FalsePositives
FalsePositives + TrueNegatives

The proportion of incorrect positives that are identified. A high score
indicates more false positives.

Receiver
operating
characteristic
(ROC) curve

X-Y chart ROC curve is a plot of the Recall (true positive rate) against the False
Positive rate at different classification thresholds. The area under the
curve (AUC) measures the two-dimensional area underneath the ROC
curve from an X-Y axis (0,0) to (1,1).

We’ll use accuracy, precision, recall, and ROC curves to evaluate our models. Accu‐
racy is a coarse measure, so we’ll focus on increasing our overall precision and recall
measures. We’ll use the ROC curves to compare how individual features change pre‐
dictive rates.
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Depending on our goals we may want to favor different measures.
For example, we may want to eliminate all false negatives for dis‐
ease indicators, but we wouldn’t want to push predictions of every‐
thing into a positive result. There may be multiple thresholds we
set for different models that pass some results through to secon‐
dary inspection on the likelihood of false results.
Lowering classification thresholds results in more overall positive
results, thus increasing both false positives and true positives.

Let’s use the following function to compute these predictive measures:

def evaluate_model(model, test_data):
    # Execute the model against the test set
    predictions = model.transform(test_data)

    # Compute true positive, false positive, false negative counts
    tp = predictions[(predictions.label == 1) &
                     (predictions.prediction == 1)].count()
    fp = predictions[(predictions.label == 0) &
                     (predictions.prediction == 1)].count()
    fn = predictions[(predictions.label == 1) &
                     (predictions.prediction == 0)].count()

    # Compute recall and precision manually
    recall = float(tp) / (tp + fn)
    precision = float(tp) / (tp + fp)

    # Compute accuracy using Spark MLLib's binary classification evaluator
    accuracy = BinaryClassificationEvaluator().evaluate(predictions)

    # Compute false positive rate and true positive rate using sklearn functions
    labels = [row["label"] for row in predictions.select("label").collect()]
    preds = [row["probability"][1] for row in predictions.select
                ("probability").collect()]
    fpr, tpr, threshold = roc_curve(labels, preds)
    roc_auc = auc(fpr, tpr)

    return { "fpr": fpr, "tpr": tpr, "roc_auc": roc_auc, "accuracy": accuracy,
             "recall": recall, "precision": precision }

We’ll then write a function to display the results in an easier-to-consume format:

def display_results(results):
    results = {k: v for k, v in results.items() if k not in
                        ["fpr", "tpr", "roc_auc"]}
    return pd.DataFrame({"Measure": list(results.keys()),
                         "Score": list(results.values())})

We can call the function with this code and display the results:

basic_results = evaluate_model(basic_model, test_data)
display_results(basic_results)
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The predictive measures for the common authors model are:

measure score
accuracy 0.864457

recall 0.753278

precision 0.968670

This is not a bad start given that we’re predicting future collaboration based only on
the number of common authors in our pairs of authors. However, we get a bigger pic‐
ture if we consider these measures in context with one another. For example, this
model has a precision of 0.968670, which means it’s very good at predicting that links
exist. However, our recall is 0.753278, which means it’s not good at predicting when
links do not exist.

We can also plot the ROC curve (correlation of true positives and False positives)
using the following functions:

def create_roc_plot():
    plt.style.use('classic')
    fig = plt.figure(figsize=(13, 8))
    plt.xlim([0, 1])
    plt.ylim([0, 1])
    plt.ylabel('True Positive Rate')
    plt.xlabel('False Positive Rate')
    plt.rc('axes', prop_cycle=(cycler('color',
                   ['r', 'g', 'b', 'c', 'm', 'y', 'k'])))
    plt.plot([0, 1], [0, 1], linestyle='--', label='Random score
                   (AUC = 0.50)')
    return plt, fig

def add_curve(plt, title, fpr, tpr, roc):
    plt.plot(fpr, tpr, label=f"{title} (AUC = {roc:0.2})")

We call it like this:

plt, fig = create_roc_plot()

add_curve(plt, "Common Authors",
          basic_results["fpr"], basic_results["tpr"], basic_results["roc_auc"])

plt.legend(loc='lower right')
plt.show()

We can see the ROC curve for our basic model in Figure 8-9.
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Figure 8-9. The ROC curve for basic model

The common authors model gives us a 0.86 area under the curve (AUC) score.
Although this gives us one overall predictive measure, we need the chart (or other
measures) to evaluate whether this fits our goal. In Figure 8-9 we see that as we get
close to an 80% true positive rate (recall) our false positive rate reaches about 20%.
That could be problematic in scenarios like fraud detection where false positives are
expensive to chase.

Now let’s use the other graphy features to see if we can improve our predictions.
Before we train our model, let’s see how the data is distributed. We can run the fol‐
lowing code to show descriptive statistics for each of our graphy features:

(training_data.filter(training_data["label"]==1)
 .describe()
 .select("summary", "commonAuthors", "prefAttachment", "totalNeighbors")
 .show())

(training_data.filter(training_data["label"]==0)
 .describe()
 .select("summary", "commonAuthors", "prefAttachment", "totalNeighbors")
 .show())

We can see the results of running those bits of code in the following tables:

summary commonAuthors prefAttachment totalNeighbors
count 81096 81096 81096

mean 3.5959233501035808 69.93537289138798 10.082408503502021
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summary commonAuthors prefAttachment totalNeighbors
stddev 4.715942231635516 171.47092255919472 8.44109970920685

min 0 1 2

max 44 3150 90

summary commonAuthors prefAttachment totalNeighbors
count 81096 81096 81096

mean 0.37666469369635985 48.18137762651672 12.97586810693499

stddev 0.6194576095461857 94.92635344980489 10.082991078685803

min 0 1 1

max 9 1849 89

Features with larger differences between links (coauthorship) and no link (no coau‐
thorship) should be more predictive because the divide is greater. The average value
for prefAttachment is higher for authors who have collaborated versus those who
haven’t. That difference is even more substantial for commonAuthors. We notice that
there isn’t much difference in the values for totalNeighbors, which probably means
this feature won’t be very predictive. Also interesting is the large standard deviation as
well as the minimum and maximum values for preferential attachment. This is what
we might expect for small-world networks with concentrated hubs (superconnec‐
tors).

Now let’s train a new model, adding preferential attachment and total union of neigh‐
bors, by running the following code:

fields = ["commonAuthors", "prefAttachment", "totalNeighbors"]
graphy_model = train_model(fields, training_data)

And now let’s evaluate the model and display the results:

graphy_results = evaluate_model(graphy_model, test_data)
display_results(graphy_results)

The predictive measures for the graphy model are:

measure score
accuracy 0.978351

recall 0.924226

precision 0.943795

Our accuracy and recall have increased substantially, but the precision has dropped a
bit and we’re still misclassifying about 8% of the links. Let’s plot the ROC curve and
compare our basic and graphy models by running the following code:

Graphs and Machine Learning in Practice: Link Prediction | 209



plt, fig = create_roc_plot()

add_curve(plt, "Common Authors",
          basic_results["fpr"], basic_results["tpr"],
                                basic_results["roc_auc"])

add_curve(plt, "Graphy",
          graphy_results["fpr"], graphy_results["tpr"],
                                 graphy_results["roc_auc"])

plt.legend(loc='lower right')
plt.show()

We can see the output in Figure 8-10.

Figure 8-10. The ROC curve for the graphy model

Overall it looks like we’re headed in the right direction and it’s helpful to visualize
comparisons to get a feel for how different models impact our results.

Now that we have more than one feature, we want to evaluate which features are
making the most difference. We’ll use feature importance to rank the impact of differ‐
ent features to our model’s prediction. This enables us to evaluate the influence on
results that different algorithms and statistics have.
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To compute feature importance, the random forest algorithm in
Spark averages the reduction in impurity across all trees in the for‐
est. The impurity is the frequency at which randomly assigned
labels are incorrect.
Feature rankings are in comparison to the group of features we’re
evaluating, always normalized to 1. If we rank one feature, its fea‐
ture importance is 1.0 as it has 100% of the influence on the model.

The following function creates a chart showing the most influential features:

def plot_feature_importance(fields, feature_importances):
    df = pd.DataFrame({"Feature": fields, "Importance": feature_importances})
    df = df.sort_values("Importance", ascending=False)
    ax = df.plot(kind='bar', x='Feature', y='Importance', legend=None)
    ax.xaxis.set_label_text("")
    plt.tight_layout()
    plt.show()

And we call it like this:

rf_model = graphy_model.stages[-1]
plot_feature_importance(fields, rf_model.featureImportances)

The results of running that function can be seen in Figure 8-11.
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Figure 8-11. Feature importance: graphy model

Of the three features we’ve used so far, commonAuthors is the most important feature
by a large margin.

To understand how our predictive models are created, we can visualize one of the
decision trees in our random forest using the spark-tree-plotting library. The follow‐
ing code generates a GraphViz file:

from spark_tree_plotting import export_graphviz

dot_string = export_graphviz(rf_model.trees[0],
    featureNames=fields, categoryNames=[], classNames=["True", "False"],
    filled=True, roundedCorners=True, roundLeaves=True)

with open("/tmp/rf.dot", "w") as file:
    file.write(dot_string)

We can then generate a visual representation of that file by running the following
command from the terminal:

dot -Tpdf /tmp/rf.dot -o /tmp/rf.pdf

The output of that command can be seen in Figure 8-12.
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Figure 8-12. Visualizing a decision tree

Imagine that we’re using this decision tree to predict whether a pair of nodes with the
following features are linked:

commonAuthors prefAttachment totalNeighbors
10 12 5

Our random forest walks through several steps to create a prediction:

1. We start from node 0, where we have more than 1.5 commonAuthors, so we follow
the False branch down to node 2.

2. We have more than 2.5 commonAuthors here, so we follow the False branch to
node 6.

3. We have a score of less than 15.5 for prefAttachment, which takes us to node 9.
4. Node 9 is a leaf node in this decision tree, which means that we don’t have to

check any more conditions—the value of Prediction (i.e., True) on this node is
the decision tree’s prediction.

5. Finally, the random forest evaluates the item being predicted against a collection
of these decision trees and makes its prediction based on the most popular out‐
come.

Now let’s look at adding more graph features.
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Predicting Links: Triangles and the Clustering Coefficient
Recommendation solutions often base predictions on some form of triangle metric,
so let’s see if they further help with our example. We can compute the number of tri‐
angles that a node is a part of and its clustering coefficient by executing the following
query:

CALL algo.triangleCount('Author', 'CO_AUTHOR_EARLY', { write:true,
  writeProperty:'trianglesTrain', clusteringCoefficientProperty:
                'coefficientTrain'});

CALL algo.triangleCount('Author', 'CO_AUTHOR', { write:true,
  writeProperty:'trianglesTest', clusteringCoefficientProperty:
                'coefficientTest'});

The following function will add these features to our DataFrames:

def apply_triangles_features(data, triangles_prop, coefficient_prop):
    query = """
    UNWIND $pairs AS pair
    MATCH (p1) WHERE id(p1) = pair.node1
    MATCH (p2) WHERE id(p2) = pair.node2
    RETURN pair.node1 AS node1,
           pair.node2 AS node2,
           apoc.coll.min([p1[$trianglesProp], p2[$trianglesProp]])
                                              AS minTriangles,
           apoc.coll.max([p1[$trianglesProp], p2[$trianglesProp]])
                                              AS maxTriangles,
           apoc.coll.min([p1[$coefficientProp], p2[$coefficientProp]])
                                                AS minCoefficient,
           apoc.coll.max([p1[$coefficientProp], p2[$coefficientProp]])
                                                AS maxCoefficient
    """
    params = {
        "pairs": [{"node1": row["node1"], "node2": row["node2"]}
                            for row in data.collect()],
        "trianglesProp": triangles_prop,
        "coefficientProp": coefficient_prop
    }
    features = spark.createDataFrame(graph.run(query, params).to_data_frame())
    return data.join(features, ["node1", "node2"])

Notice that we’ve used min and max prefixes for our triangle count
and clustering coefficient algorithms. We need a way to prevent our
model from learning based on the order authors in pairs are passed
in from our undirected graph. To do this, we’ve split these features
by the authors with minimum and maximum counts.

We can apply this function to our training and test DataFrames with the following
code:
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training_data = apply_triangles_features(training_data,
                                        "trianglesTrain", "coefficientTrain")
test_data = apply_triangles_features(test_data,
                                        "trianglesTest", "coefficientTest")

And run this code to show descriptive statistics for each of our triangle features:

(training_data.filter(training_data["label"]==1)
 .describe()
 .select("summary", "minTriangles", "maxTriangles",
                    "minCoefficient", "maxCoefficient")
 .show())

(training_data.filter(training_data["label"]==0)
 .describe()
 .select("summary", "minTriangles", "maxTriangles", "minCoefficient",
                                                    "maxCoefficient")
 .show())

We can see the results of running those bits of code in the following tables.

summary minTriangles maxTriangles minCoefficient maxCoefficient
count 81096 81096 81096 81096

mean 19.478260333431983 27.73590559337082 0.5703773654487051 0.8453786164620439

stddev 65.7615282768483 74.01896188921927 0.3614610553659958 0.2939681857356519

min 0 0 0.0 0.0

max 622 785 1.0 1.0

summary minTriangles maxTriangles minCoefficient maxCoefficient
count 81096 81096 81096 81096

mean 5.754661142349808 35.651980368945445 0.49048921333297446 0.860283935358397

stddev 20.639236521699 85.82843448272624 0.3684138346533951 0.2578219623967906

min 0 0 0.0 0.0

max 617 785 1.0 1.0

Notice in this comparison that there isn’t as great a difference between the coauthor‐
ship and no-coauthorship data. This could mean that these features aren’t as predic‐
tive.

We can train another model by running the following code:

fields = ["commonAuthors", "prefAttachment", "totalNeighbors",
          "minTriangles", "maxTriangles", "minCoefficient", "maxCoefficient"]
triangle_model = train_model(fields, training_data)

And now let’s evaluate the model and display the results:

triangle_results = evaluate_model(triangle_model, test_data)
display_results(triangle_results)
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The predictive measures for the triangles model are shown in this table:

measure score
accuracy 0.992924

recall 0.965384

precision 0.958582

Our predictive measures have increased well by adding each new feature to the previ‐
ous model. Let’s add our triangles model to our ROC curve chart with the following
code:

plt, fig = create_roc_plot()

add_curve(plt, "Common Authors",
          basic_results["fpr"], basic_results["tpr"], basic_results["roc_auc"])

add_curve(plt, "Graphy",
          graphy_results["fpr"], graphy_results["tpr"],
                                 graphy_results["roc_auc"])

add_curve(plt, "Triangles",
          triangle_results["fpr"], triangle_results["tpr"],
                                   triangle_results["roc_auc"])

plt.legend(loc='lower right')
plt.show()

We can see the output in Figure 8-13.

216 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning



Figure 8-13. The ROC curve for triangles model

Our models have generally improved, and we’re in the high 90s for predictive meas‐
ures. This is when things usually get difficult, because the easiest gains are made but
there’s still room for improvement. Let’s see how the important features have
changed:

rf_model = triangle_model.stages[-1]
plot_feature_importance(fields, rf_model.featureImportances)

The results of running that function can be seen in Figure 8-14.
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Figure 8-14. Feature importance: triangles model

The common authors feature still has the greatest single impact on our model. Per‐
haps we need to look at new areas and see what happens when we add community
information.

Predicting Links: Community Detection
We hypothesize that nodes that are in the same community are more likely to have a
link between them if they don’t already. Moreover, we believe that the tighter a com‐
munity is, the more likely links are.

First, we’ll compute more coarse-grained communities using the Label Propagation
algorithm in Neo4j. We do this by running the following query, which will store the
community in the property partitionTrain for the training set and partitionTest
for the test set:

CALL algo.labelPropagation("Author", "CO_AUTHOR_EARLY", "BOTH",
  {partitionProperty: "partitionTrain"});

CALL algo.labelPropagation("Author", "CO_AUTHOR", "BOTH",
  {partitionProperty: "partitionTest"});
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We’ll also compute finer-grained groups using the Louvain algorithm. The Louvain
algorithm returns intermediate clusters, and we’ll store the smallest of these clusters
in the property louvainTrain for the training set and louvainTest for the test set:

CALL algo.louvain.stream("Author", "CO_AUTHOR_EARLY",
                        {includeIntermediateCommunities:true})
YIELD nodeId, community, communities
WITH algo.getNodeById(nodeId) AS node, communities[0] AS smallestCommunity
SET node.louvainTrain = smallestCommunity;

CALL algo.louvain.stream("Author", "CO_AUTHOR",
                        {includeIntermediateCommunities:true})
YIELD nodeId, community, communities
WITH algo.getNodeById(nodeId) AS node, communities[0] AS smallestCommunity
SET node.louvainTest = smallestCommunity;

We’ll now create the following function to return the values from these algorithms:

def apply_community_features(data, partition_prop, louvain_prop):
    query = """
    UNWIND $pairs AS pair
    MATCH (p1) WHERE id(p1) = pair.node1
    MATCH (p2) WHERE id(p2) = pair.node2
    RETURN pair.node1 AS node1,
           pair.node2 AS node2,
           CASE WHEN p1[$partitionProp] = p2[$partitionProp] THEN
                     1 ELSE 0 END AS samePartition,
           CASE WHEN p1[$louvainProp] = p2[$louvainProp] THEN
                     1 ELSE 0 END AS sameLouvain
    """
    params = {
        "pairs": [{"node1": row["node1"], "node2": row["node2"]} for
                            row in data.collect()],
        "partitionProp": partition_prop,
        "louvainProp": louvain_prop
    }
    features = spark.createDataFrame(graph.run(query, params).to_data_frame())
    return data.join(features, ["node1", "node2"])

We can apply this function to our training and test DataFrames in Spark with the fol‐
lowing code:

training_data = apply_community_features(training_data,
                                        "partitionTrain", "louvainTrain")
test_data = apply_community_features(test_data, "partitionTest", "louvainTest")

And we can run this code to see whether pairs of nodes belong in the same partition:

plt.style.use('fivethirtyeight')
fig, axs = plt.subplots(1, 2, figsize=(18, 7), sharey=True)
charts = [(1, "have collaborated"), (0, "haven't collaborated")]

for index, chart in enumerate(charts):
    label, title = chart
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    filtered = training_data.filter(training_data["label"] == label)
    values = (filtered.withColumn('samePartition',
             F.when(F.col("samePartition") == 0, "False")
                                  .otherwise("True"))
              .groupby("samePartition")
              .agg(F.count("label").alias("count"))
              .select("samePartition", "count")
              .toPandas())
    values.set_index("samePartition", drop=True, inplace=True)
    values.plot(kind="bar", ax=axs[index], legend=None,
                title=f"Authors who {title} (label={label})")
    axs[index].xaxis.set_label_text("Same Partition")

plt.tight_layout()
plt.show()

We see the results of running that code in Figure 8-15.

Figure 8-15. Same partitions

It looks like this feature could be quite predictive—authors who have collaborated are
much more likely to be in the same partition than those who haven’t. We can do the
same thing for the Louvain clusters by running the following code:

plt.style.use('fivethirtyeight')
fig, axs = plt.subplots(1, 2, figsize=(18, 7), sharey=True)
charts = [(1, "have collaborated"), (0, "haven't collaborated")]

for index, chart in enumerate(charts):
    label, title = chart
    filtered = training_data.filter(training_data["label"] == label)
    values = (filtered.withColumn('sameLouvain',
              F.when(F.col("sameLouvain") == 0, "False")
                                  .otherwise("True"))
              .groupby("sameLouvain")
              .agg(F.count("label").alias("count"))
              .select("sameLouvain", "count")
              .toPandas())
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    values.set_index("sameLouvain", drop=True, inplace=True)
    values.plot(kind="bar", ax=axs[index], legend=None,
                title=f"Authors who {title} (label={label})")
    axs[index].xaxis.set_label_text("Same Louvain")

plt.tight_layout()
plt.show()

We can see the results of running that code in Figure 8-16.

Figure 8-16. Same Louvain clusters

It looks like this feature could be quite predictive as well—authors who have collabo‐
rated are likely to be in the same cluster, and those who haven’t are very unlikely to be
in the same cluster.

We can train another model by running the following code:

fields = ["commonAuthors", "prefAttachment", "totalNeighbors",
          "minTriangles", "maxTriangles", "minCoefficient", "maxCoefficient",
          "samePartition", "sameLouvain"]
community_model = train_model(fields, training_data)

And now let’s evaluate the model and display the results:

community_results = evaluate_model(community_model, test_data)
display_results(community_results)

The predictive measures for the community model are:

measure score
accuracy 0.995771

recall 0.957088

precision 0.978674
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Some of our measures have improved, so for comparison let’s plot the ROC curve for
all our models by running the following code:

plt, fig = create_roc_plot()

add_curve(plt, "Common Authors",
          basic_results["fpr"], basic_results["tpr"], basic_results["roc_auc"])

add_curve(plt, "Graphy",
          graphy_results["fpr"], graphy_results["tpr"],
          graphy_results["roc_auc"])

add_curve(plt, "Triangles",
          triangle_results["fpr"], triangle_results["tpr"],
          triangle_results["roc_auc"])

add_curve(plt, "Community",
          community_results["fpr"], community_results["tpr"],
          community_results["roc_auc"])

plt.legend(loc='lower right')
plt.show()

We can see the output in Figure 8-17.

Figure 8-17. The ROC curve for the community model

We can see improvements with the addition of the community model, so let’s see
which are the most important features:

222 | Chapter 8: Using Graph Algorithms to Enhance Machine Learning



rf_model = community_model.stages[-1]
plot_feature_importance(fields, rf_model.featureImportances)

The results of running that function can be seen in Figure 8-18.

Figure 8-18. Feature importance: community model

Although the common authors model is overall very important, it’s good to avoid
having an overly dominant element that might skew predictions on new data. Com‐
munity detection algorithms had a lot of influence in our last model with all the fea‐
tures included, and this helps round out our predictive approach.

We’ve seen in our examples that simple graph-based features are a good start, and
then as we add more graphy and graph algorithm–based features, we continue to
improve our predictive measures. We now have a good, balanced model for predict‐
ing coauthorship links.

Using graphs for connected feature extraction can significantly improve our predic‐
tions. The ideal graph features and algorithms vary depending on the attributes of the
data, including the network domain and graph shape. We suggest first considering
the predictive elements within your data and testing hypotheses with different types
of connected features before fine-tuning.
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Reader Exercises
There are several areas to investigate, and ways to build other models. Here are some
ideas for further exploration:

• How predictive is our model on conference data that we did not include?
• When testing new data, what happens when we remove some features?
• Does splitting the years differently for training and testing impact our predic‐

tions?
• This dataset also has citations between papers; can we use that data to generate

different features or predict future citations?

Summary
In this chapter, we looked at using graph features and algorithms to enhance machine
learning. We covered a few preliminary concepts and then walked through a detailed
example integrating Neo4j and Apache Spark for link prediction. We illustrated how
to evaluate random forest classifier models and incorporate various types of connec‐
ted features to improve our results.

Wrapping Things Up
In this book, we covered graph concepts as well as processing platforms and analytics.
We then walked through many practical examples of how to use graph algorithms in
Apache Spark and Neo4j. We finished with a look at how graphs enhance machine
learning.

Graph algorithms are the powerhouse behind the analysis of real-world systems—
from preventing fraud and optimizing call routing to predicting the spread of the flu.
We hope you join us and develop your own unique solutions that take advantage of
today’s highly connected data.
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