

 assignment‑1.md

Cassandra Assignment 1
Zoltan Debre ‑ 300360191

Original source code and git log: https://github.com/zoltan‑nz/cassandra‑exercise

Run everything with the following source command in cqlsh

source './reset.cql'; source './q4.cql'; source './q5.cql'; source './q6.cql';

Answers for Question 1, Question 2 and Question 3 in this file, CQL commands in  q4.cql ,  q5.cql  and  q6.cql .

Assignment Questions
(Note for cross‑references: The list in Question 1 is mainly about "updates", the list in Question 2 is mainly about

"reads", for this reason the cross‑reference is in the following format, ex. "Question 2, Read 1" or "Question 1, Update

3.2".)

Question 1.

List the database write and  update  requests the application requires using plain English. [10 marks]

1. Administrator creates a keyspace for the application. Keyspace name:  tranz_metro .

2. Administrator creates accounts for drivers:

2.1 Create a table for drivers if not exists. Table name:  driver . Columns:  driver_name  (unique, if not exists,

primary key),  password  (string),  mobile  (number),  current_position  (string),  skill  ( set  type with strings).

2.2 Seed the initial drivers data.

3. Drivers can update:

3.1 Drivers can change their password. They provide  old_password  and  new_password . Update the driver's row

with  new_password  only if the  old_password  equal with the stored  password . If the conditions apply,  password 
will be equal with  new_password .

3.2 Drivers can update their  current_position : (with city name string)  'Wellington'  OR (with vehicle)

 vehicle_id  OR (with not available string constant)  'not_available' . The update process managed by the app,

based on the driver's skill and the location of the train. See Question 2, Read 5.

3.3 Drivers can add new skill to  skill  column. Skill column type is  SET<string> .

3.4 App updates a counter log table for payrol. See Question 2, Read 1.

4. Administrator initializes vehicles:

4.1 Create a table for vehicles. Table name:  vehicle . Columns:  vehicle_id  (string, unique, if not exists),

 status  (string), type (string)

4.2 Seed the initial vehicles data.

5. App automatically updates the  status  of a  vehicle . Station name, like  Wellington  OR  in_use  OR

 maintenance  OR  out_of_order .

5.1 Status will be updated based on timetable (departure).  Status  will be the departure station name. See

Question 2, Read 4.



5.2  Status  will be updated to  in_use , when driver turns on the engine.

5.3 Status will be updated when the driver turns off the engine on the destination station.  status  will be the

destination station name. A log event will be called also, see Question 1, Update 7.2.

6. Administrator initializes timetables:

6.1 Create a table for timetables. Table name:  time_table . Columns:  line_name  (unique, if not exists, string),

 service_no  (number, asc within line_name),  station_name  (string),  latitude  (double),  longitude  (double),

 time  (int),  distance  (double), Notes: time are departure times, except the last (destination) time, it is arrival

time. Sorted  asc  by  time .

6.2 Seed  time_table .

7. Recording the travelled distance of a vehicle.

7.1 Need a  vehicle_usage  table for logging vehicle usage. Administrator can create this table with the following

columns:  vehicle_id ,  total_distance  (counter).

7.2 This log will run after the app updated the vehicle  status . See Question 1, Update 5.3. Distance information

comes from Question 2, Read 7.

8. Recording data points after the vehicle's engine started.

8.1 Administrator create a table. Table name:  data_point . Columns:  day  (int),  sequence  (timestamp),

 latitude  (double),  longitude  (double),  speed  (double).

8.2 The app creates a new log entry in this table in every 10 seconds, when the vehicle's engine is on.

REVIEW THIS: 9. Administrator create a neighbour reference table and seed with initial data. Table name:  station ,
Columns:  name  (string),  latitude  (double),  north_neighbour  (string),  south_neighbour  (string)

Question 2.

List the  read  requests the application requires using plain English. [12 marks]

1. Read the number of working days of a driver. (Payroll will use this information.). App collects this information in a

separate table. Table name:  driver_working_days , Columns:  driver_name  (unique, string),  working_day 
(counter). This is a counter table and the app will update the counter, when the driver starts to work.

2. Read timetable data for showing timetable for passengers. Requested columns from  time_table  table:

 line_name ,  station_name ,  time .

3. Application can list  station_name ,  service_no ,  time  from  time_table .  desc  sorted by  time .

4. The iPhone app, which is on the train can read  station_name ,  time ,  line_name ,  service_no . The iPhone app

connected with a train with  line_name  and  service_no . If the  line_name ,  service_no  and  time  matches, we

can update the vehicle status. See Question 1, Update 5.1

5. The application runs a query to list trains on a station. The application reads from  driver  table driver's

 current_position  and check their  skill  values. If the list of skills contains the  vehicle 's  type , the driver will

get a text message and the driver will be allocated to this train. The driver's  current_postion  will be updated.

See Question 1, Update 3.2.

6. The app authentication service reads from the database, from  driver  table,  password  column for checking

password, which provided by the driver after she/he entered in the vehicle.

7. For logging  vehicle_usage , the app has to be able to read distances from  time_table . See Question 1, Update

7.2.

8. Readings from  data_point  table:

8.1 Last entry of a service, based on  line_name  and  service_no .

8.2 List of entries in a time interval ( start_time ,  end_time ). List all the entries, where  sequence  between the

given time intervals.



8.3 Find a data point in  data_point  table. It can provide a  time  and  latitude . With this information find the
previous and next station in  time_table . List city names as  north_neighbour  and  south_neighbour .

Question 3.

Consider Cassandra data model design guidelines we discussed in lectures and list names of database tables the

application requires using plain English. Recall, Cassandra tables strongly depend on requested queries. If there is no

queries needing a table, the table should not exist. (Don’t invent queries to justify the existence of any tables.) After

each table name, list those queries you identified in your answer to question 2 that use the table. [9 marks]

Tables.:

1.  driver  => Question 1 Update 2.1, 2.2, 3.1, 3.2, 3.3; Question 2 Read 5, 6;

2.  vehicle  => Question 1, Update 4.1, 4.2, 5.1, 5.2, 5.3, Question 2, Read 4.

3.  time_table  => Question 1, Update 6.1; Question 2, Read 2., 3., 7.

4.  vehicle_usage  => Question 1, Update 7.1

5.  data_point  => Question 1, Update 8.1, Question 2., Read 8.1, 8.2

6.  station  => Question 1, Update 9; Question 2, Read 9.1;

7.  driver_working_days  => Question 2, Read 1.

Question 4.

Create data model using CQL 3 statements that support the requirements. To answer questions, use Cassandra

CCM. In your answers, copy your CCM and CQL commands. [20 marks]

A/ Create a cluster and a keyspace that will satisfy infrastructure and availability requirements above. [5 marks]

Create cluster with 6 node, using Cassandra v3.10 with  ccm 

Run the following command in terminal.

$ ccm create tranz-cluster -v 3.10 -n 6

Create keyspace

Switch to the created cluster and launch it:

$ ccm switch tranz-cluster 

$ ccm start

Run  cqlsh  on  node1  with local timezone support:

$ TZ=Pacific/Auckland ccm node1 cqlsh 

Notes:

Cassandra stores timestamps in UTC format,  cqlsh  converts timezones only if  pytz  python package is
installed.

Please install with  pip install pytz .

Launch  cqlsh  with the following command:  TZ=Pacific/Auckland ccm node1 cqlsh 

Create the keyspace using  cql :

B/ Define tables listed in your answer to question 3 above. For the table definitions include any non default property

settings. Optimize your database solution just for iPhone application queries you identified in question 2 above. [15

marks]

Details in  q4.cql .

CREATE KEYSPACE If NOT EXISTS tranz with replication = {'class': 'NetworkTopologyStrategy', 'datacenter1': 

USE tranz;



 

Question 5.

Provide CQL3 statements to support each of the application write and update requests you specified in Question 1
above. Show the consistency level before each write and update statement. [20 marks]

Details in  q5.cql .

Question 6.

Provide CQL3 statements to support each of the application read requests you specified in Question 2 above. Show
the consistency level before each read statement. In your answer copy your CQL statement and the result produced
by Cassandra from the screen. [29 marks]

Details in  q6.cql .


