Cassandra Assignment 2 - SWEN 432

Zoltan Debre - 300360191

Original repository and progress history: https://github.com/zoltan-nz/cassandra-exercise

Question 1

(2 marks)

e Use ccm to make a single data center Cassandra cluster having 5 nodes call it single_dc
e Start the cluster
e Runthe ccm nodel ring command

e Save the output of the ring command for future use and show it in the answer to the question.

$ ccm create single_dc ——-nodes=5
$ ccm start

$ ccm status -v

Cluster: 'single_dc'

nodel: UP
auto_bootstrap=False
thrift=('127.0.0.1', 9160)
binary=('127.0.0.1"', 9042)
storage=('127.0.0.1', 7000)
jmx_port=7100
remote_debug_port=0
byteman_port=0
initial_token=-9223372036854775808
pid=41519

node3: UP
auto_bootstrap=False
thrift=('127.0.0.3"', 9160)
binary=('127.0.0.3"', 9042)
storage=('127.0.0.3"', 7000)
jmx_port=7300
remote_debug_port=0
byteman_port=0
initial_token=-1844674407370955162
pid=41547

node2: UP
auto_bootstrap=False
thrift=('127.0.0.2"', 9160)
binary=('127.0.0.2", 9042)
storage=('127.0.0.2', 7000)
jmx_port=7200
remote_debug_port=0
byteman_port=0
initial_token=-5534023222112865485
pid=41588

node5: UP
auto_bootstrap=False
thrift=('127.0.0.5', 9160)
binary=('127.0.0.5"', 9042)
storage=('127.0.0.5', 7000)
jmx_port=7500
remote_debug_port=0
byteman_port=0
initial_token=5534023222112865484
pid=41629

node4: UP
auto_bootstrap=False
thrift=('127.0.0.4', 9160)
binary=('127.0.0.4"', 9042)
storage=('127.0.0.4"', 7000)
jmx_port=7400
remote_debug_port=0
byteman_port=0
initial_token=1844674407370955161
pid=41665

$ ccm nodel ring

Datacenter: datacenterl

Address Rack Status State Load Owns Token
5534023222112865484

127.0.0.1 rackl Up Normal 98.97 KiB 40.00% -9223372036854775808
127.0.0.2 rackl Up Normal 98.98 KiB 40.00% -5534023222112865485
127.0.0.3 rackl Up Normal 98.98 KiB 40.00% -1844674407370955162
127.0.0.4 rackl Up Normal 98.98 KiB 40.00% 1844674407370955161
127.0.0.5 rackl Up Normal 98.98 KiB 40.00% 5534023222112865484

Question 2

(14 marks)

e a) (2 marks) What is the setting of the endpoint_snitch property?

Location of nodel's cassandra.yaml : ~/.ccm/single_dc/nodel/conf/cassandra.yaml
(You can find a copy of cassandra.yaml in nodel sub-folder.)

endpoint_snitch: SimpleSnitch

e D) (6 Marks) What is the value of the initial_token property?

initial_token: -9223372036854775808

e Which Cassandra component has calculated it?

default partitioner:

Murmur3Partitioner

e |s there any relationship between initial_token property value and the output of the ccm nodel ring command?
Yes.

The first node from the ccm node1 ring output:

127.0.0.1 rackl Up Normal 98.97 KiB 40.00% -9223372036854775808

The hash value of the first node is the same as the initial_token .

e) (2 marks) What is the setting of the partitioner property?

partitioner: org.apache.cassandra.dht.Murmur3Partitioner

e d) (4 marks) What is the setting of the rpc_address property?

rpc_address: 127.0.0.1

e [s there any relationship between rpc_address property value and the output of the ccm nodel ring command?

Yes, this value is the ip address of the first node

127.0.0.1 rackl Up Normal 98.97 KiB 40.00% -9223372036854775808

Question 3

(2 marks) Consider the casssandra.topology.properties file of nodel and comment on the relationship between file's
content and the output of the ccm nodel ring command.

Location of the file: ~/.ccm/single_dc/nodel/conf/cassandra-topology.properties
(Copy saved in nodel sub-folder.)

The main content of the property file:

Cassandra Node IP=Data Center:Rack
192.168.1.100=DC1:RAC1
192.168.2.200=DC2:RAC2

10.0.0.10=DC1:RAC1
10.0.0.11=DC1:RAC1
10.0.0.12=DC1:RAC2

10.20.114.10=DC2:RAC1
10.20.114.11=DC2:RAC1

10.21.119.13=DC3:RAC1
10.21.119.10=DC3:RAC1

10.0.0.13=DC1:RAC2
10.21.119.14=DC3:RAC2
10.20.114.15=DC2:RAC2

default for unknown nodes
default=DC1l:r1l

Because of using a single data center (Simple Snitch) we don't see any relation between this file and our ccm nodel ring
output. Simple Snitch does not recognize data center or rack information. Our property file content is just dummy data,
examples, not related to our node.

Question 4

(8 marks)

a) (3marks) Connect to cqlsh prompt and create a keyspace with the name ass2 . Replication strategy should be simple ,
and the replication factor equal 3 . In your answer, show your keyspace declaration.

$ ccm nodel cqlsh
cqlsh> CREATE KEYSPACE IF NOT EXISTS ass2 with replication = { 'class' : 'SimpleStrategy',
‘replication_factor' : 3 };

b) (5marks)

The following files:

table_declarations.cql
data_point_data. txt
driver_data_txt
time_table_data.txt
vehicle_data.txt

are given on the course Assignments page. The file table_declarations.cql contains create table statements, while the
other files contain comma separated table data. Use these files, and SOURCE and COPY cqlsh commands to implement a

version of the train time table data base. In your answer show the results of running the cqlsh command describe tables
and of running select statements on each table for a row of your choice.

$ ccm nodel cqlsh
cqlsh> SOURCE './table_declarations.cql'
cqlsh> DESCRIBE TABLES;

Keyspace system_schema

tables triggers views keyspaces dropped_columns
functions aggregates indexes types columns

Keyspace system_auth

resource_role_permissons_index role_permissions role_members roles

Keyspace system

available_ranges peers batchlog transferred_ranges
batches compaction_history size_estimates hints
prepared_statements sstable_activity built_views

"IndexInfo" peer_events range_xfers
views_builds_in_progress paxos local

Keyspace system_distributed

repair_history view_build_status parent_repair_history

Keyspace system_traces

events sessions

Keyspace ass2

time_table data_point driver vehicle

cqlsh> COPY ass2.time_table (line_name, service_no, time, distance, latitude, longitude, stop)
FROM './time_table_data.txt';
Using 7 child processes

Starting copy of ass2.time_table with columns [line_name, service_no, time, distance, latitude,
longitude, stopl

Processed: 30 rows; Rate: 44 rows/s; Avg. rate: 66 rows/s

30 rows imported from 1 files in 0.458 seconds (@ skipped).

cqlsh> SELECT * FROM ass2.time_table;

line_name | service_no | time | distance | latitude | longitude | stop
Melling | 3| 807 | 13.7 | -41.2036 | 174.9054 | Melling
Melling | 3] 801 | 11.4 | -41.2118 | 174.89 | Western Hutt
Melling | 3] 754 | 8.3 | -41.227 | 174.8851 | Petone
Melling | 3| 741 | 0 | -41.2865 | 174.7762 | Wellington
Hutt Valley Line | 1] 650 | 34.3 | -41.1244 | 175.0708 | Upper Hutt
Hutt Valley Line | 1] 642 | 26.5 | -41.1479 | 175.0122 | Silverstream
Hutt Valley Line | 1| 634 | 19 | -41.1798 | 174.9608 | Taita
Hutt Valley Line | 1] 629 | 15.8 | -41.2024 | 174.9423 | Naenae
Hutt Valley Line | 1] 625 | 13.3 | -41.2092 | 174.9081 | Waterloo
Hutt Valley Line | 1| 622 | 11 | -41.2204 | 174.9081 | Woburn
Hutt Valley Line | 1] 617 | 8.3 | -41.227 | 174.8851 | Petone
Hutt Valley Line | 1] 605 | 0 | -41.2865 | 174.7762 | Wellington
Waikanae | 5 | 1139 | 62.8 | -40.8755 | 175.0668 | Waikanae
Waikanae | 5] 1118 | 51.3 | -40.9142 | 175.0084 | Paraparaumu
Waikanae | 5] 1059 | 33.1 | -40.9881 | 174.951 | Paekakariki
Waikanae | 5] 1042 | 15.9 | -41.1339 | 174.8406 | Porirua
Waikanae | 5 | 1025 | 0 | -41.2865 | 174.7762 | Wellington
Hutt Valley Line | 11 | 2025 | 34.3 | -41.1244 | 175.0708 | Upper Hutt
Hutt Valley Line | 11 | 2019 | 26.5 | -41.1479 | 175.0122 | Silverstream
Hutt Valley Line | 11 | 2010 | 19 | -41.1798 | 174.9608 | Taita
Hutt Valley Line | 11 | 2001 | 15.8 | -41.2024 | 174.9423 | Naenae
Hutt Valley Line | 11 | 1955 | 13.3 | -41.2092 | 174.9081 | Waterloo
Hutt Valley Line | 11 | 1952 | 11 | -41.2204 | 174.9081 | Woburn
Hutt Valley Line | 11 | 1947 | 8.3 | -41.227 | 174.8851 | Petone
Hutt Valley Line | 11 | 1935 | 0 | -41.2865 | 174.7762 | Wellington
Hutt Valley Line | 2 | 1045 | 34.3 | -41.2865 | 174.7762 | Wellington
Hutt Valley Line | 2 | 1033 | 26 | -41.227 | 174.8851 | Petone

Hutt Valley Line |
Hutt Valley Line |
Hutt Valley Line |

(30 r

cqlsh> COPY ass2.data_point FROM './data_point_data.txt';

ows)

Using 7 child processes

2 | 1025 | 21 | -41.2092 | 174.9081 | Waterloo
2 | 1015 | 15.3 | -41.1798 | 174.9608 | Taita
2 | 1000 | 0 | -41.1244 | 175.0708 | Upper Hutt

Starting copy of ass2.data_point with columns [line_name, service_no, date, sequence, latitude,
longitude, speed].

Processed: 5 rows; Rate:
5 rows imported from 1 files in 0.437 seconds (@ skipped).
cqlsh> SELECT * FROM ass2.data_point;

8 rows/s; Avg.

rate:

11 rows/s

line_name | service_no | date | sequence | latitude | longitude | speed
Hutt Valey Line | 2 | 20160326 | 2016-03-25 21:07:40.000 | -41.2012 | 175 | 70.1
Hutt Valey Line | 2 | 20160326 | 2016-03-25 21:02:10.000 | -41.1255 | 175.07 | 40.5
Hutt Valey Line | 2 | 20160326 | 2016-03-24 21:27:10.000 | -41.2262 | 174.77 | 29.1
Hutt Valey Line | 2 | 20150322 | 2015-03-21 21:44:10.000 | -41.2862 | 174.7759 | 9.1
Hutt Valey Line | 2 | 20160322 | 2016-03-21 21:37:50.000 | —41.2272 | 174.77 | 29.1
(5 rows)

cqlsh> COPY ass2.driver FROM './driver_data.txt';

Using 7 child processes

Starting copy of ass2.driver with columns [driver_name, current_position, email, mobile, password,

skilll.
Processed: 6 rows; Rate: 10 rows/s; Avg. rate: 14 rows/s
6 rows imported from 1 files in 0.430 seconds (0@ skipped).
cqlsh> SELECT * FROM ass2.driver;
driver_name | current_position | email | mobile | password | skill
fred | Taita | fred@ecs.vuw.ac.nz | 2799797 | foof | {'Ganz Mavag', 'Guliver'}
jane | Waikanae | jane@ecs.vuw.ac.nz | 2131131 | jj77 | {'Matangi'}
ann | not available | ann@ecs.vuw.ac.nz | 21998877 | aaaa | {'Matangi'}
milan | Upper Hutt | milan@ecs.vuw.ac.nz | 211111 | mm77 | {'Matangi'}
pondy | Wellington | pondy@ecs.vuw.ac.nz | 214455 | pd66 | {'Guliver', 'Matangi'}
pavle | Upper Hutt | pmogin@ecs.vuw.ac.nz | 213344 | pm33 | {'Ganz Mavag', 'Guliver', 'Matangi
(6 rows)

cqlsh> COPY ass2.vehicle FROM './vehicle_data.txt';
Using 7 child processes

Starting copy of ass2.vehicle with columns [vehicle_id, status, type].
Processed: 6 rows; Rate:
6 rows imported from 1 files in 0.433 seconds (@ skipped).
cqlsh> SELECT * FROM ass2.vehicle;

10 rows/s; Avg.

vehicle_id | status | type
KW3300 | Wellington | Matangi
FP3003 | out of order | Guliver
FA3456 | in_use | Matangi
FP8899 | Upper Hutt | Matangi
FA4864 | maintenance | Matangi
FA1122 | Upper Hutt | Ganz Mavag

(6 rows)

Question 5

rate:

14 rows/s

(10 marks) To answer this question, you will need to use the getendpoints nodetool command.

a) (1 mark) Find the nodes storing data of driver pavle . In your answer, show the output of the getendpoints nodetool
command. Let us call these nodes node_a, node_b, and node_c .

$ ccm nodel nodetool getendpoints ass2 driver pavle
127.0.0.1
127.0.0.2
127.0.0.3

b) (3 marks)

Connect to cqlsh prompt using a node that is not in the set {node_a, node_b, node_c} .
$ ccm noded4 cqlsh
Set the consistency level to ALL and read data of the driver pavle.

cqlsh> CONSISTENCY;

Current consistency level is ONE.

cqlsh> CONSISTENCY ALL;

Consistency level set to ALL.

cqlsh> SELECT * FROM ass2.driver WHERE driver_name='pavle';

driver_name | current_position | email | mobile | password | skill

it it alz

=7 =

pavle | Upper Hutt | pmogin@ecs.vuw.ac.nz | 213344 | pm33 | {'Ganz Mavag', 'Guliver', 'Matangi'}

(1 rows)
Stop node_a , connect to cqlsh, set the consistency level to ALL and read pavle’s data again. What have you learned?

$ ccm nodel stop

$ ccm node4 cqlsh

cqlsh> CONSISTENCY ALL;

Consistency level set to ALL.

cqlsh> SELECT * FROM ass2.driver WHERE driver_name='pavle';

NoHostAvailable:

CONSISTENCY ALL in Read Consistency Levels means that Cassandra returns the record after all replicas have responded.
The read operation will fail if a replica does not respond. Exactly this happened in our case.

c) (3 marks)

With node_a still being stopped, set the consistency level to QQURUM and read pavle’s data.
cqlsh> CONSISTENCY QUORUM ;
Consistency level set to QUORUM.

cqlsh> SELECT * FROM ass2.driver WHERE driver_name='pavle';

driver_name | current_position | email | mobile | password | skill

pavle | Upper Hutt | pmogin@ecs.vuw.ac.nz | 213344 | pm33 | {'Ganz Mavag', 'Guliver', 'Matangi'}

(1 rows)
Stop node_b, connect to cqlsh, set the consistency level to QUORUM and read pavle’s data again. What have you learned

$ ccm node2 stop

$ ccm noded4 cqlsh

cqlsh> CONSISTENCY QUORUM;

Consistency level set to QUORUM.

cqlsh> SELECT * FROM ass2.driver WHERE driver_name='pavle';

NoHostAvailable:

The CONSISTENCY QUORUM means that Cassandra will return the record after a quorum of replicas from all datacenters has
responded. We have one datacenter at this stage, the replaction factor is 3, so at least 2 should respond. We got results
when only one node was dead, but no responses when 2 were dead from 3 nodes.

d) (3 marks)

With node_a and node_b still being stopped, set the consistency level to ONE and read pavle’s data.

cqlsh> CONSISTENCY ONE ;
Consistency level set to ONE.
cqlsh> SELECT * FROM ass2.driver WHERE driver_name='pavle';

driver_name | current_position | email | mobile | password | skill

+ + + + +

pavle | Upper Hutt | pmogin@ecs.vuw.ac.nz | 213344 | pm33 | {'Ganz Mavag',

(1 rows)

Stop node_c, connect to cqlsh, and read pavle’s data again. What have you learned

$ ccm node3 stop

$ ccm node4 cqlsh

cqlsh> CONSISTENCY ONE;

Consistency level set to ONE.

cqlsh> SELECT * FROM ass2.driver WHERE driver_name='pavle';
NoHostAvailable:

'Guliver', 'Matangi'}

CONSISTENCY ONE : Returns a response from the closest replica, as determined by the snitch. We have one data center and 3
replicas. In the first case we still had one node available, so one replica was still existed. But after stopping node_c does not

left any live replica, so no response.

Question 6

(15 marks)

You are asked to find those nodes of the single_dc Cassandra cluster that store replicas of driver eileen . Very soon you

realized that all ccm commands and nodetool commands, including ccm start, ccm stop, ccm status, ccm nodei cqlsh

and so on, work properly except the command ccm nodei nodetool getendpoints ass2 driver eileen .

Despite that, you

have devised a procedure to find the nodes requested. In your answer, describe the procedure and show how you have

applied it.

First of all, we don't have driver with eileen in our database. We can check it with the following query.

$ ccm start
$ ccm switch single_dc
$ ccm status

Cluster: 'single_dc'

nodel: UP
node3: UP
node2: UP
node5: UP
node4: UP
$ ccm nodel cqlsh —e "use ass2; select *x from driver where driver_name = 'eileen';"

driver_name | current_position | email | mobile | password | skill

= ot = e it

(0 rows)

$ ccm nodel cqlsh —e "INSERT INTO ass2.driver (driver_name, current_position, email, mobile,

password, skill) VALUES ('eileen', 'Wellington', 'eileen@ecs.vuw.ac.nz', 555444, 'abcd123',
{'Guliver', 'Matangi'}) IF NOT EXISTS;"

[applied]

ccm nodel cqlsh —e "use ass2; select x from driver where driver_name = 'eileen';"

driver_name | current_position | email | mobile | password | skill

eileen | Wellington | eileen@ecs.vuw.ac.nz | 555444 | abcd123 | {'Guliver', 'Matangi'}

(1 rows)

Without using nodetool , we can find nodes which stores our record, if we close all other nodes except one. Using
CONSISTENCY ONE , we get back our record if that node stores our requested data.

The following bash script can help us to iterate through on all nodes and run the query. (g6-node-finder.sh)

nodes=("'nodel' 'node2' 'node3' 'node4' 'node5');
for node in "${nodes[@]}"; do

ccm switch single_dc

ccm stop

cem ${node} start

echo "Active node: ${node}"

ccm status

ccm ${node} cqlsh —e "use ass2; consistency one; select x from driver where driver_name='eileen';"
done

Or we can run manually this one line for each node:

$ ccm switch single_dc; ccm stop; ccm nodel start; ccm status; ccm nodel cqlsh —e "use ass2;

consistency one; select * from driver where driver_name='eileen';

Cluster: 'single_dc'

nodel: UP
node3: DOWN
node2: DOWN
node5: DOWN
node4: DOWN
driver_name | current_position | email | mobile | password | skill
eileen | Wellington | eileen@ecs.vuw.ac.nz | 555444 | abcd123 | {'Guliver', 'Matangi'}
(1 rows)

$ ccm switch single_dc; ccm stop; ccm node2 start; ccm status; ccm node2 cqlsh —e "use ass2;
consistency one; select *x from driver where driver_name='eileen';"

Cluster: 'single_dc'

nodel: DOWN
node3: DOWN
node2: UP

node5: DOWN
node4: DOWN

Consistency level set to ONE.

driver_name | current_position | email | mobile | password | skill
eileen | Wellington | eileen@ecs.vuw.ac.nz | 555444 | abcd123 | {'Guliver', 'Matangi'}
(1 rows)

$ ccm switch single_dc; ccm stop; ccm node3 start; ccm status; ccm node3 cqlsh —e "use ass2;
consistency one; select *x from driver where driver_name='eileen';"

Cluster: 'single_dc

nodel: DOWN
node3: UP

node2: DOWN
node5: DOWN
node4: DOWN

Consistency level set to ONE.
NoHostAvailable:

$ ccm switch single_dc; ccm stop; ccm noded4 start; ccm status; ccm noded4 cqlsh —e "use ass2;

consistency one; select *x from driver where driver_name='eileen';

Cluster: 'single_dc'
nodel: DOWN

node3: DOWN

node2: DOWN

node5: DOWN

node4: UP

Consistency level set to ONE.

NoHostAvailable:

$ ccm switch single_dc; ccm stop; ccm node5 start; ccm status; ccm node5 cqlsh —e "use ass2;
consistency one; select * from driver where driver_name='eileen';"

Cluster: 'single_dc'
nodel: DOWN

node3: DOWN

node2: DOWN

node5: UP

node4: DOWN

Consistency level set to ONE.

driver_name | current_position | email

| mobile | password | skill

eileen |

(1 rows)

+ t t

Wellington | eileen@ecs.vuw.ac.nz | 555444 | abcd123 | {'Guliver', 'Matangi'}

We can see, that our record exists on nodel, node2 and node5 .

We can test this with our restricted command:

$ ccm start; ccm nodel nodetool getendpoints ass2 driver eileen
127.0.0.5
127.0.0.1
127.0.0.2

Update:

| found a more elegant solution when | solved Question 15. Using the token function.

$ ccm start
$ ccm nodel cqlsh —e "USE ass2; SELECT driver_name, TOKEN(driver_name) FROM driver WHERE

driver_name='eileen

driver_name | system.token(driver_name)

eileen |

(1 rows)

2694043365177161046

Comparing our above token number with previously printed ring token thresholds, we can see, that eileen 's token is above
node4 's threshold but smaller than node5 . It means, that the primary node is node5 . In the ring the following nodes, which
will store replicas, are nodel and node2 . Again, the answer is nodel , node2 and node5 .

Datacenter:

Address

127.0.0.4 rackl

127.0.0.5

Question 7

(15 marks)

Status State Load

Up Normal 98.98 KiB
Up Normal 98.98 KiB

Owns Token
40.00% 1844674407370955161
40.00% 5534023222112865484

Assume the following situation:
The data of the driver james should be stored on node4 , node5, and nodel .
A client (say c0) connected to node3 and sent a request to write james’s data.

In the moment of running the statement insert into driver (driver_name, password) values ('james', '7007'); node4
was down.

Writing succeeded.
In the next moment node5 and nodel went down and the node4 started.

A client (say c1) connected to cqlsh prompt via node3 and sent the following
read statement: select driver_name, password from driver where driver_name = 'james';

The read result was:

driver_name | password |

james | 7007 |
Repeat the experiment described above. Name and briefly explain Cassandra mechanism that made succeeding of the select
statement above possible.

We can see where cassandra would like to store our record. Because the primary key in driver table is the driver_name ,
we can list our nodes. And it is really the nodel, node4 and node5 .

$ ccm start
$ ccm nodel nodetool getendpoints ass2 driver james

127.0.0.4
127.0.0.5
127.0.0.1

$ ccm status

Cluster: 'single_dc'

nodel: UP
node3: UP
node2: UP
node5: UP
node4: UP

Simulate node4 is down.

$ ccm node4 stop
$ ccm status
Cluster: 'single_dc'

nodel: UP
node3: UP
node2: UP
node5: UP
node4: DOWN

We may insert our new row with the following command.

$ ccm node3 cqlsh —e "use ass2; insert into driver (driver_name, password) values ('james', '7007');"

However, if we don't change our consistency level than our experiment will fail. The default consistency level ONE . In this
case Cassandra will not replicate our record to node4 when it starts. We have to switch at least to CONSISTENCY QUORUM .

We have to use the following command to insert our data.

$ ccm node3 cqlsh —e "use ass2; consistency quorum; insert into driver (driver_name, password)
values ('james', '7007');"

Simulate nodel, node5 are down and node4 is back.

$ ccm nodel stop; ccm node5 stop; ccm node4 start
$ ccm status
Cluster: 'single_dc'

nodel: DOWN
node3: UP
node2: UP
node5: DOWN
node4: UP

$ ccm node3 cqlsh —e "use ass2; select driver_name, password from driver where driver_name='james';

driver_name | password

james | 7007

(1 rows)

When we run our insert command with quorum consistency, Cassandra write our record at least in two nodes, plus it will
write in log and in the memtable. When our nodel and node5 is stoped and node4 came back, Cassandra inserted our
record from memtable in node4 .

Cassandra uses gossip process to track states of nodes. It helps to determine which node is up or down and when it can
replicate a missing data.

Question 8

Lost...

Question 9

(3 marks)

Use ccm to make a Cassandra cluster spanning two datacenters. The cluster name should be multi_dc .

Cassandra will automatically assign default names dcl and dc2 to datacenters. The cluster multi_dc uses 5 nodesin dcl
and 4 nodes in dc2 . Start the cluster and run the ccm ring command. Save the output of the ring command for future use
and show it in the answer to the question.

$ ccm create -n 5:4 -s multi_dc
$ ccm switch multi_dc

$ ccm start

$ ccm status

Cluster: 'multi_dc'

node9: UP
node8: UP
nodel: UP
node3: UP
node2: UP
node5: UP
node4: UP
node7: UP
node6: UP

$ ccm nodel ring

Datacenter: dcl

Address Rack Status State Load Owns Token
5534023222112865484
127.0.0.1 r1 Up Normal 98.97 KiB 25.00% -9223372036854775808
127.0.0.2 r1l Up Normal 98.96 KiB 20.00% -5534023222112865485
127.0.0.3 rl Up Normal 98.97 KiB 20.00% -1844674407370955162

127.0.0.4 rl Up Normal 98.97 KiB 20.00% 1844674407370955161
127.0.0.5 rl Up Normal 98.96 KiB 20.00% 5534023222112865484

Datacenter: dc2

Address Rack Status State Load Owns Token
4611686018427388004
127.0.0.6 rl Up Normal 98.96 KiB 20.00% —9223372036854775708
127.0.0.7 rl Up Normal 98.97 KiB 25.00% -4611686018427387804
127.0.0.8 rl Up Normal 98.94 KiB 25.00% 100
127.0.0.9 r1 Up Normal 98.97 KiB 25.00% 4611686018427388004
Question 10
(4 marks)

Consider the casssandra.yaml file of nodel . What is the setting of the endpoint_snitch property? If you find it different to
the setting in the case of the single_dc cluster, explain briefly why it is different.

(Please find the cassandra.yaml inthe multi_dc folder.)

endpoint_snitch: org.apache.cassandra.locator.PropertyFileSnitch
In case of single_dc our endpoint_snitch value was SimpleSnitch . In case of multi_dc Cassandra uses
PropertyFileSnitch protocol.

The SimpleSnitch is used only for single-datacenter deployments. PropertyFileSnitch determines the location of nodes
by rack and datacenter. It uses the network details located in the cassandra-topology.properties file (copied in multi_dc
folder).

Question 1M

(4 marks)

Consider the cassandra.topology.properties file of nodel and comment on the relationship between file’s content and the
output of the ccm nodel ring command.

Content of cassandra.topology.properties :

default=dcl:rl
127.0.0.1=dcl:rl

127.0.0.2=dcl:rl1
127.0.0.3=dcl:rl
127.0.0.4=dcl:rl
127.0.0.5=dcl:rl
127.0.0.6=dc2:rl
127.0.0.7=dc2:rl
127.0.0.8=dc2:rl
127.0.0.9=dc2:rl

cassandra.topology.properties file contains the same mapping as we can list with ccm nodel ring . We see in both cases
that we have two data centers and which IP address, which node belongs to dcl or to dc2 datacenter.

Both list the rack numbers also. In our case, we use only one-one rack.

Question 12

(2 marks)

Create a keyspace with the name ass2 having network topology replication strategy and a replication factor of 3 for both
dcl and dc2 datacenters. In your answer, show your keyspace declaration.

cqlsh> CREATE KEYSPACE IF NOT EXISTS ass2 WITH replication = {'class': 'NetworkTopologyStrategy',
‘del': 3, 'dc2': 3 };

Question 13

(3 marks)

Use SOURCE and COPY cqlsh commands and the following files:

table_declarations.cql
driver_data_txt
time_table_data.txt

to implement a version of the train time table data base. You need to populate only driver and time_table tables by data.
In your answer show the results of running the cqlsh command describe tables and of running CQL select statements
on driver and time_table for a row of your choice.

$ ccm nodel cqlsh —e "use ass2; SOURCE './table_declarations.cql';"
$ ccm nodel cqlsh
cqlsh> DESCRIBE tables;

Keyspace system_schema

tables triggers views keyspaces dropped_columns
functions aggregates indexes types columns

Keyspace system_auth

resource_role_permissons_index role_permissions role_members roles

Keyspace system

available_ranges peers batchlog transferred_ranges
batches compaction_history size_estimates hints
prepared_statements sstable_activity built_views

"IndexInfo" peer_events range_xfers
views_builds_in_progress paxos local

Keyspace system_distributed

repair_history view_build_status parent_repair_history

Keyspace system_traces

events sessions

Keyspace ass2

time_table data_point driver vehicle

cqlsh> USE ass2;
cqlsh:ass2> COPY driver FROM './driver_data.txt';
Using 7 child processes

Starting copy of ass2.driver with columns [driver_name, current_position, email, mobile,
password, skill].

Processed: 6 rows; Rate: 6 rows/s; Avg. rate: 9 rows/s

6 rows imported from 1 files in 0.664 seconds (@ skipped).

cqlsh:ass2> SELECT * FROM driver;

driver_name | current_position | email | mobile | password | skill
fred | Taita | fred@ecs.vuw.ac.nz | 2799797 | foof | {'Ganz Mavag', 'Guliver'}
jane | Waikanae | jane@ecs.vuw.ac.nz | 2131131 | ji77 | {'Matangi'}
ann | not available | ann@ecs.vuw.ac.nz | 21998877 | aaaa | {'Matangi'}
milan | Upper Hutt | milan@ecs.vuw.ac.nz | 211111 | mm77 | {'Matangi'}
pondy | Wellington | pondy@ecs.vuw.ac.nz | 214455 | pd66 | {'Guliver', 'Matangi'}
pavle | Upper Hutt | pmogin@ecs.vuw.ac.nz | 213344 | pm33 | {'Ganz Mavag', 'Guliver', 'Matangi

(6 rows)

cqlsh:ass2> COPY time_table FROM './time_table_data.txt"';
Using 7 child processes

Starting copy of ass2.time_table with columns [line_name, service_no, time, distance, latitude,
longitude, stopl.

Processed: 30 rows; Rate: 47 rows/s; Avg. rate: 86 rows/s

30 rows imported from 1 files in 0.348 seconds (@ skipped).

cqlsh:ass2> SELECT * FROM time_table;

line_name | service_no | time | distance | latitude | longitude | stop
Melling | 3 | 807 | 13.7 | -41.2036 | 174.9054 | Melling
Melling | 3 | 801 | 11.4 | -41.2118 | 174.89 | Western Hutt
Melling | 3| 754 | 8.3 | -41.227 | 174.8851 | Petone
Melling | 3| 741 | 0 | -41.2865 | 174.7762 | Wellington
Hutt Valley Line | 1| 650 | 34.3 | -41.1244 | 175.0708 | Upper Hutt
Hutt Valley Line | 1] 642 | 26.5 | -41.1479 | 175.0122 | Silverstream
Hutt Valley Line | 1] 634 | 19 | -41.1798 | 174.9608 | Taita
Hutt Valley Line | 1| 629 | 15.8 | -41.2024 | 174.9423 | Naenae
Hutt Valley Line | 1] 625 | 13.3 | -41.2092 | 174.9081 | Waterloo
Hutt Valley Line | 1] 622 | 11 | -41.2204 | 174.9081 | Woburn
Hutt Valley Line | 1| 617 | 8.3 | -41.227 | 174.8851 | Petone
Hutt Valley Line | 1] 605 | 0 | -41.2865 | 174.7762 | Wellington
Waikanae | 5] 1139 | 62.8 | -40.8755 | 175.0668 | Waikanae
Waikanae | 5 | 1118 | 51.3 | -40.9142 | 175.0084 | Paraparaumu
Waikanae | 5 | 1059 | 33.1 | -40.9881 | 174.951 | Paekakariki
Waikanae | 5] 1042 | 15.9 | -41.1339 | 174.8406 | Porirua
Waikanae | 5 | 1025 | 0 | -41.2865 | 174.7762 | Wellington
Hutt Valley Line | 11 | 2025 | 34.3 | -41.1244 | 175.0708 | Upper Hutt
Hutt Valley Line | 11 | 2019 | 26.5 | -41.1479 | 175.0122 | Silverstream
Hutt Valley Line | 11 | 2010 | 19 | -41.1798 | 174.9608 | Taita
Hutt Valley Line | 11 | 2001 | 15.8 | -41.2024 | 174.9423 | Naenae
Hutt Valley Line | 11 | 1955 | 13.3 | -41.2092 | 174.9081 | Waterloo
Hutt Valley Line | 11 | 1952 | 11 | -41.2204 | 174.9081 | Woburn
Hutt Valley Line | 11 | 1947 | 8.3 | -41.227 | 174.8851 | Petone
Hutt Valley Line | 11 | 1935 | 0 | -41.2865 | 174.7762 | Wellington
Hutt Valley Line | 2 | 1045 | 34.3 | -41.2865 | 174.7762 | Wellington
Hutt Valley Line | 2 | 1033 | 26 | -41.227 | 174.8851 | Petone
Hutt Valley Line | 2 | 1025 | 21 | -41.2092 | 174.9081 | Waterloo
Hutt Valley Line | 2 | 1015 | 15.3 | -41.1798 | 174.9608 | Taita
Hutt Valley Line | 2 | 1000 | 0 | -41.1244 | 175.0708 | Upper Hutt
(30 rows)
Question 14
(8 marks)

Find nodes storing data of the driver pavle . Let these nodes be node_a, node_b, node_c, node_d, node_e , and node_f,
wherea<b<c<d<ecx<f.

$ ccm nodel nodetool getendpoints ass2 driver pavle

127.
127.
127.
127.
127.
127.

(SIS IINGS IGS S)
(SIS G S
00 ~NO WN P

I. (4 marks)

Connect to ass2 keyspace.

$ ccm nodel cqlsh

Connected to multi_dc at 127.0.0.1:9042.

[cqlsh 5.0.1 | Cassandra 3.10 | CQL spec 3.4.4 | Native protocol v4]
Use HELP for help.

cqlsh> USE ass2;

cqlsh:ass2>

Run the statement: select driver_name, password from driver where driver_name = 'pavle';
under consistency levels:

e quorum

cqlsh:ass2> CONSISTENCY QUORUM;
Consistency level set to QUORUM.
cqlsh:ass2> SELECT driver_name, password FROM driver WHERE driver_name = 'pavle';

driver_name | password

pavle | pm33

(1 rows)

e each_gourum

cqlsh:ass2> CONSISTENCY EACH_QUORUM;
Consistency level set to EACH_QUORUM.
cqlsh:ass2> SELECT driver_name, password FROM driver WHERE driver_name = 'pavle';

driver_name | password

pavle | pm33

(1 rows)

Run the select statement under consistency level local_quorum once for dc1 being local, and once for dc2 being local.

e Tlocal_quorum (on node1)

$ ccm nodel cqlsh —e "USE ass2; CONSISTENCY local_quorum; SELECT driver_name, password FROM
driver WHERE driver_name = 'pavle';"
Consistency level set to LOCAL_QUORUM.

driver_name | password

pavle | pm33

(1 rows)

$ ccm node6 cqlsh —e "USE ass2; CONSISTENCY local_quorum; SELECT driver_name, password FROM
driver WHERE driver_name = 'pavle';"
Consistency level set to LOCAL_QUORUM.

driver_name | password

pavle | pm33

(1 rows)

Our all nodes are live. We have at least 2 nodes from 3 in each datacenter. Quorum means that Cassandra returns the record
after a quorum of replicas has responded from any data center. Based on the documentation each_quorum is not supported
for reads, however our query worked and it will be clear effect when we stop nodes in the next task. In case of local_quorum
Cassandra returns the record after a quorum of replicas in the current data center. We can avoid latency of inter-data center
communication.

1. (4 marks)

Use ccm to stop node_e and node_f . Connect to ass2 keyspace.

$ ccm node7 stop
$ ccm node8 stop
$ ccm status

Cluster: 'multi_dc'

node9: UP

node8: DOWN

nodel: UP
node3: UP
node2: UP
node5: UP
node4: UP
node7: DOWN
node6: UP

Run the statement select driver_name, password from driver where driver_name = 'pavle'; under consistency levels:
quorum , each_quorum , and local_quorum . Run the select statement under consistency level local_quorum once for dcil
being local, and once for dc2 being local. In your answer to the question, show results of your experiments and describe
briefly what you have learned.

$ ccm nodel cqlsh —e "USE ass2; CONSISTENCY quorum; SELECT driver_name, password FROM driver
WHERE driver_name = 'pavle';"
Consistency level set to QUORUM.

driver_name | password

pavle | pm33
(1 rows)
$ ccm node6 cqlsh —e "USE ass2; CONSISTENCY quorum; SELECT driver_name, password FROM driver
WHERE driver_name = 'pavle';"

Consistency level set to QUORUM.

driver_name | password

pavle | pm33

(1 rows)

We got proper respond, because at least 2 nodes live on one of the cluster. Doesn't matter to which cluster the client
connects.

$ ccm nodel cqlsh —e "USE ass2; CONSISTENCY each_quorum; SELECT driver_name, password FROM driver
WHERE driver_name = 'pavle';"

Consistency level set to EACH_QUORUM.

<stdin>:1:NoHostAvailable:

$ ccm node6 cqlsh —e "USE ass2; CONSISTENCY each_quorum; SELECT driver_name, password FROM driver
WHERE driver_name = 'pavle';"

Consistency level set to EACH_QUORUM.

<stdin>:1:NoHostAvailable:

Our request will fail, because each_quorum consistency expect that at least 2 nodes are active in each data center. It forces
strong consistency. We should use this level in multiple datacenter clusters to strictly maintain consistency at the same level
in each datacenter and if we want a read to fail when a datacenter is down and the QUORUM cannot be reached on that
datacenter. Exactly this happened with us in this case.

$ ccm nodel cqlsh —e "USE ass2; CONSISTENCY local_quorum; SELECT driver_name, password FROM driver
WHERE driver_name = 'pavle';"
Consistency level set to LOCAL_QUORUM.

driver_name | password

pavle | pm33
(1 rows)

$ ccm node6 cqlsh —e "USE ass2; CONSISTENCY local_quorum; SELECT driver_name, password FROM driver
WHERE driver_name = 'pavle';"

Consistency level set to LOCAL_QUORUM.

<stdin>:1:NoHostAvailable:

We can see, that local_quorum expects that we have at least 2 active nodes with replica from the connected datacenter. In
the first case, when we connected to nodel we had enough nodes active in dcl . In the second case, when we connected
node6 whichisin dc2 , there was not more live replica, so the quorum is not satisfied.

Question 15

(10 marks)

You are asked to find those nodes of the multi_dc Cassandra cluster that store replicas of the time_table table row

line_name | service_no | time | distance | latitude | longitude | stop

+ + t + +

Hutt Valley Line | 2 | 1045 | 34.3 | -41.2865 | 174.7762 | Wellington

Very soon you realized that all ccm and nodetool commands, except ccm nodei cqlsh , do not work. So, you are unable to
use: ccm stop, ccm status, ccm start, ccm nodei ring and so on, including the command ccm nodei nodetool
getendpoints ass2 time_table <key> .

Despite that, you have devised a procedure to find the nodes requested. In your answer, describe the procedure and show
how you have applied it.

Hint: Luckily, you have saved the output of the ccm nodei ring command and cqlsh prompt is still working.

We can use the primary key for finding the default node. Using the token function with primary keys of time_table we can
list the token number of each row. The token number determines the default node of a record. Because our replication level
is 3, the default node and the following 2 nodes will store our record.

$ ccm nodel cqlsh —-e "USE ass2; SELECT line_name, service_no, time, token(line_name, service_no)
as t FROM time_table"

line_name | service_no | time | t
Melling | 3 | 807 | -7474942320664480980
Melling | 3 | 801 | -7474942320664480980
Melling | 3 | 754 | -7474942320664480980
Melling | 3 | 741 | -7474942320664480980
Hutt Valley Line | 1| 650 | -6012480106752428297
Hutt Valley Line | 1| 642 | -6012480106752428297
Hutt Valley Line | 1 | 634 | -6012480106752428297
Hutt Valley Line | 1| 629 | -6012480106752428297
Hutt Valley Line | 1| 625 | -6012480106752428297
Hutt Valley Line | 1| 622 | -6012480106752428297
Hutt Valley Line | 1| 617 | -6012480106752428297
Hutt Valley Line | 1| 605 | -6012480106752428297
Waikanae | 5 | 1139 | -5905794062536720418
Waikanae | 5 | 1118 | -5905794062536720418
Waikanae | 5 | 1059 | -5905794062536720418
Waikanae | 5 | 1042 | -5905794062536720418
Waikanae | 5 | 1025 | -5905794062536720418
Hutt Valley Line | 11 | 2025 | -2183064056535108044
Hutt Valley Line | 11 | 2019 | -2183064056535108044
Hutt Valley Line | 11 | 2010 | -2183064056535108044
Hutt Valley Line | 11 | 2001 | -2183064056535108044
Hutt Valley Line | 11 | 1955 | -2183064056535108044
Hutt Valley Line | 11 | 1952 | -2183064056535108044
Hutt Valley Line | 11 | 1947 | -2183064056535108044
Hutt Valley Line | 11 | 1935 | -2183064056535108044
Hutt Valley Line | 2 | 1045 | 2322329569350831795
Hutt Valley Line | 2 | 1033 | 2322329569350831795
Hutt Valley Line | 2 | 1025 | 2322329569350831795
Hutt Valley Line | 2 | 1015 | 2322329569350831795
Hutt Valley Line | 2 | 1000 | 2322329569350831795

(30 rows)

With filter for our specific data.

$ ccm nodel cqlsh —e "USE ass2; SELECT line_name, service_no, time, token(line_name, service_no)
as t FROM time_table WHERE line_name='Hutt Valley Line' AND service_no=2 AND time=1045"

line_

name

| service_no | time | t

Hutt Valley Line |

(1 rows)

+

+

2 | 1045 | 2322329569350831795

Because we still have our node ring details, we can find the first node where this token belongs.

dcl:
127.
127.

dc2:
127.
127.

[SENS]
[SENS]
(S0

[SENS)

[SENS)
© oo

rl
rl

rl
rl

Up
Up

Up
Up

Normal
Normal

Normal
Normal

98.97 KiB
98.96 KiB

98.94 KiB
98.97 KiB

20.00%
20.00%

25.00%
25.00%

1844674407370955161
5534023222112865484

100
4611686018427388004

As we can see in node ring list our "Hutt Valley Line" token is smaller then the threshold of node5 of dcl . So our record
default node is node5 . Replicas are the following in the ring: nodel , node2

In dc2 token number is smaller than the threshold of node9 , the primary node will be node9 and replicas will be stored on
node6 and node7 , because they are the following nodes in the ring of dc2 .

Of course, we have to test our solution, so when we get back our tools, we can test above numbers with a "brute force" way,

as we did in Question 6. Stop nodes, use consistency one to determine which node responds and which not.

$ ccm

$ ccm node9 start

stop

$ ccm status

Cluster: 'multi_dc'
node9: UP
node8: DOWN
nodel: DOWN
node3: DOWN
node2: DOWN
node5: DOWN
node4: DOWN
node7: DOWN
node6: DOWN
$ ccm

Consistency level set to LOCAL_ONE.

node9 cqlsh —e "CONSISTENCY LOCAL_ONE; SELECT * FROM ass2.time_table WHERE line_name='Hutt
Valley Line' AND service_no=2 AND time=1045 ;"

line_name

| service_no | time | distance | latitude | longitude | stop

Hutt Valley Line |

(1 rows)

2 | 1045 |

It shows, that node9 stores our requested record.
Repeating the above steps for other nodes, | got respond from node6 and node7 , but not from node8 .
And testing dcl, | got respond from nodel, node2 and node5 , but not from node3 and node4 .

34.3 | -41.2865 |

174.7762 | Wellington

So our token solution was right. (Automated bash script is saved in q15-brute-force.sh)

