
SWEN 432 Assignment 1/17 1

Assignment 1 SWEN432-17/ass1(pm)

School of Engineering and Computer Science

SWEN 432

Advanced Database Design and Implementation

Assignment 1

Due date: Wednesday 05 April at 23:59

The objective of this assignment is to test your understanding of Cassandra
Cloud Database Management System and your ability to apply this knowledge.
The Assignment is worth 5.0% of your final grade. The Assignment is marked out
of 100.

You will need to use Cassandra to answer a number of assignment questions.
Cassandra has been already installed on our school system. There is an
Instruction for using Cassandra on our lab workstations given at the end of the
Assignment.

1. Overview

Assume Wellington Tranz Metro has acquired an iPhone application that works
as a data recorder for railway vehicles (cars, engines). The application uses
mobile data connections to send information to servers in real time. The
information includes measurements such as the location and speed of the
vehicle. They have selected Cassandra as the CDBMS to use for this project.
Your job is to design a database, and advise on its use. You are also required to
implement a test database with a substantial part of sample data provided in the
assignment, as a proof of concept. Note, the grouping of test data in sample data
tables does not necessarily imply their belonging to the same or different
Cassandra CQL tables.

2. Application Requirements

The application needs a database containing data about drivers, railway vehicles,
time table, availability of drivers and vehicles, and current position and speed of
vehicles.

Drivers

A database administrator creates an account for each railway vehicle driver
through the iPhone application. Each account has the following information:

1. driver_name,

SWEN 432 Assignment 1/17 2

2. password,

3. mobile,

4. current_position (e.g. ‘Wellington’, or ‘FA4567’, or

‘not_available’),

5. skill (a set of train types the driver is qualified to

drive).

All driver names have to be unique.

Drivers can change their password through the iPhone application. A driver must
provide their current password and the new one. The application must only
update the password if the correct current password is provided. Assume the
iPhone sends a hashed password, so you do not worry about encryption on the
server side.

When a driver comes to work at a station, she/he updates her/his

current_position by the name of a station (e.g. ‘Wellington’). When

the application assigns a driver to a service it updates her/his

current_position to a vehicle_id value (e.g. ‘FA4567’) of a vehicle that

is also assigned to the service. When a driver deregisters from work, she/he sets

her/his current_position to ‘not_available’.

The application also needs the number of days per month a driver registered at
work for payroll calculation at the end of a month. The payroll calculation
algorithm is not of our concern, but we need to provide the appropriate data.

When a driver qualifies to drive a new vehicle, her/his skill gets updated.

Railway Vehicle

A database administrator registers railway vehicles. Each railway vehicle
registration has the following information:

1. vehicle_id

2. status (e.g.‘Upper Hutt’, or ‘in_use’, or ‘maintenance’,
or ‘out_of_order’),

3. type (e.g. ‘Gulliver’, or ‘Ganz Mavag’, or ‘Matangi’, or
‘Kiwi Rail)

The attribute vehicle_id has to be unique.

If the status property of a train vehicle has a station name as the value, it

means the vehicle is operational and available and its current location is the
station with the given name.

Time Table

Wellington Metro Time Table contains information about lines, services, and
stations. Wellington Metro contains several lines. Each line contains several
services.

SWEN 432 Assignment 1/17 3

Each line has a `line_name` that has to be unique.

Each service of a line has:

1. service_no (the ordinal number of a service within a line), and

2. A sequence of (station_name, time, distance) triples.

In the sequence of (station_name, time, distance) triples, the first

station_name is the name of the departure station, and the last is the name of

the destination station. For all stations in the sequence, except for the destination

station, the attribute time is the departure time. The attribute time for the

destination station is the arrival time. The attribute time is of the type int (e.g.

1005 for 10:05, or 1947 for 19:47). The sequence is ordered according to the

rising values of the attribute time.

Different services between the same two departing and destination station may
have different numbers of stations. A station may be used by different lines, and
their services.

Beside the name, a station also has:

1. latitude (of the type double), and

2. longitude (of the type double).

The time table data have a number of uses. One is to publish a time table for

passengers. (Note, passengers are not interested for data like service_no,

distance, latitude, longitude.) The other uses are discussed in the

next sections.

Allocation of Vehicles and Drivers to Services

The application extracts a list of departure stations with all services departing
from a station, and orders that data according to descending values of the
service departure time.

For each departure station, the application extracts from the list of departure
stations a service due to be dispatched next, finds an available vehicle at the
departure station, stores the identification data of the service in the vehicle’s

iPhone (to allow pairing data points and services), and updates the status of

the vehicle. The application also finds an available driver having the needed skill
at the departure station, sends her/him an allocation message on her/his mobile,

and updates her/his current_position. When the driver enters the vehicle,

she/he will be allowed to start the engine only after a successful authentication.
She/he performs authentication by connecting to her/his database record via
iPhone.

When the service reaches the destination station, the driver turns off the engine,
and the application updates the driver’s and vehicle’s records to reflect their
availability at the destination station. Also, the application records the information
that the vehicle travelled an additional distance. The application keeps record

SWEN 432 Assignment 1/17 4

about a daily and total distance travelled for each vehicle, and uses the data for
planning the maintenance.

Data Points

The application automatically records information about the time, speed, and the
position of an operational vehicle from the iPhone in the vehicle.

Each sampling of the position and other information is considered a Data Point.
When the vehicle’s engine has been started, the application starts sending data
points every 10 seconds.

Each Data Point contains the identification data of the service and the following
information:

1. day (of the type int, e.g. 20170326),

2. sequence (of the type timestamp),

3. latitude (of the type double),

4. longitude (of the type double),

5. speed (of the type double),

The application uses data points to calculate:

 Estimated departure time of a service to be displayed on station screens for

passengers’ convenience, and

 Time delays at the destination station to be used to improve planning, time

tabling, track maintenance, and other.

The details of the calculations above are out of the scope of the assignment, but
to make these calculations possible, the database should allow retrieving:

 The last data point for a service on a day,

 Data points for a service on a day in a time interval, and

 For a given data point find: time, distance, latitude, and

station_name of the closest (regarding latitiude) stations in the north and

direction. Call these stations north_neighbour and south_neighbour.

Note: The neighbouring stations strongly depend on data points. Data points are

generated by an iPhone for a service during its travel. Data points are not known

in advance, accordingly neighbouring stations can’t be stored in the database in

advance. Neighbouring stations have to be computed upon receiving a data point

for a service. So, you need to define an appropriate query that will take some

data from a data point and use a table containing station data for the same

service.

SWEN 432 Assignment 1/17 5

3. Consistency Requirements

The product team has agreed to the following consistency requirements:

1. Reading driver and vehicle data must be strongly consistent.
2. Reading Data Point and other data may be eventually consistent.

4. Infrastructure Requirements

The deployment of the application and the test database should involve:

1. One cluster with a total of 6 physical nodes.
2. Using the Cassandra 3.10 release.

5. Availability Requirements

The infrastructure team has agreed to the following Availability requirements:

 The keyspace must provide Strong Consistency for 100% of the data when
one node is down.

 Assume, each physical node has just 1 virtual node.

Note: The whole text above is completely fictional. It is made for the purpose of

a students’ exercise, only.

Assignment Questions

Question 1. [10 marks] List the database write and update requests the
application requires using plain English.

Question 2. [12 marks] List the read requests the application requires using
plain English.

Question 3. [9 marks] Consider Cassandra data model design guidelines we
discussed in lectures and list names of database tables the application requires
using plain English. Recall, Cassandra tables strongly depend on requested
queries. If there is no queries needing a table, the table should not exist. (Don’t
invent queries to justify the existence of any tables.) After each table name, list
those queries you identified in your answer to question 2 that use the table.

Question 4. [20 marks] Create data model using CQL 3 statements that support
the requirements. To answer questions, use Cassandra CCM. In your answers,
copy your CCM and CQL commands.

a. [5 marks] Create a cluster and a keyspace that will satisfy infrastructure and
availability requirements above.

b. [15 marks] Define tables listed in your answer to question 3 above. For the
table definitions include any non default property settings. Optimize your
database solution just for iPhone application queries you identified in
question 2 above.

SWEN 432 Assignment 1/17 6

Question 5. [20 marks] Provide CQL3 statements to support each of the
application write and update requests you specified in Question 1 above. Show
the consistency level before each write and update statement.

Question 6. [29 marks] Provide CQL3 statements to support each of the
application read requests you specified in Question 2 above. Show the
consistency level before each read statement. In your answer copy your CQL
statement and the result produced by Cassandra from the screen.

References

* CQL3 formal language definition
https://github.com/apache/cassandra/blob/cassandra-

2.0/doc/cql3/CQL.textile

* CQL3 language reference from Data Stax
http://www.datastax.com/documentation/cql/3.1/cql/cql_intro

_c.html

* CCM (already installed on campus) https://github.com/pcmanus/ccm

SWEN 432 Assignment 1/17 7

Sample Data

The following sample data can be used for testing:

drivers:

drv_name cur_pos mobile pwd skill

milan Upper Hutt 211111 mm77 {Matangi}

pavle Upper Hutt 213344 pm33 {Ganz Mavag,

Guliver}

pondy Wellington 216677 pondy {Matangi, Kiwi Rail}

fred Taita 210031 f5566f {Gulliver, Ganz

Mavag}

jane Waikanae 213141 jjjj {Matangi}

vehicles:

vehicle_id status type

FA1122 Upper Hutt Matangi

FP8899 maintenance Ganz Mavag

FA4864 Wellington Matangi

KW3300 Wellington KiwiRail

time table

Hutt Vale Line (north bound)

station_name
service_no distance

[km] 1 3 5 7 9 11

Wellington 0605 1935 0

Petone 0617 1947 8.3

Woburn 1950 11.0

Waterloo 0625 1955 13.3

Naenae 2001 16.9

Taita 0634 2010 19.0

Silverstream 0642 2019 26.5

Upper Hutt 0650 2025 34.3

SWEN 432 Assignment 1/17 8

Hutt Vale Line (south bound)

station_name
service_no Distance

[km] 2 4 6 8 10 12

Upper Hutt 0700 1900 0

Silverstream 0708 1907 7.8

Taita 0716 1918 15.3

Naenae 1927 17.4

Waterloo 2028 21.0

Woburn 0725 2030 23.3

Petone 2035 26.0

Wellington 0745 2050 34.3

Waikanae Line (north bound)

station_name
service_no distance

[km] 1 3 5 7 9 11

Wellington 1025 0

Paekakariki 1059 33.1

Paraparaumu 1118 51.3

Waikanae 1139 62.8

Note: In tables above, time is represented as integer. So, you may interpret say
1025 as 10:25.

station_name longitude latitude

Wellington 174.7762 -41.2865

Petone 174.8851 -41.227

Waterloo 174.9081 -41.2092

Taita 174.9608 -41.1798

Upper Hutt 175.0708 -41.1244

Paekakariki 174.951 -40.9881

Paraparaumu 175.0084 -40.9142

Waikanae 175.0668 -40.8755

SWEN 432 Assignment 1/17 9

Data Points:

sequence latitude longitude speed [km/h]

2017-03-22 10:37:50+1300 174.77 -41.2262 29.1

2017-03-26 10:07:40+1300 175 -41.2012 70.1

2017-03-26 10:02:10+1300 175.07 -41.1255 40.5

2017-03-26 10:49:40+1300 174.8 -41.968 30.8

2017-03-26 10:48:40+1300 176.06 -41.3 38

2017-03-26 10:48:10+1300 175.89 -41.523 67.6

2017-03-26 10:47:40+1300 175.44 -40.081 54

2017-03-26 10:47:10+1300 174.8 -40.478 36

What to hand in:

 All answers both electronically and as a hard copy.

 A statement of any assumptions you have made.

 A file under the name submit_file_17.cql that contains all of your table

and index declarations along with 3 insert statements per table and 3

update statements per each column you were expected to update. Note,

Pavle is going to run the file using source cqlsh command.

 A .cql (e.g. q6a.cql) file for each valid select statement you issued

against the database as an answer. Again, note: Pavle is going to run your

select statements against your database using source cqlsh command.

 Please do not submit any .odt, .zip, or similar files. Also, do not submit your
files in toll directory trees. All files in the same directory is just fine.

SWEN 432 Assignment 1/17 10

Using Cassandra ccm on a Workstation

ccm stands for Cassandra Cluster Manager. This is a tool that creates

Cassandra clusters on a local server and thus it simulates a Cassandra network.

At the command line you need to type:

[~] % need ccm

to set up the environment. You may want to insert need ccm into your .cshrc

file and thus to avoid typing it repetitively whenever you log on.

The ccm tool supports a great number of commands. In the Assignment 1, you

will need only a few of them. To see the available ccm commands, type

% ccm

Many ccm commands have options. To see available options of a command,

type

% ccm <command> -h

When running a ccm command, do not use a –v or --cassandra-version

option. The proper version of Cassandra is already installed on our school
network.

To create a Cassandra cluster, use ccm create –n <no_of_nodes>

<clster_name>.

To see available clusters and which one is the current (designated by *), use ccm
list.

To switch to another cluster, use ccm switch <cluster_name>.

To see the status of the current cluster, use ccm status.

To start the current cluster, use ccm start.

To stop the current cluster, use ccm stop.

To open a CQL session, use ccm nodei cqlsh.

To exit, from cqlsh, type exit.

Note: ccm commands will not work on any netbsd computers but that should

not be a problem as almost all computers that students have access to

nowadays are Linux boxes.

Warning:

 In all deployments the same ports are assigned to server nodes. After
finishing a session you have to do ccm stop to stop all servers of your
deployment and release ports for other uses. Failing to do so, you will make
trouble to other people (potentially including yourself) wanting to use the
same workstation. Later, if you want to use the same deployment again, you

just do ccm start and your deployment will resume functioning reliably.

SWEN 432 Assignment 1/17 11

 You are strongly advised to use Cassandra from school lab
workstations. The school does not undertake any guarantees for using
Cassandra from school servers. You may install and use Cassandra on your
laptop, but the school does not undertake any responsibilities for the results
you obtain.

